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Abstract: Since its belated discovery, our understanding of the giant protein titin has grown
exponentially from its humble beginning as a sarcomeric scaffold to recent recognition of its critical
mechanical and signaling functions in active muscle. One uniquely useful model to unravel titin’s
functions, muscular dystrophy with myositis (mdm), arose spontaneously in mice as a transposon-like
LINE repeat insertion that results in a small deletion in the N2A region of titin. This small deletion
profoundly affects hypertrophic signaling and muscle mechanics, thereby providing insights into
the function of this specific region and the consequences of its dysfunction. The impact of this
mutation is profound, affecting diverse aspects of the phenotype including muscle mechanics,
developmental hypertrophy, and thermoregulation. In this review, we explore accumulating evidence
that points to the N2A region of titin as a dynamic “switch” that is critical for both mechanical
and signaling functions in skeletal muscle. Calcium-dependent binding of N2A titin to actin filaments
triggers a cascade of changes in titin that affect mechanical properties such as elastic energy storage
and return, as well as hypertrophic signaling. The mdm phenotype also points to the existence of as
yet unidentified signaling pathways for muscle hypertrophy and thermoregulation, likely involving
titin’s PEVK region as well as the N2A signalosome.

Keywords: mechano-sensing; muscle hypertrophy; muscle mechanics; muscular dystrophy; striated
muscle; titinopathy

1. Introduction: A Small Change in A Giant Protein Leads to Severe Titinopathy in mdm

Titinopathies [1] are inherited diseases of skeletal and cardiac muscle that are caused by mutations
in the Ttn gene, which encodes for titin, the largest known protein [2]. Titin is the third most
abundant protein in the muscles of vertebrates [3], and spans an entire half-sarcomere (1 µm) from
the M-line to the Z-disk [4]. Titin plays many important roles in striated muscle, including passive force
generation [5], maintenance of sarcomere integrity [6], and myofibrillar assembly [4,7]. Due to its large
size and repetitive sequence, the Ttn gene exhibits enormous variability among humans [8,9]. Millions
of potential isoforms are possible due to alternative splicing of the many (>360) Ttn exons [10]. Most of
the disease-associated Ttn variants include mutations with large effects on the expressed titin protein,
including nonsense, missense, and truncating mutations, insertions/deletions, and splice mutations [11].
In affected individuals, compound heterozygosity is common [12]. Despite the relatively large effects
of these mutations on the expressed titin protein, many titin mutations are associated with relatively
late onset myopathy and/or cardiomyopathy [11]. The diverse mechanisms of post-transcriptional
and post-translational modification, and the diversity of signaling functions already described for
this giant protein are staggering in number and complexity [13], which may help to explain why
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the underlying mechanisms through which titin mutations produce muscle disease remain largely
unknown [14].

In contrast to more typical titinopathies, muscular dystrophy with myositis (mdm) in mice [15,16],
among the earliest identified titinopathies [1,17], paradoxically presents a severe phenotype that
is caused by a small deletion. Just 83 amino acids are missing from the giant titin protein [15],
the largest isoform of which contains 38,000 amino acids. This represents a miniscule fraction (0.2%) of
the entire protein. The mdm deletion is located at the N2A-PEVK border of I-band titin (Figure 1A).
The N2A region of titin (Figure 1B) is comprised of four Ig domains and a unique insertion sequence
(UN2A) in the order Ig80-UN2A-Ig81-Ig82-Ig83 [18]. In mdm, 21 amino acids are deleted from Ig83,
and the remaining 61 amino acids are deleted from linking and PEVK regions (Figure 1B). Given
the small size of the deletion, mdm is a surprisingly severe titinopathy with early onset shortly after
birth and progressive degeneration, leading to early death [19]. Although the primary deletion is
small, it remains to be determined whether splicing of the Ttn gene itself might also be affected.
The severity of the phenotype suggests that this small region of titin plays a critical role in muscle
function. A transgenic TTN∆112−158 mouse was recently developed [20] in which 47 exons from
the N-terminus of the PEVK region were deleted, including 28 amino acids at the C-terminus of
the mdm deletion, yet life span and muscle function of these mice are normal [20]. Thus, it appears
likely that only the remaining 55 amino acids deleted from Ig83 and the N2A-PEVK linker region are
responsible for the severe mdm phenotype.

Figure 1. (A) Layout of titin in skeletal muscle sarcomeres. Each titin molecule is bound to the thin
filament (blue) in the Z-disk (blue triangles on left side of half-sarcomere) and to the thick filaments
(purple) in the A-band. The N2A segment (red) is located between the proximal tandem Ig segments
(orange) and the PEVK segment (green). Ig, immunoglobulin. Reproduced with permission from
Nishikawa [21]. Copyright 2016, The Company of Biologists Ltd. (B) Layout of the N2A region.
This region includes Ig80, unique N2A sequence (UN2A), Ig81, Ig82, and Ig83. The exons of the mouse
Ttn gene are shown below, along with the location of the mdm deletion.

Lane [16] first reported the mdm mutation, which arose spontaneously on the C57BJ/6j mouse
background at the Jackson Laboratories. Although the mdm mutation was initially mapped to
chromosome 2, the affected gene(s) remained unknown [16]. When chromosome 2 was identified as
the location of titin and nebulin genes [22], the hunt for the mdm mutation was quickly focused on
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these genes. Müller-Seitz et al. [22] collected titin and nebulin cDNA from mdm muscle and probed
different regions for genetic mutations; however, no changes in titin or nebulin cDNA were uncovered.
Nearly a decade later, with quickly advancing technology in sequencing, the site of the mutation was
finally located within the titin gene [15].

Mdm is recessive lethal and first manifests in development as a kyphosis of the spine in
homozygous mice at 12 days after birth [16]. Mdm mice exhibit a complex phenotype that, in addition
to severe kyphosis, includes reduced body mass [19], rigid gait, and early death at approximately
60 days of age [15]. Histologically, signs of muscle degeneration appear in the soleus muscle within
the first two weeks of birth, and 1–2 weeks later in the tibialis anterior [19]. However, regeneration of
fibers is also evident from the presence of central nuclei in mdm muscles and the increased frequency
and activity of satellite cells starting at 40 days of age, compared to wild type muscles [19].

The mdm mutation affects muscle function from myofibril to intact muscle [23]. Fiber bundles
from mdm soleus have normal passive and active force at 24 days of age [24]. Single myofibrils have
normal passive force, and only a small deficit in active isometric force at optimal length [25]. Fiber
bundles have normal length- and calcium dependence of force [26], but also have increased passive
tension and psoas fibers have reduced isometric tension compared to wild type muscles [27], although
isometric tension is spared in extensor digitorum longus (EDL) fibers [26]. Intact muscles from mdm
mice generally exhibit lower isometric tension, but the effect is greater in soleus than EDL [28].

In addition to changes in muscle structure and function, several recent studies demonstrate that
the mdm mutation also affects post-natal growth and thermoregulation. While Witt et al. [24] assumed
that mdm mice lose weight after birth, other studies suggest that they actually fail to grow after
weaning. Huebsch et al. [29] found that skeletal muscle fibers from mdm mice remained small in
diameter at post-natal day 14 when normal fibers have already undergone significant developmental
hypertrophy. Pace et al. [30] also found that body mass failed to increase in mdm mice after weaning.
Compared to wild type littermates, the growth of the long bones of the hindlimbs was also reduced after
birth, although limb proportions remained relatively normal, indicating that growth of the skeleton is
also reduced in mdm mice. These observations suggest impairment of normal hypertrophic signaling
in skeletal muscles after birth, as well as concomitant changes in bone growth commonly observed in
neuromuscular disease [31].

Two recent studies also demonstrate impaired thermoregulation in mdm mice.
Taylor-Burt et al. [32] found that mdm mice failed to maintain a constant body temperature at ambient
temperatures ranging from 20 to 37 ◦C, in contrast to wild type littermates. Homozygous mdm mice
exhibited shivering thermogenesis at higher temperatures than wild type mice, but they shivered
at a lower frequency than expected, particularly given their small body size. Miyano et al. [33] showed
additionally that mdm mice have impaired non-shivering thermogenesis as well as reduced metabolic
rate, indicating that the mdm deletion results in severe thermoregulatory defects at all levels including
increased thermal conductance through decreased body size. Whereas earlier studies presumed
that early death was due to failure of the respiratory muscles [15], the observation that provision of
a heating pad and high fat diet increased the average lifespan from 60 to 120 days [32] suggests that
thermoregulatory deficits may be the cause of early death. These recent studies demonstrate that titin
mutations have significant organism-wide effects on phenotype beyond those traditionally considered
in myopathy and cardiomyopathy.

Garvey et al. [15] were the first to suggest that the amino acid sequence deleted in mdm must
play a critical role in titin function, perhaps as a mechanical hinge or linker, or as a binding site for
ligands involved in signaling pathways. However, mechanical and/or biochemical mechanism(s) that
account for the severe mdm phenotype have yet to be identified. Sufficient data are now available to
critically analyze the accumulating evidence for biochemical signaling and mechanical functions of
N2A titin that may account for mdm titinopathy, and also further our understanding of the role of titin
in healthy muscle function.
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2. Altered Gene Expression and Hypertrophic Signaling in mdm

Numerous studies have implicated N2A titin as a hub for signaling pathways [34–36]. If the mdm
phenotype is caused by altered binding of ligands critical for signaling in healthy muscle, then we
would expect to observe downregulation of proteins critical for healthy muscle function, and/or
upregulation of pro-inflammatory, apoptotic, or other degenerative pathways. Downregulation of
proteins critical for healthy muscle function appears to be minimal in mdm, with the only likely
candidate being CAPN3. A transcriptomic analysis of 12,000 genes in hindlimb muscles from mdm
mice showed that only four transcripts were downregulated [24]. Although CAPN3 transcripts were
not downregulated in Witt et al.’s [24] study, two other studies revealed a deficiency in CAPN3 protein
content within mdm muscles [15,37]. This deficiency is likely due to reduced binding of CAPN3 to
mdm titin [24], since normal binding of CAPN3 to Ig83 in N2A titin suppresses CAPN3 autolysis [38].

Transcriptomic analysis of mdm muscles also fails to show upregulation of pro-inflammatory,
apoptotic or other degenerative pathways that are evident in other muscular dystrophies. For example,
in a mouse model of Duchenne muscular dystrophy (mdx), 72 different transcripts involved in
the immune response are upregulated [39], whereas only three of these pro-inflammatory transcripts
are upregulated in mdm [24]. Additionally, a utrophin/dystrophin double KO mouse has a degenerative
phenotype that is more like the human Duchenne muscular dystrophy phenotype [40] than the mdx
mutation in mice, but all three of the genes with the greatest upregulation in the utrophin/dystrophin
double KO mouse are among the four downregulated genes in mdm.

Most studies that propose signaling-based mechanisms for the severe mdm phenotype have
focused on CAPN3 and the MARP-family proteins due to their binding locations near the site of
the N2A deletion and observed changes in gene expression. Surprisingly, Witt et al.’s [24] transcriptomic
analysis also showed that MARP1/CARP and MARP2/Ankrd2, involved in hypertrophic signaling [41],
are upregulated in mdm [24] despite the lack of developmental hypertrophy observed in mdm
muscles [29,30]. Here, we also focus on these ligands that bind to titin in the N2A region near
or within the mdm deletion [42], in particular calpain-3 CAPN3/p94 [43,44], and the MARP-family
proteins MARP1/CARP, and MARP2/ankrd-2/Arpp [41]. Below, we review the observed changes in
expression of CAPN3 and MARP-family transcripts or proteins in mdm muscles, with a view towards
understanding the severe phenotype.

2.1. Calpain-3/p94 Deficiency in mdm

Calpain 3 (CAPN3, also called p94) is a calcium-dependent modulator protease [45] that is
found throughout the body, but is expressed predominantly in skeletal muscle where it interacts with
proteins throughout the sarcomere. CAPN3 binds to numerous muscle proteins in the Z-disk, thin
filament (tropomyosin), and M-band, as well as at several locations along the length of titin [46]; for
review see [45], including two locations at Ig80-IS and Ig82-Ig83 in the N2A region of titin [43,44].
Calpainopathies are muscular dystrophies that result from genetic mutations in CAPN3, revealing
its critical function in healthy muscle [38]. In normal muscles, CAPN3 moves from the M-line to
the N2A region of titin upon active stretch, and this movement is associated with exercise-induced
muscle hypertrophy [47]. Substitution of a proteolytically inactive form of CAPN3 reduced the rate
of translocation and impaired adaptation to exercise, demonstrating the important role of CAPN3 in
strain- and exercise-dependent signaling in skeletal muscle.

Since mdm muscles exhibit CAPN3 deficiency [15,37], the mdm phenotype was initially thought to
be linked to limb girdle muscular dystrophy type 2A, which is also characterized by CAPN3 deficiency
often associated with CAPN3 null mutations [48]. Haravuori et al. [37] found that the concentration of
CAPN3 protein was greatly reduced in mdm mice at 28 days of age, similar to muscle biopsies from
tibial muscular dystrophy patients, whereas mdx muscles showed no reduction in CAPN3 expression.
However, CAPN3 knockout mice have a much less severe dystrophic phenotype [49,50] than mdm
mice, suggesting that functions in addition to CAPN3 are affected in mdm [15].
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When mdm mice were crossed with overexpressing CAPN3 and CAPN3 transgenic knockout
mice, Huebsch et al. [29] found that only the overexpressing CAPN3 genotype exacerbated the mdm
phenotype, leading to a shorter life span and more severe muscular dystrophy. In contrast, the CAPN3
knockout/mdm double mutants showed no change in severity or progression of muscle degeneration,
demonstrating that reduced CAPN3 expression is not a primary mechanism in mdm [29].

2.2. MARP-Family Proteins

MARP1 and MARP2 are key transcriptional regulators of hypertrophic signaling in striated
muscle [51–53], and competitively bind to titin at UN2A-Ig81 [41]. In cardiac muscle, MARP2 plays
a role in sequestering PKCα at the intercalated disc, and MARP2 knockout significantly worsens
the dilated cardiomyopathy phenotype in a mouse MLP-KO model [54]. Since MARP 1 is typically
found in trace amounts in healthy skeletal muscle, MARP2 is the predominant titin binding partner [55].
However, MARP1 is upregulated in response to a variety of mechanical stressors, including injury,
stretch, denervation, and recovery from starvation [41,51,53]. When normal muscles experience a single
damaging eccentric contraction, they upregulate five muscle-specific genes [51] including, MARP1,
MARP2, and MLP. No upregulation of these transcripts is seen after isometric contraction or passive
stretch. MARP1, MARP2, and MLP transcripts are upregulated in mdm, and MARP1 and MARP2
proteins are also upregulated [24].

Both hypertrophic signaling and MARP upregulation have also been associated with titin passive
stiffness [53]. Van der Pijl et al. [53] investigated muscle hypertrophy in normal C57BL6j mice, and also
in two transgenic models, including RBM20∆RRM, which disables the splicing function of RBM20
and leads to a longer, more compliant titin isoform, and Ttn∆IAjxn, which deletes 18 Ig domains
at the AI junction, shortening the protein and creating a stiffer titin isoform. Unilateral diaphragm
denervation was used to promote hypertrophy, in this case by passive stretching of the denervated
hemi-diaphragm by the active side. The study demonstrated that muscles with the stiffer titin isoform
showed both increased muscle hypertrophy and increased expression of MARP 1 and 2, versus muscles
with the more compliant isoform, which showed attenuated hypertrophy and reduced expression of
MARP 1 and 2, compared to wild type mice.

Since MARP1 and 2 are upregulated in mdm, it appears that some other factor associated with
the mdm deletion prevents hypertrophy in mdm skeletal muscles, especially given that while the mdm
mutation reduces binding of CAPN3, it has no effect on MARP binding [24]. Surprisingly, hypertrophic
signaling pathways appear to function normally in transgenic mice in which all MARPs 1–3 have been
deleted [56]. These mice show normal or even accelerated recovery from a single damaging contraction
despite the total absence of MARPs. Likewise, Ttn∆112−158 transgenic mice, with a shorter and stiffer
PEVK region, add sarcomeres in series without upregulation of MARPS or other known hypertrophic
signaling proteins [20]. These results suggest the existence of multiple parallel signaling pathways for
hypertrophy in skeletal muscle, only some of which are known at the present time.

2.3. Mechano-Sensing in N2A Titin: Interactions between N2A Titin, MARPs, and CAPN3

Several recent studies have suggested that CAPN3 and MARPs form signalosomes on N2A titin
that transduce mechanical stretch into nuclear gene expression signals related to muscle hypertrophy.
MARPs, myopalladin, and CAPN3 colocalize in titin’s N2A region (Figure 2) and appear to be
components of a mechano-sensing complex [41]. Miller et al. [41] speculate that MARPs are regulated
by stretch of N2A titin, linking stress/strain signals in N2A titin to MARP-based regulation of gene
expression. The close proximity of MARPs and CAPN3 suggests that titin could coordinate these
signaling pathways. MARP1/CARP binds to the UN2A-Ig81 region of titin [57]. Using single molecule
force spectroscopy, Lanzicher et al. [58] demonstrated that MARP1/CARP increases the persistence
length and unfolding force of UN2A, suggesting that it might function as a chaperone that protects
Ig81 from unfolding under high forces. In the diaphragm, van der Pijl et al. [53] proposed several
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possible functions of MARP1 including modulation of titin stiffness, cross-linking of titin filaments,
or formation of a scaffold for other binding proteins to facilitate hypertrophic signaling.

Figure 2. Schematic of the titin-N2A signaling complex. MARP1 and 2 bind competitively to N2A
titin’s unique sequence (UNA), located between Ig80 and Ig81. CAPN3 binding is localized to both
Ig80/UN2A and Ig82/Ig83. Myopalladin (MYPN) associates with the N-terminal domains of MARPs.
Adapted from Miller et al. [41] and Hayashi et al. [43].

The function of CAPN3 within muscle sarcomeres remains obscure [45]. Both N2A titin and MARPs
are potential substrates for CAPN3 [43]. Due to the function of CAPN3 and other calpains as modulator
proteases [45], it has been suggested that CAPN3 might cleave MARP1 and thereby increase its affinity
for titin [53]. In cell culture, Hayashi et al. (2008) showed that the mdm deletion possessed enhanced
resistance to proteases, including CAPN3, and they also reported that interaction between mdm titin
and MARP1 was weakened.

In summary, despite the strong evidence for the N2A region of titin as a signalosome for
mechano-sensing in skeletal muscle sarcomeres [53], whether the severe phenotype of mdm skeletal
muscles is related to this function remains unclear for several reasons. The idea that calpain deficiency
is a disease mechanism in mdm is not supported by crosses with transgenic CAPN3 over-expressing
and KO mice, which demonstrated that the over-expressing mutation but not the KO background,
exacerbated the mdm phenotype [29]. Furthermore, although mdm skeletal muscles exhibit significant
upregulation of MARP1 and MARP2 [24], the normal developmental hypertrophy that occurs in
wild type muscles, as well as in CAPN3 and MKO transgenic muscles, nevertheless fails to occur
in mdm muscles [29,30]. In the context of a signaling function for N2A titin that is impaired by
the mdm deletion, it appears likely that a mechanical signal is present that leads to an increase in
MARP1 and MARP2 expression, but a process between these MARPs and other regulators of muscle
hypertrophy may be impaired, which prevents the hypertrophy that is normally associated with MARP
upregulation. It also remains possible that the primary mdm deletion in exons 106–109 may also
affect splicing of titin exons in the PEVK region, which also binds to actin independently of calcium in
the skeletal muscle [59].

3. N2A Titin: A Mechanical Switch in Skeletal Muscle

A second, non-exclusive alternative hypothesis for the severe mdm phenotype is that the N2A
region of titin is a critical hinge or linker, so that the mdm deletion disrupts the mechanical function of
titin in muscle sarcomeres in addition to hypertrophic signaling. Titin has traditionally been viewed
as a spring in passive muscle [5,60,61]. However, a variety of studies demonstrate that titin stiffness
increases in the presence of calcium [62–64]. Several recent studies further suggest that titin is a tunable
spring that increases its stiffness substantially upon muscle activation [65]. It is now apparent that
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the N2A region of titin is involved in calcium-dependent binding with actin, functioning as a switch
that modulates titin stiffness in passive vs. active muscle [66–69]. Here, we review the changes in
passive and active muscle mechanics associated with the mdm deletion.

3.1. Titin: A Molecular Spring in the Resting Muscle

In skeletal muscle, titin’s I-band region is composed of two serially linked spring elements:
tandem immunoglobulin (Ig) segments and the PEVK domain, separated by the N2A region. When
a sarcomere is stretched, the I-band region of titin extends, giving rise to passive muscle force [60,62,70].
At relatively short sarcomere lengths (<2.8 µm), passive stretch straightens the proximal tandem Ig
domains at low force [70,71]. Importantly, because proximal tandem Ig domains are so compliant,
there is little to no change in passive tension with stretch. At longer sarcomere lengths (>2.8 µm),
the much stiffer PEVK domain elongates and passive tension increases sharply [61,72]. In this way,
the force-extension behavior of I-band titin determines the passive elasticity of skeletal muscle fibers
over the physiological range of sarcomere lengths (2.4−3.2 µm) [70,73–75].

The titin isoform expressed by a muscle determines not only the sarcomere length at which passive
tension develops [70,73] but also the magnitude of muscle passive stiffness. For example, soleus muscle
fibers that express an isoform with a long, compliant PEVK region are less stiff than EDL or psoas
fibers, which express an isoform with a shorter PEVK segment [76,77]. Transgenic mice with reduced
(i.e., RBM20∆RRM, [53]) or increased (i.e., Ttn∆IAjxn, [53]; Ttn∆112−158, [20]) titin stiffness also exhibit
altered stiffness not only at the level of single muscle fibers but also at the level of the whole muscle.

Several studies demonstrate that the mdm mutation leads to fibrosis, or increased passive tension
due to higher collagen content in the extracellular matrix. However, no difference in passive stiffness
is observed between myofibrils from mdm and wild type mouse psoas muscles [25], consistent with
the small size of the mdm deletion. However, increased passive tension is observed in preparations
at all higher levels from single fibers to whole muscles, where endomysial, perimysial and/or epimysial
connective tissue is present. For example, Lopez et al. [78] found that the passive tension of fiber
bundles from the mdm diaphragm was elevated compared to wild type by 14 days of age. Furthermore,
Powers et al. [27] found that passive tension nearly doubled and collagen content increased 10-fold
in skinned fibers of mdm psoas compared to wild type. Passive tension is also higher in intact
soleus [79,80] and EDL muscles [28] compared to wild type muscles.

3.2. Titin: A Tunable Spring in Active Muscle

Recent evidence demonstrates that the N2A region of titin is a mechanical switch that increases titin
stiffness in an active muscle. A recombinantly expressed N2A construct (Ig81-UN2A-Ig81-Ig82-Ig83)
was developed that co-sediments with F-actin [81]. Single molecule force spectroscopy demonstrates
that rupture force increased from 70 pN at pCa = 10.0 to 100 pN at pCa = 4.0, and the off-rate of
the N2A titin construct from actin decreased from 15.6 to 4.7 s−1 [81]. The high rupture forces (100 pN)
measured between the N2A construct and F-actin in the presence of calcium show that titin alone
can account for 66% of the energy stored in muscle during an active stretch that remains unexplained
by other mechanisms including cross bridges [82]. The off-rate in the presence of calcium (4.7 s−1)
is slow enough to explain most but not all of the long-lasting stress relaxation observed after a stretch
of an active muscle [83].

These results demonstrate that N2A titin, at or around Ig83, binds to actin in the presence of
calcium, and suggest a new mechanism that can explain the dynamic response of muscle to active length
changes. In active skeletal muscle sarcomeres, N2A-actin binding increases titin stiffness and decreases
titin equilibrium length by preventing low-force straightening of titin’s proximal Ig domains [84] so
that only the stiffer PEVK region of titin extends during active stretch (Figure 3) [23,69]. Previous efforts
to confirm that these interactions occur within muscle sarcomeres using fluorescently labeled N2A titin
antibodies have been hampered by antibody cross-linking artifacts [68]. While direct observations of
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N2A titin await further technical developments, a variety of evidence from muscle mechanics strongly
supports the existence of calcium-dependent titin-actin interactions in active muscle [81].

Figure 3. N2A—actin interaction eliminates low-force straightening of tandem Ig domains. (A) Passive
sarcomere at slack length. (B) As the sarcomere is stretched passively beyond its slack length,
the proximal tandem Ig segments unfold approximately to their contour length. (C) After the proximal
tandem Ig segments have reached their contour length, further passive stretching extends the PEVK
segment. (D) Upon activation, N2A titin binds to actin. (E) When the active sarcomere is stretched,
only the PEVK segment (green) extends. Reproduced with permission from Nishikawa [21]. Copyright
2016, The Company of Biologists Ltd.

Evidence for an activation-dependent increase in titin stiffness is found both at the onset of muscle
activation and following muscle deactivation. Muscle stiffness increases in the early stages of activation
during the latent period between calcium release and cross-bridge attachment [63,85–88], and this
early increase in stiffness is greater in muscles that express stiffer titin isoforms [89]. Enhanced tension
persists following deactivation of previously stretched muscle fibers and intact muscles, so called
“passive force enhancement” [90,91]. That this passive force enhancement is attributable to titin is
supported by the observations that it persists after troponin C extraction, which prevents cross-bridge
formation, and is abolished by mild trypsin, which selectively digests titin [92]. A large and growing
body of evidence also demonstrates that titin contributes to the extra force produced by muscles
following active stretch [93]. For example, force enhancement after active stretch of myofibrils increases
with the stiffness of the titin isoform that they express [94].

3.3. Altered Mechanics of mdm Muscles

The mdm deletion, which includes Ig83 in N2A titin, is predicted to disrupt the titin-actin binding
that normally occurs during muscle activation. When N2A titin binds to thin filaments upon calcium
influx in muscle sarcomeres (Figure 3), two mechanical events occur. First, the length of titin’s freely
extensible I-band must decrease upon activation [95,96] because the bound N2A allows only the PEVK
region to extend during an active stretch (Figure 3, right). Second, because titin stiffness in passive
muscle is limited by low-force straightening of the proximal tandem Ig domains [84], binding between
thin filaments and N2A titin will increase titin stiffness in active muscles, as only the relatively stiffer
PEVK region extends during stretch (Figure 3, [96]). Failure of proximal tandem Ig domains to
straighten during active stretch will shift the force-extension curve leftward compared to the passive,
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low-calcium condition [21,79]. Indeed, there is experimental support for both of these mechanical
events in wild type skeletal muscles and, critically, both fail to occur in skeletal muscles of mdm mice
with a deletion in Ig83 (see below).

3.3.1. Muscle Equilibrium Length Decreases upon Activation, but Not in mdm

Observations on elastic recoil of active muscle during rapid unloading are consistent with
predictions from Ca2+-dependent N2A—actin binding that the equilibrium length of I-band titin
should decrease when muscles are activated. When frog muscles activated at optimal length are
rapidly unloaded, they recoil elastically by up to 20% of their length, ~77 nm per half sarcomere [97].
Similarly, single fibers from the telson muscle of horseshoe crabs recoil by only 6% of their length
during rapid unloading, however they shorten by 210 nm per half-sarcomere due to the extremely
long length (7 µm) of the sarcomeres in these muscles [98]. The large stretch of elastic elements in these
muscles far exceeds any plausible limit in the cross bridges or filament lattice [97]. Monroy et al. [79]
found that equilibrium length after elastic recoil was 15% shorter in active than in passive mouse
soleus muscles, and there was a 2.9-fold increase in the slope of the stress–strain relationship during
unloading. In contrast, soleus muscles from mdm mice showed no change in equilibrium length
and no effect of activation on the slope or intercept of the stress–strain relationship during unloading.
These results are consistent with Ca2+-dependent binding of titin to actin reducing the titin free length
and increasing titin stiffness, but not in the mdm muscles.

3.3.2. Titin Force and Stiffness Increase upon Activation, but Not in mdm

Titin stiffness increases in active compared to passive myofibrils. Leonard and Herzog [95]
examined the force-extension behavior of single myofibrils stretched beyond the overlap of the thick
and thin filaments, in which no contribution of cross bridges is possible. In these experiments, single
myofibrils with four to twelve sarcomeres in series were mounted between a needle for controlled
length changes and a cantilever to measure force. Myofibril lengths were adjusted to an initial average
sarcomere length of 2.5 µm. Individual sarcomere lengths were measured at the end of the stretch to
confirm the loss of filament overlap. They found that the slope of the force–extension relationship was
greater in calcium-activated myofibrils than in passively stretched myofibrils. Subsequent studies [99]
confirmed the basic result in mouse psoas.

The question arises whether collagen or intermediate filaments (e.g., desmin, etc.) could contribute
to force of myofibrils stretched to long sarcomere lengths. In general, intermediate filaments are found
at the level of single fibers, in which they bear considerable passive force at sarcomere lengths >

2.8 µm [77]. However, at the level of a single myofibril, it is difficult to see how intermediate filaments
could contribute to passive or active force. They are not in series with actin and myosin, nor do
they extend as a continuous filament along the length of a single myofibril, as does titin. In addition,
short-duration, mild trypsin digestion has been shown to selectively degrade the extremely thin (4 nm
diameter) and extended (1.2 µm length) titin filament, and completely abolishes force in passive
and active myofibrils stretched beyond overlap of thick and thin filaments [25,95,99].

Significantly, the mdm mutation prevents the increase in titin-based stiffness (Figure 4, [25]) that
normally occurs upon activation of wild type myofibrils [95,99].

3.3.3. Muscle Force Increases with Active Stretch and Decreases with Active Shortening,
but Not in mdm

Ca2+-dependent titin-actin interactions provide a relatively simple explanation for history-dependent
muscle properties, including residual force enhancement [21,95] and force depression [23,96,100]. Indeed,
both force enhancement and force depression are negligible in skeletal muscles from mdm mice compared
to passive tension at the final length (Figure 5, [80]). The mdm mutation has also been shown to reduce
negative work in eccentric stretch–shortening cycles [66] and positive work in concentric stretch shortening
cycles [69]. In contrast, length dependence of calcium activation (Figure 6, [26]) and the force-velocity
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relationship [80] are unaffected by the mdm mutation. The velocity of shortening under constant load is
non-linear and decreases significantly with length, especially at the smallest loads and highest velocities,
supporting the existence of an opposing force due to N2A – actin binding (see [23]; Fig. 1B). Therefore,
mdm muscles would be expected to have an impaired force-velocity relationship. However, the state
of the art in the field is to estimate the velocity at a given load from the initial linear velocity near L0,
which likely explains the similarity between WT and mdm muscles in the force-velocity relationship.

Figure 4. Activation increases titin-based force and stiffness of wild type psoas myofibrils, but not
mdm myofibrils, during stretch. Stress (nN/µm2) vs. sarcomere length (µm) of single psoas myofibrils
from the wild type (WT, black open symbols) and muscular dystrophy with myositis (mdm, gray filled
symbols) mice during active (diamonds) and passive stretch (circles). There is no difference in passive
stress between WT and mdm myofibrils. Actively stretched WT myofibrils are stiffer than active mdm
and both passive mdm and WT, while actively stretched mdm myofibrils do not differ in stiffness from
passively stretched mdm and WT myofibrils. Reproduced with permission from Powers et al. [25].
Copyright 2016, The Company of Biologists Ltd.

Figure 5. Cont.
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Figure 5. Residual force enhancement (A,B) and depression (C,D) increase with activation in wild
type (blue) but not mdm (red) soleus muscles. The contribution of passive stress was subtracted from
residual force enhancement and depression. Darker bars indicate maximal activation and lighter bars
indicate submaximal activation. Reproduced with permission from Tahir et al. [80]. Copyright 2019,
The Company of Biologists Ltd.

Figure 6. Length-dependence of Ca2+-sensitivity is similar in the wild type (black) and mdm (gray)
fiber bundles. (A) Soleus and (B) extensor digitorum longus (EDL). Ca2+ sensitivity relationships
at sarcomere lengths of 2.4 (dashed lines) and 3.0 µm (solid lines) from wild type and mdm fiber
bundles (top). Individual data points for each curve are shown below. The shift in Ca2+-sensitivity
from 2.4 to 3.0 µm was similar between genotypes. Reproduced with permission from Hessel et al. [26].
Copyright 2019, The Company of Biologists Ltd.

3.4. Conclusion: Mechano-Signaling Functions of N2A Titin and Mechanisms of Titinopathy

Since the discovery that the mdm phenotype results from a small deletion in the N2A region
of titin [15], it is increasingly apparent that the affected region plays a critical role in skeletal muscle
function. Garvey et al. [15] suggested that this 83 amino acid deletion at the border between N2A
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and PEVK regions of titin might serve as a site for binding of crucial ligands or as a critical mechanical
linker or hinge. Over the ensuing decades since 2002, evidence has accumulated that the N2A region is
an important hub for “mechano-sensing,” transducing titin stress or strain into biochemical signals that
alter gene expression [41,53]. Currently, substantial evidence supports both mechanical and signaling
functions, two non-exclusive hypotheses for critical roles of N2A titin.

3.4.1. Effects of mdm on Hypertrophic Signaling

The idea that N2A titin is a hub for hypertrophic signaling in skeletal muscles is based on
colocalization of the modulatory protease CAPN3 with hypertrophic signaling proteins including
MARPs 1 and 2, and myopalladin [41,53,58]. The strongest evidence in support of the existence of
an ‘N2A signalosome’ comes from unilateral diaphragm denervation (UDD), in which a passive stretch
of the denervated hemi-diaphragm by the active side leads to hypertrophy of the denervated side [53].
When UDD was investigated in three mouse genotypes, the amount of hypertrophy increased with
both titin stiffness and upregulation of MARP1 and MARP2.

The mdm mutation appears inconsistent with this model of hypertrophic signaling since both
MARP 1 and 2 are upregulated, but muscle hypertrophy is paradoxically absent. However, a recent study
on myopalladin knock-out mice provides a possible resolution [101]. Like mdm mice, myopalladin KO
mice are smaller than their wild type littermates and their muscle fibers are also smaller in diameter,
although their body mass is only 17% smaller than the wild type at 28 days and the difference in weight
decreases with age. In contrast, mdm mice have a 50% smaller body mass than wild type at 24 days [24]
and the difference increases with age [30]. Nevertheless, a scenario is possible in which the mdm
deletion prevents CAPN3 binding to Ig83 in N2A titin. Subsequently, loss of CAPN3 binding could
affect the MARP structure and lead to dissociation of myopalladin from the signalosome (see Figure 2),
leading to a loss of hypertrophy in mdm as observed in myopalladin KO.

Nevertheless, disruption of a possible CAPN3-MARP-MYPD signalosome in N2A titin by the mdm
mutation cannot alone account for the N2A phenotype for several reasons. First, the mdm phenotype is
more severe than the phenotype of CAPN3 knockout [29], MARP triple knockout [56], or myopalladin KO
mice [101] Secondly, none of these genes have upregulated expression in Ttn∆112−158, which nevertheless
exhibits hypertrophic addition of sarcomeres in series [20]. Furthermore, the defects in shivering
thermogenesis, non-shivering thermogenesis, homeothermy, and basal metabolic rate associated
with mdm suggest a potential novel role for titin in regulation of muscle-based thermogenesis [33].
In summary, the available evidence suggests that while mdm likely affects the function of the N2A
‘signalosome’, other signaling pathways associated with muscle hypertrophy and thermoregulation
must also be also affected.

3.4.2. Effects of mdm on Muscle Mechanics

In order for titin to contribute to muscle passive tension and maintain sarcomere integrity
at physiologically relevant sarcomere lengths, binding of N2A titin to actin is necessary to prevent
elongation of the proximal tandem Ig domains at very low force [65]. Consistent with this requirement,
recent studies demonstrate that the binding affinity and off rate of N2A titin–actin interactions increases
in the presence of Ca2+ (Dutta et al., 2018) and that this interaction likely involves Ig83, which is partly
deleted in mdm. Likewise, the mechanics of mdm muscles are consistent with predicted changes in
muscle equilibrium length and stiffness upon activation [23,69]. These deficits, predictably, prevent
the increase in titin stiffness in contracting myofibrils stretched beyond overlap of thick and thin
filaments [25], the change in equilibrium length of active muscles during rapid unloading [79], force
enhancement following active stretch, force depression following active shortening [80], and energy
dissipation (negative work) during stretch–shortening cycles [66] that normally occurs in wild
type muscles.

Calcium-dependent interactions between N2A titin and actin must have profound effects on
hypertrophic signaling and the N2A titin signalosome, since the UN2A region (see Figure 3) should be
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protected from a stretch in the active muscle, whereas hypertrophy due to stretching of the passive
muscle would be unaffected. If only the PEVK region of titin extends during a stretch of the active
muscle, then the PEVK region, rather than N2A, should function as a mechano-sensor. In contrast to
the N2A region, where several signaling proteins colocalize, potential binding partners for the PEVK
region are more limited. However, several studies demonstrated that PEVK binds to the SH3 domain
of nebulin [102,103], suggesting that signaling proteins with SH3 binding domains might interact with
PEVK titin [104].

In summary, the 21st century has seen remarkable progress in understanding of the signaling
and mechanical functions of N2A titin. However, known mechanisms fall far short of fully accounting
for the severe mdm phenotype. The severity of functional disruption caused by this small deletion in
the giant titin protein demonstrates that the current paradigm is incomplete. The idea that N2A titin
normally functions as a mechanical switch upon muscle activation, but not in mdm, leads toward new
directions in the search for mechanosensing functions of titin in muscle health and disease.
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