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Abstract

Purpose

To investigate the influence of overexposure to light emitting diode (LED)-derived light with

various wavelengths on mouse ocular surface.

Methods

LEDs with various wavelengths were used to irradiate C57BL/6 mice at an energy dose of

50 J/cm2, twice a day, for 10 consecutive days. The red, green, and blue groups repre-

sented wavelengths of 630 nm, 525 nm, and 410 nm, respectively. The untouched group

(UT) was not exposed to LED light and served as the untreated control. Tear volume, tear

film break-up time (TBUT), and corneal fluorescein staining scores were measured on days

1, 3, 5, 7, and 10. Levels of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis

factor (TNF)-α were measured in the cornea and conjunctiva using a multiplex immunobead

assay at day 10. Levels of malondialdehyde (MDA) were measured with an enzyme-linked

immunosorbent assay. Flow cytometry, 2’7’-dichlorofluorescein diacetate (DCF-DA) assay,

histologic analysis, immunohistochemistry with 4-hydroxynonenal, and terminal deoxynu-

cleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining were also

performed.

Results

TBUT of the blue group showed significant decreases at days 7 and 10, compared with the

UT and red groups. Corneal fluorescein staining scores significantly increased in the blue

group when compared with UT, red, and green groups at days 5, 7, and 10. A significant

increase in the corneal levels of IL-1β and IL-6 was observed in the blue group, compared

with the other groups. The blue group showed significantly increased reactive oxygen
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species production in the DCF-DA assay and increased inflammatory T cells in the flow

cytometry. A significantly increased TUNEL positive cells was identified in the blue group.

Conclusions

Overexposure to blue light with short wavelengths can induce oxidative damage and apo-

ptosis to the cornea, which may manifest as increased ocular surface inflammation and

resultant dry eye.

Introduction
A light emitting diode (LED) is a complex semiconductor that emits narrow-spectrum light
when a suitable energy is supplied to the leads. It has been developed as an alternative option
to replace traditional light sources, and is increasingly used as a lighting component in various
electrical appliances, such as televisions, personal computers, and smart phones. From a tech-
nical point of view, use of LED as an illumination source is efficient, because it is energy saving,
and long lasting compared to pre-existing light sources, such as incandescent light. However,
LEDs are known to emit quite a large amount of blue light [1–3].

Humans are constantly exposed to various types of lights that illuminate our surroundings.
Light, ranging from x-rays and other ionizing radiation to infrared and longer wavebands, can
cause hazardous effects to the eye if it reaches a level capable of causing photochemical reac-
tions, photothermal damage, or metabolic disturbances. Various light-induced ocular patholo-
gies have been recognized, including photokeratitis, pterygium, climatic droplet keratopathy,
cataract, and corneal and retinal degeneration [4–7]. Recently, the detrimental effect of blue
light on the retina has been extensively investigated [8–10]. Blue light has been known to cause
photoreceptor cell and retinal pigment epithelial cell (RPE) damage through excessive reactive
oxygen species (ROS) production.

Increased oxidative stress has been documented in mouse models of dry eye and in the con-
junctival epithelial cells of patients with dry eye disease [11–15]. However, to our knowledge,
few studies have investigated the effects of blue light on the ocular surface, which is directly
exposed to light. Niwano et al. [16] showed that blue light in the near-ultraviolet (UV) region
may be harmful to in vitromitotic-phase corneal epithelial cells in a dose-dependent manner.
In addition, we previously reported that overexposure to blue light in vitro can decrease cellular
viability and induce significant ROS production compared with other visible light wavelengths
from LED [17].

In the present study, we aimed to investigate the effect of LED-derived blue light overexpo-
sure on ocular surface health in a mouse model by measuring various clinical and experimental
parameters.

Materials and Methods
This research protocol was approved by the Chonnam National University Medical School
Research Institutional Animal Care and Use Committee (CNU IACUC-H-2015-12). All proce-
dures were performed according to the Association for Research in Vision and Ophthalmology
statement for the Use of Animals in Ophthalmic and Vision Research. Female C57BL/6 mice
aged 6 to 8 weeks were used in the following experiments. The animals were allowed to accli-
mate for one week before the experiment began. They were housed under standard laboratory
conditions with a 12:12 hour light-dark cycle light 8 AM-8 PM; dark 8 PM-8 AM) in the
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Chonnam National University Hospital animal facilities during the experiment period. The
facility temperature was maintained at 25 ± 3°C with 50 ± 5% relative humidity. Food and
water were supplied ad libitum.

LED Light Source and Irradiation
Three LED lamps with different wavelengths were used. Wavelengths and irradiances are listed
in Table 1. The irradiance of each LED was measured with a quantum photoradiometer (Delta
OHM, Padova, Italy) connected to a visual probe (Sonda LP 9021 RADl Delta OHM). Animals
were separated into four groups, each consisting of six mice. Red, green, and blue group mice
were exposed to wavelengths of 630 nm, 525 nm, and 410 nm, respectively (Table 1). The
untouched group (UT) was not exposed to the LED light, and served as an untreated control
during the experiment. The animal’s ocular surface was exposed to LED-derived light in the
following manner. For in vivo exposure, mice were confined in an adjustable retaining cage in a
dark room, where the LED was placed 5 cm above and perpendicular to the mouse’s head (Fig
1); only the ceiling of the cage emitted light. Therefore, at any given instant, the dose of light on
the mouse ocular surface depended upon its head posture. We estimated that the mouse kept
its head aligned with its body on average while in the retaining cage. Mice were irradiated with
50 J/cm2 twice daily (irradiation began at 9 PM and 4 AM to avoid variation) for a consecutive
10-day period. The irradiance and frequency of radiation were selected based on the data of
our preliminary pilot experiments (data not shown). Clinical parameters, including tear vol-
ume, tear film break-up time (TBUT), and corneal fluorescein staining scores were measured
in that order during the experimental period in four groups (on days 1, 3, 5, 7, and 10). The
clinical parameter measurements were taken after two hours after the end of the second irradi-
ation in the standard environment. Animals were kept immobile by intraperitoneal injection of
1 mg pentobarbital during clinical parameters measurements.

At the end of the experiment, animals were sacrificed with an intraperitoneal overdose of
pentobarbital, then multiplex immunobead assay, malondialdehyde (MDA) level measurement
with enzyme-linked Immunosorbent Assay (ELISA), flow cytometric analysis, 2’7’-dichloro-
fluorescein diacetate (DCF-DA) assay, histology, and terminal deoxynucleotidyl transferase-

Table 1. Wavelength and irradiance of light emitting diode (LED) lamps.

LED wavelength (nm) Irradiance (mW/cm2)

630 ± 8 48.8

525 ± 2 59.5

410 ± 10 29.2

Data are expressed as the mean ± standard deviation.

doi:10.1371/journal.pone.0161041.t001

Fig 1. Light emitting diode devices and retaining cages of red light (630 nm) (A), green light (525 nm) (B) and blue light (410 nm) (C).

doi:10.1371/journal.pone.0161041.g001
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mediated dUTP-nick end labeling (TUNEL) staining were performed after tissue harvesting.
All efforts were made to minimize suffering. All experiments and analysis were repeated three
times.

Tear Volume Measurements
Tear volume was measured with phenol red-impregnated cotton threads (Zone-Quick; Oasis,
Glendora, CA, USA) as previously described [18]. The lower eyelid was pulled down slightly,
and the tips of the threads were placed on the peripheral conjunctiva at the lateral canthus for
20 seconds. The tear volume, expressed in millimeters of thread wet by the tear that turned red,
was measured using a microscope (SMZ 1500; Nikon, Melville, NY, USA). Each eye was tested
three times, and the average length of red thread was recorded as the definitive value. The mea-
sured uptake of tear in millimeters was compared with a standard curve prepared from cotton
threads of a known uptake volume of stock basic solution (1,500 mL of 0.9% saline and 5mL of
5M NaOH) over 20 seconds, with volumes in the range that would be expected in mouse tear.

Evaluation of Tear Film Break-up Time and Corneal Fluorescein
Staining
The TBUT and corneal fluorescein staining score measurements were conducted as previously
described [19]. One percent sodium fluorescein (1 μL volume) was instilled into the inferior
conjunctival sac using a micropipette. After three blinks, TBUT was recorded in seconds using
slit lamp biomicroscopy (BQ-900, Haag-Streit, Bern, Switzerland) under cobalt blue light.
Ninety seconds later, punctate staining on the corneal surface was evaluated in a masked fash-
ion. Each cornea was divided into four quadrants that were scored individually. The intensity
of corneal fluorescein staining was calculated using a 4-point scale; 0, absent; 1, superficial stip-
pling micropunctate staining< 30 spots; 2, punctate staining> 30 spots, but not diffuse; 3,
severe diffuse staining but no positive plaque/patch; and 4, positive fluorescein plaque/patch.
The scores of the four areas were summed to generate a final grade, ranging from 0 to 16.

Multiplex Immunobead and Enzyme-linked Immunosorbent Assay
Amultiplex immunobead assay (Luminex 200; Luminex Corp., Austin, TX, USA) measured
concentrations of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF)-α in the cornea and conjunctiva, as previously described [20]. The tissues were collected
and pooled in lysis buffer containing protease inhibitors for 30 minutes. Cell extracts were cen-
trifuged at 14,000g for 15 minutes at 4°C, and the supernatants were stored at –70°C until use.
Next steps of multiplex immunobead assay were processed within 2 days after storage. Total
protein concentration in the supernatants was determined, and 25 μL of total protein of each
sample was pipetted into assay plate wells. The supernatants were added to wells containing
the appropriate cytokine bead mixture that included mouse monoclonal antibodies specific for
the cytokines for 60 min. After three washes, the biotinylated secondary antibody mixture was
applied for 30 min in the dark at room temperature. The reactions were detected after addition
of streptavidin-phycoerythrin with an analysis system (xPONENT, Austin, TX, USA). The
concentrations of the tissue cytokines were calculated from standard curves of known concen-
trations of recombinant mouse cytokines. Total protein levels of lipid peroxidation markers,
MDA, were detected using ELISA. The supernatants were collected and assayed for MDA (Cell
Biolabs, San Diego, CA, USA) using the ELISA kit. The samples were analyzed according to the
manufacturer’s instructions [15,21]. To find out if storage time influences the results, we addi-
tionally performed multiplex immunobead and enzyme-linked immunosorbent assay in 6 nor-
mal eyes, right after tissue collection, as control samples.
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Histology
Eyes were surgically excised, washed immediately with ice-cold saline to remove as much blood
as possible, fixed in 4% paraformaldehyde, and embedded in paraffin. Next, six-micrometer con-
junctival sections were stained with periodic acid-Schiff (PAS) reagent. Sections were examined
and photographed with a microscope (BX53; Olympus, Tokyo, Japan) equipped with a digital
camera (F2; Foculus, Finning, Germany). Goblet cell density in the superior and inferior con-
junctiva was measured in three sections from each eye using image analysis software (Media
Cybernetics, Silver Spring MD) and expressed as the number of goblet cells per 100 μm.

Flow Cytometry
Flow cytometry was performed for quantification of CD4+CCR5+ T cells from the conjunctiva
and cornea with a previously described method [22]. The tissues were teased and shaken at
37°C for 60 minutes with 0.5 mg/mL collagenase type D. After grinding with a syringe plunder
and passage through a cell strainer, cells were obtained, centrifuged, and resuspended in PBS
with 1% bovine serum albumin. After washing, the samples were incubated with fluorescein-
conjugated anti-CD4 antibody (BD Biosciences, San Jose, CA), phycoerythrin-conjugated anti-
CCR5 antibody (BD Biosciences), and isotype control antibody at 37°C for 30 minutes. The
number of CD4+CCR5+ T cells was counted by using a FACSCalibur cytomemter with Cell-
Quest software (BD Biosciences).

Measurement of cellular ROS production
The level of ROS production was measured using a DCF-DA assay kit according to the manu-
facturer’s protocol.

DCF-DA is a non-fluorescent, membrane permeable compound that becomes fluorescent
and membrane impermeable upon oxidation. Whole-corneal epithelium was scraped with an
ophthalmic surgical blade and placed in a 96-well plate containing 200 μL of Krebs-Ringer
bicarbonate buffer. The cells were incubated in the dark with 20 μg/mL 2’7’-dichlorofluorescein
for 30 minute at 37°C. The plates were read at an excitation of 480 nm and emission of 530 nm
(FACSCalibur cytometer; BD Biosciences).

TUNEL staining
A TUNEL assay was used to detect 3’ hydroxyl ends in fragmented DNA as an early event in
the apoptotic cascade and identify apoptotic cells. After tissue preparation described above,
staining was performed using the DeadEndTM Fluorometric TUNEL System (Promega,
Madison, WI) according to the manufacturer’s instructions [23,24]. Stained tissues were
mounted on slides and the nuclei were visualized with 40,6-diamidino-2-phenylindole (DAPI)
present in the ProLong Gold Antifade Mounting Medium (Invitrogen, Carlsbad, CA) and
observed on a Leica TCS SP5 AOBS laser scanning confocal microscope (Leica Microsystems,
Heidelberg, Germany) using a Leica 63x (N.A. 1.4) oil objective. Cell images were obtained sep-
arately with the following fluorescence excitation and emission settings: excitation at 405 and
488 nm and emission between 424–472 and 502–550 nm for TUNEL assay and DAPI, respec-
tively. TUNEL-positive cells and nuclear staining with DAPI were viewed under a fluorescent
microscope.

Statistical Analysis
SPSS version 18.0 (SPSS, Chicago, IL, USA) was used for statistical analyses. Results are pre-
sented as mean ± standard deviation (SD). Normal distribution of the data was verified using

Influence of Blue Light on Mouse Ocular Surface

PLOS ONE | DOI:10.1371/journal.pone.0161041 August 12, 2016 5 / 18



the Kolmogorov-Smirnov test. Statistical differences in tear volume, TBUT, and corneal fluo-
rescein staining among the groups was determined by repeated measure analysis of variance
(RM-ANOVA) tests followed by Dunnett’s post hoc tests (sphericity assumptions were tested
with a Mauchly’s test. In the case of violation, data were adjusted with an Epsilon Greenhouse-
Geisser statistic). The Kruskal-Wallis test with Bonferroni post hoc analysis was used to com-
pare cytokines, MDA and 8-OHdG levels, DCF-DA, goblet cell density, and flow cytometry
value differences between the groups. A P-value< 0.05 (if needed, multiplicity adjustment was
used) was considered statistically significant.

Results

Tear Volume
The mean tear volumes in the UT, red, green, and blue groups at day 1 were 0.05 ± 0.01 μL,
0.04 ± 0.01μL, 0.05 ± 0.01 μL, and 0.04 ± 0.01 μL respectively. (Fig 2). The mean tear volumes
were 0.05 ± 0.01 μL, 0.04 ± 0.01 μL, 0.04 ± 0.01 μL, and 0.04 ± 0.01 μL at day 3 and day 5 in the
UT, red, green and blue groups, respectively. The mean tear volume in the UT, red, green, and
blue groups at day 7 and day 10 were 0.05 ± 0.01 μL, 0.04 ± 0.01μL, 0.04 ± 0.01 μL, and
0.04 ± 0.01 μL, respectively. There were no statistically significant differences in tear volumes
among the groups during the experiment period (all P> 0.05). In addition, the tear volume of
each group at days 3, 5, 7, and 10 showed no statistically significant difference when compared
with the tear volume of each group at day 1.

TBUT
TBUTs for the UT, red, green, and blue groups at day 1 were 4.64 ± 0.39 s, 4.62 ± 0.34 s,
4.73 ± 0.28 s, and 4.66 ± 0.22 s, respectively (Fig 3). Mean TBUT in the four different groups
showed no statistically significant differences. TBUT of the blue group showed a significant
decrease at day 3 of LED irradiation compared with its day 1 value (4.30 ± 0.39 s; P< 0.001).
At days 5, 7, and 10 of LED irradiation, a significant decrease in TBUT was observed in the red,
green, and blue groups compared with day 1 values from the corresponding group (day 5:
4.30 ± 0.62 s, 4.31 ± 0.80 s, 4.07 ± 0.82 s, P = 0.017, 0.010, and< 0.001, respectively; day 7:

Fig 2. Tear volume in the untouched (UT), red, green, and blue groups at days 1, 3, 5, 7, and 10.

doi:10.1371/journal.pone.0161041.g002
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4.24 ± 0.51 s, 4.21 ± 0.37 s, 3.85 ± 0.46 s, P = 0.005,< 0.001,< 0.001, respectively; day 9:
4.36 ± 0.19 s, 4.30 ± 0.59 s, 3.80 ± 0.49 s, all P� 0.001) Moreover, in the blue group, TBUTs of
days 7 and 10 showed a significant decrease when compared with day 3 values (3.85 ± 0.46 s,
3.80 ± 0.49 s versus 4.30 ± 0.39 s, P = 0.012 and 0.001, respectively). As for inter-group compar-
isons, there were no statistically significant differences in TBUT among the groups at days 1, 3,
and 5 (all P> 0.05). However, TBUT was significantly shorter in the blue group compared
with UT and red groups at days 7 and 10. (day 7: P = 0.001 and 0.048, respectively; day 9:
P = 0.001 and 0.045, respectively).

Corneal Fluorescein Staining
Corneal fluorescein staining scores for the UT, red, green, and blue groups at day 1 were
1.50 ± 0.51, 1.75 ± 0.77, 1.72 ± 0.51, and 1.86± 0.59, respectively (Fig 4). The mean staining
score showed no statistically significant inter-group differences (all P> 0.05). In the blue
group, at days 3, 5, 7, and 10, corneal staining scores significantly increased compared to those
of day 1 (2.47 ± 0.65, 3.44 ± 0.88, 4.17 ± 0.51, and 4.58 ± 0.55 versus 1.86 ± 0.59, respectively,
all P� 0.001). Moreover, the blue group showed significantly increased corneal staining scores
on days 5, 7, and 10 than on day 3 (all P� 0.007). As for inter-group comparisons, irradiation
with blue LED led to significant deterioration of corneal staining scores compared to UT, red,
and green LEDs at days 5, 7, and 10 (day 5: 3.44 ± 0.87 versus 1.75 ± 0.73, 1.89 ± 0.52, and
1.86 ± 0.72, P = 0.028, 0.043 and 0.045, respectively; day 7: 4.17 ± 0.51 versus 1.78 ± 0.59,
2.14 ± 0.80, and 2.14 ± 0.68, P =< 0.001, 0.025, and 0.023, respectively; day 10: 4.58 ± 0.55 ver-
sus 1.75 ± 0.87, 2.17 ± 0.85, 2.22 ± 0.87, P =< 0.001, 0.038, and 0.021, respectively). At day 10,
the green group showed an increased corneal staining score compared with the UT group
(P = 0.043).

Multiplex Immunobead and Enzyme-linked Immunosorbent Assay
The results of inflammatory cytokines and MDA levels in corneal and conjunctival tissues are
shown in Table 2. The concentration of IL-1β and IL-6 in the cornea of the blue group

Fig 3. Tear film break-up time in the untouched (UT), red, green, and blue groups at days 1, 3, 5, 7, and 10. * P < 0.05 compared
between groups. † P < 0.05 compared with the day 1 value. ‡ P < 0.05 compared with the day 3 value.

doi:10.1371/journal.pone.0161041.g003
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Fig 4. Corneal fluorescein staining scores (A) and representative figures (B) in the untouched (UT), red, green and blue groups at day 1,
3, 5, 7, and 10. * P < 0.05 compared between groups. † P < 0.05 compared with the day 1 value. ‡ P < 0.05 compared with the day 3 value.

doi:10.1371/journal.pone.0161041.g004
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significantly increased 10 days after LED irradiation compared with the UT group (P = 0.018
and 0.001, respectively). Moreover, blue LED irradiation significantly increased IL-1β concen-
tration compared with green LED irradiation (P = 0.030), and significantly increased IL-6 con-
centration compared with red and green LED irradiation (P = 0.003 and 0.002, respectively).
Concentration differences of IL-1β between the red group and blue group did not show statisti-
cal significance (P = 0.056). No differences in conjunctival inflammatory cytokine levels were
observed between groups. As for lipid peroxidation markers, levels of MDA in the blue group
cornea significantly increased compared to the UT, red, and green groups (all P< 0.01). The
blue group also showed significantly elevated conjunctival MDA levels compared to the UT
and green groups (P = 0.035 and 0.026, respectively). Level of cytokines used in our study and
MDA did not show significant differences between normal eyes and UT groups (all P> 0.05).

Conjunctival Goblet Cell Density
The mean density of the conjunctival goblet cells was 16.56 ± 2.06 cells/100 μm, 15.83 ± 2.26
cells/100 μm, 16.11 ± 2.17 cells/100 μm and 15.83 ± 1.98 cells/100 μm in the UT, red, green,
and blue groups, respectively. There was no significant difference in goblet cell density between
groups (P = 0.108, Fig 5).

Flow Cytometric analysis
CD4+CCR5+ T cell percentage histograms from representative corneal and conjunctival sam-
ples from UT, red, green, and blue groups are shown in Fig 6A and 6B. In the corneal

Table 2. Concentration of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, andmalondialdehyde (MDA) in the cornea and
conjunctiva of the normal eyes and untouched (UT), red, green, and blue groups.

Tissue Group IFN-γ IL-1β IL-6 TNF-α MDA

Cornea (pg/ml) Normal 10.35±0.25 6.70±0.35 3.25±0.85 1.96±0.18 0.48±0.05

UT 10.96±0.38 6.69±1.05 3.40±0.92 1.93±0.12 0.51±0.02

Red 13.22±1.03 7.90±0.39 5.17±0.70 2.12±0.08 0.56±0.03

Green 12.56±0.57 7.56±0.76 7.05±1.51 2.19±0.04 0.57±0.03

Blue 15.70±0.48 11.90±1.12*‡ 20.07±1.47*†‡ 3.59±0.06 2.89±0.06*†‡

Conjunctiva (pg/ml) Normal 6.08±0.31 4.35±0.15 11.28±0.86 0.54±0.08 0.75±0.02

UT 6.02±0.27 4.40±0.10 11.33±1.14 0.56±0.06 0.74±0.02

Red 6.38±0.06 4.55±0.29 11.47±1.28 0.56±0.07 0.80±0.01

Green 6.21±0.15 4.61±0.16 11.40±1.33 0.59±0.12 0.79±0.05

Blue 6.34±0.09 4.82±0.08 12.21±1.39 0.61±0.11 1.22±0.10*‡

* P < 0.05 compared with the UT group
† P < 0.05 compared with the red group
‡ P < 0.05 compared with the green group.

Data are expressed as the mean ± standard deviation.

doi:10.1371/journal.pone.0161041.t002

Fig 5. Periodic acid Schiff stains of representative conjunctival specimens in the untouched (UT), red, green, and blue groups at
day 10.

doi:10.1371/journal.pone.0161041.g005
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specimens, the respective percentages of CD4+CCR5+ T cells of UT, red, green, blue groups
were 15.22% ± 1.45%, 18.69% ± 2.86%, 20.19% ± 0.55%, and 31.83% ± 1.46%. CD4+CCR5+ T
cells significantly increased in the blue group compared to UT, red, and green groups
(P = 0.001, 0.002, and 0.007, respectively). For the conjunctival specimens, CD4+CCR5+ T cell
percentage were 2.70% ± 0.84%, 6.40% ± 1.59%, 6.35% ± 1.27%, and 11.83% ± 1.92% in the
UT, red, green, and blue groups, respectively. CD4+CCR5+ T cells significantly increased in
blue group compared to the UT group (P = 0.023).

Levels of ROS
ROS levels in the cornea were measured to assess net oxidative stress. A significant increase
was observed in the blue group compared to the UT, red and green groups (all P< 0.01)
(Table 3).

TUNEL assay
Magnification images of the representative corneal sections stained with TUNEL assay (green
fluorescence) and counterstained with DAPI (blue fluorescence) are demonstrated in Fig 7.

Fig 6. Flow cytometry showing CD4+CCR5+ T cells in the cornea (A) and conjunctiva (B) of the untouched (UT), red, green, and blue groups at day 10.

doi:10.1371/journal.pone.0161041.g006

Table 3. Corneal reactive oxygen species (ROS) levels in the untouched (UT), red, green, and blue
groups.

Group ROS (DCF fluorescein intensity)

UT 103.46 ± 3.87

Red 107.52 ± 4.52

Green 111.56 ± 3.96

Blue 186.54 ± 5.85*†‡

* P < 0.05 compared with the UT group
† P < 0.05 compared with the red group
‡ P < 0.05 compared with the green group.

Data are expressed as the mean ± standard deviation.

doi:10.1371/journal.pone.0161041.t003
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Fig 7. Representative images for Terminal dUTP nick-end labeling (TUNEL) assay showing the apoptotic cells in the cornea of the
untouched (A, B, C), red (D, E, F), green (G, H, I), and blue (J, K, L) groups at day 10.

doi:10.1371/journal.pone.0161041.g007
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The blue light irradiation resulted in more apoptotic cells in the superficial corneal epithelium
than in the red and green groups. Meanwhile, the red and green groups had some apoptotic
cells, but less than the blue group. Additionally, there were hardly any apoptotic cells in the UT
group.

Discussion
The cornea is regularly exposed to sunlight (infrared, visible, and UV light) and atmospheric
oxygen. The majority of UV radiation is absorbed by the cornea, suggesting that the cornea
may be highly susceptible to the damage caused by UV radiation (especially UVB radiation);
the hostile effects of excessive UV radiation to the cornea have been extensively studied [25].
Overexposure to UVA (315 ~ 400 nm) and UVB (280 ~ 315nm) light may cause damage to the
corneal epithelium, whereas exposure to UVC radiation (100 ~ 280 nm) can induce deeper
lesions in the corneal stroma and Bowman membrane. This can lead to corneal opacity and
neovascularization [26]. Those pathological changes caused by UV irradiation are primarily
induced by excessive ROS formation.

Oxidative stress induced by UVB in the ocular surface epithelium upregulates the expres-
sion of proinflammatory cytokines (e.g., IL-1, IL-6, and IL-8, through the c-jun amino-terminal
kinase [JNK] pathway, p38 pathway, and nuclear factor–kB [NF-kB] pathway) and enzymes
(e.g. MMP-1) that mediate prostaglandin and leukotriene biosynthesis, as well as antioxidant
enzymes in corneal epithelial cells [27–31]. These findings suggest that UV light can induce
inflammation and tissue damage. The severity of damage induced by light depends on radia-
tion intensity, radiation wavelength and time of exposure [32,33].

Any form of radiant energy (not limited to UV light) is potentially hazardous if it reaches
the eye and is absorbed by the tissue of the eye at levels capable of causing photochemical reac-
tions, heat, structural changes or metabolic disturbance. Infrared ray usually only causes cor-
neal irritation, but high energy (> 30 J/cm2) light may also cause deep stromal lesions and even
perforations [34]. In the spectrum of visible light, blue light is highly energized and is close in
the color spectrum to ultraviolet light, so that overexposure to blue light is potentially hazard-
ous to the eye [35].

The effect of blue light LED on the retina has been extensively studied. Current studies have
proven that blue light damage may occur by photosensitizing, oxygen-dependent processes
that may affect photoreceptors and RPE through lipid peroxidation and free radical-mediated
apoptosis [36]. Indeed, compared to other tissues, the retina is particularly prone to ROS gener-
ation due to very high oxygen levels in the choroid, extraordinary high metabolic rates, and
exposure to light, particularly light of shorter wavelengths [37].

Among these various wavelengths of visible light, blue light irradiation increased IL-1β, IL-
6, and MDA in the corneas, compared to UT, red, and green light irradiation. Both IL-1β and
IL-6 are proinflammatory cytokines that are secreted on the ocular surface in response to vari-
ous pathologic stimuli, such as benzalkonium chloride-induced dry eye, desiccating stress
induced dry eye, and microbial infections, such as P. aeruginosa, O. volvulus, or HSV-1
[20,38–40]. IL-6, along with other pro-inflammatory cytokines, plays a major role in the patho-
genesis of several inflammatory disease such as dry eye, graft-versus-host disease, and thyroid-
associated ophthalmopathy through NF-κB and mitogen-activated protein kinase (MAPK)
pathways [41,42]. In addition, previous studies have shown that increased IL-1β induced the
loss of corneal epithelial barrier function associated with ocular surface inflammation [43].

Increased inflammatory responses after blue light irradiation was also demonstrated
through analysis of CD4+ T cell infiltration with flow cytometry. Homing and infiltrating T
cells on the ocular surface in inflammatory conditions, such as dry eye disease, consists
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predominantly of CD4+ T cells. Th1-related chemokine receptors, such as CXCR3 and CCR5,
and their ligands play an important role in the trafficking of activated CD4+ T cells [44]. We
have previously found that desiccating stress stimulates the expression of inflammatory cyto-
kines and Th-1 chemokines and their receptors, CCR5 and CXCR3, in the tear film and ocular
surface of an experimental dry eye model [18,45].

To evaluate the oxidative stress in the ocular surface after visible light irradiation and apo-
ptotic cell death, we estimated the concentration of the oxidative stress marker MDA, which is
a reactive intermediate in the formation of advanced lipoxidation endproducts and known to
react with deoxynucleoside to produce various adducts and damage to DNA [46,47]. We
detected an increase of MDA in corneas exposed to blue light irradiation compared to their
time-matched control. This increased level of MDAmeans increased lipid peroxidation, which
indicates a secondary reaction to ROS formation [48,49]. To measure overall ROS production
and cellular apoptosis, we performed a DCF-DA assay and TUNEL stain. Our results demon-
strated an increased level of ROS production and apoptosis in the cornea. These findings are
consistent with previous reports regarding the relationship between visible light irradiation,
cellular ROS levels and corneal epithelial cell viability in vitro [16,17].

It is widely recognized that ocular surface inflammation, oxidative stress, and apoptosis play
a critical role in the pathogenesis of dry eye [50,51]. Increased pro-inflammatory cytokines and
inflammatory cell infiltration are found in the ocular surface of patients with dry eye, and a
variety of anti-inflammatory agents have proven effectiveness in decreasing the production of
inflammatory cytokines and chemokines, and managing dry eye symptoms and signs [52,53].
Oxidative stress is one of the initiators in activating the signal transduction pathways (e.g.
increased MMP-9 and activation of MAPK pathway) implicated in the breakdown of the integ-
rity and inflammatory response of the ocular surface in experimental dry eye [14]. Increased
levels of MDA were also found at the ocular surface in patients with dry eye syndrome [25]. In
addition, oxidative stress markers increased in the tear film of dry eye patients with Sjögren’s
syndrome and were correlated with disease severity [54]. Taken together, these data demon-
strate a close relationship between ROS production, lipid peroxidation-related membrane
damage, and inflammation in dry eye disease. Therefore, we hypothesized that upregulated oxi-
dative stress, increased inflammatory response and apoptosis could manifest as clinical dry eye
in our blue light irradiation model as shown by decreased TBUT and increased corneal staining
scores.

The reason why blue light, not visible light with any other wavelength, causes oxidative
stress on the cornea is not clear. In previous reports regarding blue LED light irradiation on the
retina, short wavelength blue LED light more severely damaged photoreceptor-derived cells
than white or longer wavelength green LED light at identical energy levels.10 It has been
reported that shorter wavelength light increased ROS levels more compared to longer wave-
length light exposure [55]. As Grimm et al. [56] postulated, different wavelengths and different
intensities of light have specific physical properties that can differentially affect biological mole-
cules, and it is possible that blue light induces oxidative stress more easily than other visible
light with different wavelengths. However, any radiant energy above a certain energy level can
produce a response after reaching the target tissue and being absorbed, as some experimental
setups have used green light to induce retinal damage and illumination with green light in the
range of several hours or days eventually led to retinal damage [57]. Another possible explana-
tion is that among spectrums of visible light, lights with shorter wavelengths (e.g., blue light)
are absorbed more easily by the cornea than lights with longer wavelength, as shown in a study
by Kraats et al. [58]

In our study, an energy level of 50 J/cm2 was required to induce significant damage on the
corneal surface. This energy level is approximately 20-fold more intense than that used in a
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previous study regarding UVB radiation and corneal damage [59]. This energy level is approxi-
mately 50-fold more intense than that required to induce oxidative damage in the retina [2,60],
which is consistent with the previous study [16]. As a first-line biological barrier against irradi-
ant energy, the cornea has been proven to have a powerful antioxidative defense mechanism.
In healthy corneas, a number of antioxidant protective mechanisms are present to minimize
and reduce damage from ROS [61]. Indeed, 20~40% of the soluble protein content of the cor-
nea is an isoenzyme of aldehyde dehydrogenase, which directly absorbs UV light and removes
cytotoxic aldehydes produced by lipid peroxidation [62]. Furthermore, the cornea contains
antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase that
scavenge ROS [25]. It may be reasonable to assume that a relatively higher energy level is
required to induce oxidative damage in the cornea than in the retina. In addition, the overall
absorption rate of visible light into the cornea is about 3%, which is much less than its UV light
absorption [58]. Hence, we postulated that the energy level required for blue light to damage
the cornea is much higher than the level required for blue light to damage the retina or UV
light to damage the cornea.

Significant damage of the conjunctiva after light irradiation was not found in this study.
Damage thresholds of the cornea and conjunctiva under UV and visible light spectra did not
show much difference, and after irradiation with high energy level visible light (100 J/cm2),
conjunctival damage manifested as chemosis [26,63]. We hypothesized that among tissues con-
stituting the ocular surface, most of the conjunctiva was covered by mouse eyelid, whereas the
cornea itself was solely exposed to the light irradiation, thereby explaining the significant dam-
age only to the cornea. Additionally, we evaluated cellular apoptosis in the meibomian glands
and lacrimal glands using TUNEL stain, and results revealed that effect of blue light on the
meiboman glands and lacrimal glands is limited, without significant changes in the cellular
apoptosis between groups (data not shown).

Taken together, our results indicate that overexposure to visible light with short wavelengths
(410 nm) can increase inflammatory markers and oxidative stress, induce apoptosis, and thus
may aggravate clinical dry eye parameters in mouse compared with visible light at other wave-
lengths. Because we evaluated the effect of blue light irradiation using a murine model,
responses against blue light irradiation might be variable in clinical situations. Humans are not
ordinarily exposed to blue light with high energy intensity, as used in our experiments. How-
ever, it is possible that under specific working circumstances, humans can be exposed to high-
energy blue light irradiation for a long period of time. In that case, our study can be of help to
set up standards about how much and how long human can be exposed to high intensity blue
light.

In conclusion, we should at least pay attention to the potential detrimental effects of high-
energy blue light irradiation doses on ocular surface health.
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