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Abstract: In this paper, we have proposed a polymer-based photonic crystal (PhC) resonator,
with multiple sizes of cavities, and a waveguide to be used as highly sensitive optical sensor
components. Properties of the proposed PhC were simulated by the finite-difference time-domain
method, and the polymer-based PhC resonator and waveguide were fabricated on a photoresist
(polymer) by electron beam lithography, which was prepared on an Au-layer-deposited Si substrate.
We detected the resonant light that penetrated through the waveguide and was trapped in the PhC
resonator. Optical characteristics of the fabricated PhC were evaluated by detecting the polymer
layer deposition process by using the layer-by-layer (LbL) method to deposit polymer layers. As a
result, by using an optimized design of a polymer-based PhC resonator with a long cavity (equivalent
to a defect of three holes), the PhC structure changes caused by LbL deposition lead to changes in
resonant light wavelength (peak shift: 5.26 nm/layer). Therefore, we suggest that a PhC resonator
and a waveguide is applicable as an optical sensor.

Keywords: photonic crystal; resonator; waveguide; layer-by-layer method; optical sensor

1. Introduction

Photonic crystal (PhC) is a periodically dielectric nanostructure that has attracted significant
interest recently because of its unique optical properties. Light of specific wavelengths cannot penetrate
through a PhC because of the Bragg reflector structure of the PhC. This limited range of wavelength has
been called the photonic band gap (PBG) since Yablonovitch coined the term in 1987 [1,2]. By controlling
the penetration of light using the PBG, the PhC is applied to optical elements, such as filters [3] and
splitters [4]. Furthermore, the PBG is sensitive and can be affected by surrounding refractive index
changes, which lead the PhC to be able to function as a highly sensitive optical sensor [5–7]. In addition,
by introducing a line defect into the PhC, a PhC waveguide can be formed, and the light in the PBG
range can penetrate through the waveguide. Hence, the PhC waveguide has been used for sensing
applications, such as gas sensors [8,9] and biosensors [10,11]. Moreover, a PhC resonator realized by
introducing point defects into the PhC can contribute to the trapping and amplification of light within
the PBG range. Based on these features, the PhC resonator is reported to function in various fields,
such as nanolaser development [12] and quantum information processing [13].

Conversely, the substrate usually used to fabricate a PhC, such as Si [14] and GaInAsP [15],
prevents the PhC from widespread applications. For example, to fabricate a Si-based PhC, the widely
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utilized methods for drawing patterns are electron beam lithography (EBL) and reactive ion etching
(RIE). However, these methods require highly costly apparatus and sophisticated fabrication processes.
Furthermore, a Si-based PhC limits the optical detection wavelength to the infrared range [14].
Therefore, we propose to use a polymer substrate instead of common Si or GaInAsP to fabricate a
PhC, which avoids the use of highly costly apparatus, allows for simple fabrication using nanoimprint
lithography (NIL), and also allows for optical detection in the visible wavelength range [16–23].

Compared with semiconductor-based PhC sensors, polymer-based PhC sensors can be fabricated
cost effectively and easily by the NIL process. Additionally, the optical characterization of the sensor
can be performed using a simplified optical setup, such as a handy-type spectrometer or smartphones.

In this paper, we propose the design and fabrication of a polymer-based PhC resonator and
waveguide for optical sensor applications. We have carried out some preliminary experiments and
found that distinguishing between the light that penetrated through the waveguide and the ambient
light was difficult due to the low refractive index of the polymer [24]. However, fabrication of the
resonator structure nearby the PhC waveguide is expected to allow the penetrated light to be localized
at the resonator, which makes optical detection more accurate and easier. Here, we simulated a
PhC property by the three-dimensional, finite-difference time-domain (FDTD) method first, then,
according to the results of the simulations, a polymer-based PhC resonator and waveguide were
fabricated by using an electron beam resist as a model of the polymer material. By detecting the
trapped light at the resonator, we confirmed the usability of the polymer material, which suggests
the possibility of using many other functional polymers as waveguide-based PhC sensor materials.
Chemical sensing characteristics were evaluated by detecting the polymer layer deposition process
using the layer-by-layer (LbL) method [25].

2. Materials and Methods

2.1. Materials

For fabrication of the polymer-based PhC resonator and waveguide, sulfuric acid (95% (v/v)),
hydrogen peroxide (30% (v/v)), acetone (99.7% (v/v)), 2-propanol (99.9% (v/v)), and xylene were
purchased from Wako Pure Chemicals (Osaka, Japan). ZEP520A as an electron beam resist was
purchased from ZEON Corp. (Tokyo, Japan). For applying the LbL method, poly allylamine
hydrochloride (PAH) and poly sodium 4-styrene sulfonate (PSS) were purchased from Sigma-Aldrich
(Tokyo, Japan).

2.2. Apparatus

For fabricating the PhC resonator and waveguide, an ELS-7500 from Elionix Inc. (Tokyo, Japan)
was used. For observing the PhC resonator and waveguide fabricated by EBL, a Field emission
scanning electron microscope (FE-SEM) (JSM-7610F, JEOL Ltd., Tokyo, Japan) was used.

2.3. Method

2.3.1. Simulation Analysis

Before fabricating the polymer-based PhC resonator and waveguide, a simulation of the PhC
was conducted with the FDTD (Lumerical Solutions Inc., Vancouver, BC, Canada) method to confirm
the wavelength range of the PBG. The basic structure of the PhC used in this work is shown in
Figure 1a. First, to confirm the penetration of light within the PBG wavelength range, we designed
a PhC waveguide, shown in Figure 1b, by introducing a line defect from a normal PhC structure.
The refractive index (n) of the air hole was set to 1.0, while the refractive index of the PhC base material
was 1.5, which is close to that of the photo resist, ZEP520A, used in this work. The radius of the air
hole (r), the lattice constant (a), and the thickness (h) were set at 84 nm, 300 nm, and 200 nm, respectively.
The wavelength of the irradiated light was set in the visible range (400–700 nm), and the electric field
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intensity was obtained by setting the monitor at the exit of the waveguide. After confirming the visible
light penetration, we simulated the localization and resonance of the visible light at the resonator.
The basic design of the PhC resonator is shown in Figure 1c. The light source was set at the same
position, but the position of the monitor was at the cavity this time, which simulated the electric
field intensity.
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Considering the impracticality of PhC fabrication without a substrate as in the simulation
demonstrated above, we simulated the effect of four different substrates Si, Au, Ag, Cu, and compared
the electric field intensities [26].

To enhance the efficiency of light confinement at the resonator, a number of point defects was
simulated. By varying the number of point defects from 1 to 5 in the simulation, we investigated the
influences on the electric field intensity at the PhC resonator.

2.3.2. Fabrication of PhC Using Electron Beam Lithography

Utilizing the optimized design, actual fabrication was conducted by EBL. Before exposure to the
electron beam, the substrate was first cleaned by the piranha solution (a mixture of sulfuric acid and
hydrogen peroxide) for 30 min at 150 ◦C; subsequently, ultrasonic cleaning in acetone was conducted
in a clean room. After washing by ultra-pure water and 2-propanol, ZEP520A was coated onto the
substrate by spin coating (1000 rpm, 120 s), and then exposed to an electron beam. In the actual
fabrication process, we combined the waveguide and the resonator pattern together as introduced
above. The distance between the waveguide and resonator was set to 11 periods of nanopattern so that
light can be confined most efficiently at the resonator without being influenced by the light penetrating
through the immediately adjacent waveguide. The exposed region was removed by xylene, and an air
hole array structure was fabricated. Confirmation of the fabricated structure and measurement of r
and a were carried out by FE-SEM.

2.3.3. Evaluation of PhC Resonator and Waveguide

Figure 2 shows the optical setup used to conduct the detection of resonant light in this work.
Incidental white light was irradiated from the horizontal direction and detected by a charge-coupled
device (CCD) camera (Hitachi KP-D20BP, Edmund Optics Inc., Barrington, NJ, USA) and the
spectrometer (CS100/M, Thorlabs Inc., Newton, NJ, USA) described above.

To evaluate the performance of the PhC resonator and waveguide as a sensor, the LbL method
was utilized. As the LbL method was performed, a multilayer was formed by the polymer monolayers,
and at the same time, a decrease in the hole size of the PhC occurred. Here, we used the PAA
aqueous solution (3 mg/mL) as the polycation solution, and the PSS aqueous solution (3 mg/mL)
as the polyanion solution, and alternately introduced one drop on the surface of the PhC resonator
waveguide device. The resonant light was measured at each step of layer formation.
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3. Results

3.1. Simulation

Using the FDTD method, electric field intensities obtained by the PhC structure with and without
the waveguide were simulated, and the results are shown in Figure 3a. From Figure 3a, the wavelength
range at 560–640 nm showed almost zero electric field intensity, suggesting that this range corresponds
to the PBG range. On the other hand, the PhC with a waveguide shows that within the PBG range,
light penetrated slightly through the waveguide. Therefore, when a polymer-based PhC structure is
designed using the proposed conditions (a = 300 nm, r = 84 nm, h = 200 nm), visible light penetrates
and is transmitted through the waveguide.
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An identical structure to this PhC waveguide without a line defect but with a point defect was
also built by FDTD simulation and simulated as a PhC resonator. The results of this simulation are
shown in Figure 3b, and they demonstrate that the maximum wavelength of resonant light and the
full width at half maximum (FWHM) are 590 nm and 68 nm, respectively. This resonant wavelength
range exactly covers the light that penetrated through the waveguide. Therefore, the PhC resonator
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waveguide with the structure described above is expected to penetrate and localize visible light in
actual experiments.

Although visible light penetration was confirmed by simulation, polymer-based PhC fabrication
without a substrate is unrealistic due to the soft nature of the polymer material. Hence, it is essential to
use a substrate under a polymer-based PhC. When the substrate has a refractive index higher than
that of the PhC material, where the refractive index is approximately 1.5 in this work, penetrated light
tends to leak to the substrate from the PhC. On the other hand, if a substrate with a low refractive
index in the visible light range, such as a metal substrate, is used for a polymer-based PhC, light would
be reflected back from the metal substrate and total reflection would occur in the polymer layer. As a
result, light is confined with high efficiency in the PhC and expected to be detected with higher
intensity and a narrow FWHM. Therefore, four different substrates with different refractive indexes
(Si: 3.94, Au: 0.21, Ag: 0.13, and Cu: 0.41) at 600 nm were utilized to simulate the light confinement
ability of the PhC resonator; the thickness of the metal on Si was set at 200 nm, except for the Si
substrate. In this case, Figure 3c shows the results of each substrate, and shows that the metal substrate
exhibits a significantly better confinement ability than a Si substrate. Moreover, compared to Ag and
Cu, Au shows a stronger intensity, although the refractive index is higher than that of Ag, which is
due to the extinction coefficient of Ag—approximately 4.0—which is significantly larger than that of
Au—approximately 0.05—at 600 nm. Based on this result, we decided to use Au-layer-deposited Si as
a substrate of the PhC for the actual fabrication and measurement process.

Figure 3d shows the results of the resonant intensity of the PhC resonator where the number of
point defects is varied from 1 to 5. From the previous study [26], the distance between the resonator and
the waveguide will be affected by the coupling and confinement efficiency. In this study, the optimized
distance (11a (3.3 µm)) (a: Lattice constant) was applied for the fabricated design of the PhC resonator
and waveguide. When an even number of point defects was introduced, light waves overlapped
so that the light confined in the PhC shows destructive interference, making the spectra exhibit low
intensity and a wide FWHM. Conversely, when an odd number of point defects was introduced,
especially three defects, constructive interference was demonstrated by the waves, resulting in stronger
intensity and a narrower FWHM. Based on this result, we chose a three-defect PhC resonator for
sensor applications.

3.2. Fabrication of PhC

Based on the simulated results, we carried out fabrication of the PhC resonator and waveguide
using a photo-resist polymer. For optimizing the EBL condition, a Si substrate was used for confirming
the pattern drawn by EBL, and we found that the designed hole radius of r = 80 nm and the exposure
time of dose = 0.75 µs/dot were the most appropriate conditions, which resulted in r = 82.5 nm as
confirmed by FE-SEM. However, under the same fabrication conditions, the hole radius was increased
to 100 nm when the Au–Si substrate was used. This change of size may be caused by the emission of
free electrons from Au after accepting the external energy applied by EBL. In spite of the larger radius,
we still confirmed the waveguide’s, resonator’s, and PhC’s structure from the FE-SEM image (Figure 4)
clearly, therefore confirming successful fabrication of the PhC resonator and waveguide.

3.3. Microscopic Observation and Measurements

Using the fabricated PhC resonator and waveguide, the resonant light at the resonator was
observed and detected by the setup shown in Figure 2. Figure 5a shows the dark-field image, and the
resonant light was clearly observed at the resonator position. Figure 5b shows the spectrum of resonant
light, from which resonated light with λ = 584 nm and FWHM = 48 nm was confirmed.
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After confirming the optical characteristics of the one-defect PhC resonator and waveguide,
we fabricated a three-defect PhC device since we expected it would exhibit precise localization of
light based on the simulated results shown in Figure 3d. Figure 6a shows the three-defect PhC
device we fabricated. The resonant light spectrum was compared to that of the one-defect device.
Figure 6b shows the better capability of light localization in the three-defect PhC. Therefore, a LbL
deposition experiment was carried out using the three-defect PhC resonator and waveguide. Here,
we repeated the dropping of polycation and polyanion solutions 16 times. PhC hole size and FE-SEM
images before and after the LbL process are shown in Figure 7a. During this process, the hole radius
changed from 128 nm to 98 nm, and at the same time, the resonant light spectrum also changed
(Figure 7b). The relationship between the hole radius and resonant light wavelength is shown in
Figure 7c. Redshift of resonant light corresponding to the change of the hole radius was observed.
The changing rate of the resonant wavelength was calculated to be 1.4 nm shift for 1 nm decrease of
hole radius diameter. These results demonstrate that the proposed device can detect the absorption
of a few nm of target molecules, such as DNAs and proteins. Hence, in the future, using this device,
the development of a highly sensitive optical sensor can be expected.

In this study, by using an LbL deposition experiment, approximately 4.9 nm of PAH/PSS
multilayers were deposited in the hole by SEM imaging. From the previous report using similar
experimental conditions [27], similar-thickness PAH/PSS multilayers were deposited. In addition,
to compare the experimental result of peak wavelength shift due to the deposition of PAH/PSS
multilayers, a simulation analysis was carried out. As a result, by the deposition of PAH/PSS
multilayers, a similar peak shift could be observed (data not shown). Furthermore, deposition of the
PAH/PSS multilayers on the top of the PhC resonator and waveguide also attributed to the red shift of
the peak wavelength. When the PAH/PSS multilayers were deposited, a decrement in the hole radius
and an increment in the PhC slab thickness occurred simultaneously. Hence, the refractive index per
unit volume will be increased. This increment of refractive index per unit volume and size change
induces the PBG shift as a peak wavelength shift.
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From these characteristics of PhC resonator and waveguide, for sensing applications,
monitoring of the peak shift due to the surrounding refractive index seems to be suitable. From the
previous reports, Quan et al. [28–30] and Baba et al. [31] had successfully developed a super-sensitive
biosensor (single molecular level). However, to perform highly sensitive detection at the single
molecular level, the peak sharpness will be affected by the sensitivity. To realize the detection of a
single molecule of a target using this PhC resonator and waveguide, more detailed investigations,
such as on device design, base materials, and fabrication conditions, are required.

4. Conclusions

In this work, a visible-light-compatible and polymer-based PhC resonator and waveguide
was designed and fabricated successfully by EBL. To enhance the efficiency of light localization,
an Au-deposited Si substrate was used, and the optimal defect number was determined to be 3.
By detecting light at the resonator position, visible light resonance was observed and measured
successfully. Furthermore, basic optical characteristics of the polymer-based, three-defect PhC
resonator and waveguide were evaluated by conducting LbL deposition. We confirmed that PhC
hole size changes contribute to resonant light shift, which suggests the possibility of using the PhC
resonator and waveguide as an optical sensor.

Based on these experimental results, fabrication of the PhC resonator and waveguide was done
by applying NIL, which is cost-effective and has high reproducibility. In the future, the NIL-based
PhC resonator and waveguide will be applicable to simple and disposable optical sensors for medical
applications using an antigen–antibody reaction and DNA hybridization.

In addition, based on the detection principle of a PhC resonator and waveguide-based optical
sensor, several applications, such as environmental monitoring [32] and food control [33], can be
performed to extend the PhC resonator and waveguide’s use beyond medical applications. For these
applications, volatile organic compounds (VOCs) and toxic substances can be detected by using the
PhC resonator and waveguide.
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