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Two new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-ylethynyl)pyridine (L1) and
bis(4-([2,2′-bipyridin]-5-ylethynyl)phenyl)methane (L2) were synthesized and used to
generate two metallosupramolecular [Fe2(L)3](BF4)4 cylinders. The ligands and cylinders
were characterized using elemental analysis, electrospray ionization mass spectrometry,
UV-vis, 1H-, 13C and DOSY nuclear magnetic resonance (NMR) spectroscopies. The
molecular structures of the [Fe2(L)3](BF4)4 cylinders were confirmed using X-ray
crystallography. Both the [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 complexes crystallized
as racemic (rac) mixtures of the ΔΔ (P) and ΛΛ (M) helicates. However, 1H NMR
spectra showed that in solution the larger [Fe2(L2)3](BF4)4 was a mixture of the rac-
ΔΔ/ΛΛ and meso-ΔΛ isomers. The host-guest chemistry of the helicates, which both
feature a central cavity, was examined with several small drug molecules. However, none
of the potential guests were found to bind within the helicates. In vitro cytotoxicity assays
demonstrated that both helicates were active against four cancer cell lines. The smaller
[Fe2(L1)3](BF4)4 system displayed low μM activity against the HCT116 (IC50 � 7.1 ± 0.5 μM)
and NCI-H460 (IC50 � 4.9 ± 0.4 μM) cancer cells. While the antiproliferative effects
against all the cell lines examined were less than the well-known anticancer drug
cisplatin, their modes of action would be expected to be very different.
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INTRODUCTION

Metallosupramolecular architectures (MSAs) are beginning to display a wide range of applications
(Yoshizawa et al., 2009; Cook and Stang, 2015; Hong et al., 2018; Saha et al., 2018; Bardhan and
Chand, 2019; Gao et al., 2019; Rizzuto et al., 2019; Percastegui et al., 2020) Largely inspired by the
success of small molecule metallo-drugs (Hartinger and Dyson, 2009; Mjos and Orvig, 2014; Anthony
et al., 2020; Boros et al., 2020; Frei, 2020; Frei et al., 2020; Steel et al., 2021b) there is a growing interest
in biological applications of MSAs (Cook et al., 2013; Therrien, 2015; Pöthig and Casini, 2019;
Sepehrpour et al., 2019; Samanta and Isaacs, 2020). Systems have been studied for their anti-cancer
and anti-microbial activity and their potential as drug delivery agents. Helicates (Piguet et al., 1997;
Albrecht, 2001; Hannon and Childs, 2004; Howson and Scott, 2011; Boiocchi and Fabbrizzi, 2014;
Paneerselvam et al., 2018; Albrecht et al., 2019; Albrecht, 2020; Tran and Yoo, 2020) are one of the
earlier known and well-studied sub-classes of MSAs. Lehn and co-workers reported the first helicates;
a double-stranded dinuclear and larger trinuclear system were generated from poly(2,2′-bipyridine)
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ligands and Cu(I) ions (Lehn et al., 1987) Subsequently, single,
triple, and quadruple stranded helicates have all been synthesized
and these systems are chiral featuring P (plus, right-handed) and
M (minus, left-handed) helices (Figure 1). Because of the
structural relationship to helical natural materials such as
DNA, α-helices and zinc fingers of proteins there has been
considerable interest in the biological properties, of helicates.
Early work by Lehn and co-workers showed that double-
stranded helicates assembled from poly(2,2′-bipyridine) ligands
and Cu(I) ions could bind to double stranded DNA (Schoentjes
and Lehn, 1995). Others have examined DNA binding and
nuclease activity (Childs et al., 2006), and the cytotoxicity of
related double-stranded complexes (Holtze et al., 2006; Allison
et al., 2018). In addition, quadruple-stranded helicates have been
shown to be cytotoxic (Mcneill et al., 2015; Ahmedova et al.,
2016a; Ahmedova et al., 2016b; Schmidt et al., 2016; Vasdev et al.,
2018; Ahmedova et al., 2020) and in some cases the modes of
action of the complexes have been studied (Mcneill et al., 2020).

While there are only a few reports on the biological properties of
double- and quadruple-stranded helicates, the related triple-
stranded analogues have been extensively examined. These
triply-stranded supramolecular structures are assembled from an

octahedral metal ion and di(bidentate) linker ligands [M2L3]; this
combination of building blocks can generate three isomeric
complexes the chiral M (ΛΛ) and P (ΔΔ), and the meso (ΛΔ).
Pioneering work by Hannon and co-workers described the
synthesis of the first [Fe2(LPyim)3]

4+ helicates (where LPyim �
(1E,1′E)-N,N′-[methylenebis(4,1-phenylene)]bis[1-(pyridin-2-yl)
methanimine, Figure 1] obtained from pyridylimine binding
motifs, octahedral Fe(II) ions and a diphenylmethylene spacer
unit (Hannon et al., 1997). The mechanical coupling exerted by the
spacer unitmeant that a racemic (rac) mixture of theM (ΛΛ) and P
(ΔΔ) [M2(LPyim)3]

4+ helicates (where M � Fe(II) or Ni(II)) was
formed and the authors went on to show that theM and P helicates
could be resolved by chiral chromatography (Hannon et al., 2001a).
The interaction of the M− and P−[Fe2(LPyim)3]4+ helicates with
DNA has been extensively examined. The complexes have been
shown to bind in the major grove of duplex DNA (Moldrheim
et al., 2002), and at the center of three-way DNA (Oleksi et al.,
2006; Cerasino et al., 2007; Malina et al., 2007; Cardo et al., 2011)
and RNA (Phongtongpasuk et al., 2013) junctions (3WJ). More
recently, the [Fe2(LPyim)3]

4+ helicates were also shown to bind to
DNA and RNA bulges (Malina et al., 2014; Malina et al., 2016).
Similar observations have been made with the related
[M2(LPyim)3]

4+ helicates [where M � Ru(II) or Ni(II)] (Cardo
et al., 2018) and the Ni(II) and Fe(II) helicates have been
demonstrated to interact with G-quadruplexes (Zhao et al.,
2013; Zhao et al., 2016) and the β-amyloid polypeptide (Aβ)
(Yu et al., 2012; Li et al., 2015). Furthermore, the interaction of
the iron(II) helicate with duplex DNA induces intramolecular
DNA coiling (Hannon et al., 2001b; Malina et al., 2008) and it
has been shown to display anti-cancer (Hotze et al., 2008), anti-
bacterial (Richards et al., 2009) and anti-fungal (Vellas et al.,
2013) properties, but is not mutagenic or genotoxic. This
remarkable range of biological properties has been obtained
without investigating changes to either the metal binding
(pyridylimine) or spacer units of the helicates, suggesting
that the system could potentially be improved by further
tuning of the molecular scaffold.

Building on the aforenoted work, Scott and co-workers
developed an excellent method for the self-assembly of
optically pure single diastereomer fac-[Fe(LpyimR)3]

2+ (where
LpyimR � functionalized pyridylimine ligand) complexes
(Howson et al., 2009). The same group then exploited this
method to synthesize enantiomerically pure Fe(II) and Zn(II)
[M2(LpyimR)3]

4+ helicates and flexicates which feature different
spacer systems. Like the parent Hannon helicate, it has been
shown that these new pyridylimine-based complexes have shown
a diverse range of biological properties and some flexicates have
impressive, tunable anti-microbial (Howson et al., 2012; Simpson
et al., 2019) and anti-cancer (Brabec et al., 2013; Faulkner et al.,
2014; Kaner and Scott, 2015; Kaner et al., 2016; Song et al., 2019;
Song et al., 2020) properties. The interactions of this more diverse
family of helicates with DNA/RNA (Song et al., 2021) and
proteins (Li et al., 2014) have also been examined and the
systems show structure-dependent binding to duplex DNA
(Brabec et al., 2013; Malina et al., 2015b), G-quadruplexes
(Zhao et al., 2017; Zhao et al., 2018), 3WJ and 4WJ (Brabec
et al., 2013), and bulges (Malina et al., 2015a; Hrabina et al., 2020).

FIGURE 1 | Cartoon representations of the minus (M, ΛΛ), plus (P, ΔΔ)
helicate isomers of a generic triple-stranded helicate and the chemical
structure of the (1E,1′E)-N,N′-[methylenebis(4,1-phenylene)]bis[1-(pyridin-2-
yl)methanimine] ligand (LPyim) developed by Hannon and co-workers
(Hannon et al., 1997).
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The success of the pyridylimine [M2L3]
4+ helicates discussed

above has inspired others to examine the biological properties of
related [M2L3]

4+ triply-stranded helicates. For example, we have
explored the use of small families of di(2-pyridyl-1,2,3-triazole)
ligands (Ldipytri) to generate Fe(II), Ru(II), and Co(III) helicates
(Vellas et al., 2013; Kumar et al., 2015; Vasdev et al., 2016). The
biological properties of the Fe(II) and Ru(II) systems were poor
but the more robust Co(III) helicates were shown to bind to and
condense DNA and in addition displayed good anticancer activity
(Crlikova et al., 2020). Di(2,2′-bipyridine) ligands (Glasson et al.,
2008; Glasson et al., 2011a; Glasson et al., 2011b) have also been
used to generate [M2L3]

4+ triple-stranded helicates and recently
Vázquez and co-workers have examined the DNA binding and
cytotoxicity of some peptide linked [M2L3]

4+ helicates [where M
� Fe(II) or Co(III)] (Gamba et al., 2014; Gómez-González et al.,
2018; Gomez-Gonzalez et al., 2021).

Given the well demonstrated ability of [M2L3]
4+ helicates to

bind to DNA/RNA and proteins and their potential to be used as
targeted therapeutics, we herein report the synthesis of two new

di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-ylethynyl)-
pyridine (L1) and bis(4-([2,2′-bipyridin]-5-ylethynyl)phenyl)-
methane (L2) and their use in the assembly of two new triple-
stranded [Fe2L3]X4 helicates (X � BF4

−, OTf− or Cl−). Moreover,
due the presence of a central cavity in both the [Fe2(L1)3](BF4)4
and [Fe2(L2)3](BF4)4 helicates, we also report our examination of
the host-guest properties of these systems with some small
molecule drugs and our studies of the anti-cancer activity of
the complexes.

RESULTS AND DISCUSSION

The new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-
ylethynyl)-pyridine (L1) and bis(4-([2,2′-bipyridin]-5-
ylethynyl)-phenyl)methane (L2) were synthesized from 5-
ethynyl-2,2′-bipyridine (Grosshenny et al., 1997) and either
2,5-dibromopyridine or bis(4-iodophenyl)methane (Austin
et al., 1981) using standard Sonogashira cross-coupling
conditions (Supplementary Material) and were obtained in
modest yields (L1 � 51% and L2 � 61%). The ligands were
characterized using 1H nuclear magnetic resonance (NMR), 13C
{1H} NMR, electrospray ionization mass spectrometry (ESIMS)
and elemental analysis (Supplementary Figures S1–S4).

The [Fe2(L)3](BF4)4 helicates were synthesised by combining
either L1 or L2 (3 equiv.) with [Fe(H2O)6](BF4)2 (2 equiv.) in
acetonitrile at 65°C (Scheme 1 and Supplementary Material).
The ligands were initially insoluble in the reaction mixture,
however, after 5 min the ligands dissolved and deep red
solutions (λmax � 545 or 547 nm, respectively) were obtained.
The resulting Fe(II) complexes were purified by recrystallization
(vapour diffusion of diethyl ether into a nitromethane solution)
and deep red crystals were isolated in good yields (89% for
[Fe2(L1)3](BF4)4 and 77% for [Fe2(L2)3](BF4)4). The complexes
were characterised by 1H NMR, 13C{1H} NMR, 1H DOSY NMR,
UV-vis spectroscopy, ESIMS, and X-ray crystallography
(Supplementary Material).

The ESIMS data obtained for the two complexes displayed a
major peak consistent with the corresponding [Fe2L3]

4+ cation
(m/z � 354.5886 [Fe2(L1)3]

4+ andm/z � 421.3972 m/z [Fe2(L2)3]
4+,

respectively) suggestive of the formation of the expected triple-
stranded helicates (Figure, Supplementary Figures S7, S10). The
1H DOSY NMR spectra (500MHz, CD3CN, 298 K) of
[Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 were collected, and all the
proton resonances displayed the same diffusion coefficients (6.51 ±
0.03 × 10−10 m2 s−1 and 5.40 ± 0.10 × 10−10 m2 s−1, respectively)
suggesting that a single metallosupramolecular architecture or
mixtures of isomeric architectures were obtained
(Supplementary Figures S11, S12). In addition, the observed
diffusion coefficients were similar to those found for some
related [Fe2(Ldipytri)3]

4+ metallo-cylinders (Vellas et al., 2013)
providing further support for the formation of the desired triple-
stranded helicates.

The 1H NMR spectra (500 MHz, CD3CN, 298 K) for
the complexes of L1 and L2 were significantly distinct
(Figure 2; Supplementary Material). The spectrum of
[Fe2(L1)3](BF4)4 displayed nine sharp resonances in the

SCHEME 1 | Cartoon representation of the synthesis of the triply-
stranded metallo-cylinders [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4. The
complexes were synthesized by combining L1 or L2 (3 equiv.) with
[Fe(H2O)6](BF4)2 (2 equiv.), CH3CN, 65°C, 16 h. Bottom: inset showing
the structures of L1 and L2.
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aromatic region (δ � 8.5−7.0 ppm) consistent with the formation
of a racemic (rac) mixture of the helical [Fe2(L1)3]

4+ isomers, P �
ΔΔ and M � ΛΛ. Conversely, the 1H NMR spectrum of
[Fe2(L2)3](BF4)4 was more complex with several broad
overlapping resonances in the aromatic region. However, the
methylene protons of the spacer backbone (Hj, δ � 4.0−3.8 ppm)
were clearly split into two distinct resonances; a singlet and an AB
quartet. This suggests that in solution [Fe2(L2)3](BF4)4 forms a
mixture of helicate rac-ΔΔ/ΛΛ and mesocate meso-ΔΛ isomers.
Others (Goetz and Kruger, 2006; Vellas et al., 2013) have
observed this behavior in solution with related [Fe2L3]

4+

systems that feature the diphenylmethylene spacer unit. This is
in contrast to observations with the pyridyl imine helicate,
[Fe2(LPyim)3]

4+ of Hannon and co-workers (Hannon et al.,
1997). Those helicates have the same spacer unit and are
found to exclusively form rac-helicates in solution and the
solid state. The difference appears to be related to the larger
size of [Fe2(L2)3]

4+ compared to [Fe2(LPyim)3]
4+. In [Fe2(LPyim)3]

4+, the aryl rings of the spacer unit are in close contact and
interdigitate, mechanically locking the complex into the helical
arrangement. The larger size of L2 lessens this steric
interdigitation of the spacer aryl groups, therefore making the
mesocate arrangement more energetically accessible.

The molecular structures of [Fe2(L1)3](BF4)4 and
[Fe2(L2)3](BF4)4 were confirmed by X-ray crystallography with
crystals grown by slow vapour diffusion of diethyl ether into
nitromethane solutions (Figure 2, Supplementary Figures S27,
S28). The [Fe2(L1)3](BF4)4 structure was solved in the P1 space
group and the asymmetric unit contains two iron ions, three L1
ligands, four tetrafluoroborate anions and two nitromethane
solvent molecules. Each iron(II) ion is coordinated to three

bipy units generating a triple-stranded helicate architecture.
The Fe-Fe distance of 14.2 Å confirmed that the system is
elongated in comparison to the parent Hannon helicate. The
compound crystallized as a racemic mixture in the solid state
with both the ΔΔ (P) and ΛΛ (M) isomers (see the structural
representations in Figure 2) present in the crystal.

The [Fe2(L2)3](BF4)4 structure was solved in the P21/n space
group and the asymmetric unit was occupied by one [Fe2(L2)3]

4+

unit, two tetrafluoroborate anions and seven co-crystallized
nitromethane molecules. [Fe2(L2)3](BF4)4 was shown to
crystallize as a rac mixture of the ΔΔ (P) and ΛΛ (M)
helicates. The meso-form detected in solution by 1H NMR
spectroscopy was not observed in the solid state, presumably
due to crystal packing effects (Vellas et al., 2013). The
combination of the two 5-ethynyl-2,2′-bipyridine units and the
diphenylmethylene spacer in L2 led to a large Fe-Fe distance
(19.1 Å) in [Fe2(L2)3](BF4)4. The metallo-architectures of both
[Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 displayed a clear central
cavity and notable π surfaces available for potential host-guest
interactions (Figure 2; Supplementary Material).

MSA cage systems have been used extensively as hosts for
small molecule guests (Yoshizawa et al., 2009; Cook and Stang,
2015; Hong et al., 2018; Saha et al., 2018; Bardhan and Chand,
2019; Gao et al., 2019; Rizzuto et al., 2019; Percastegui et al.,
2020). In contrast, the use of [Fe2L3]

4+ helicate architectures as
hosts is far less common, presumably because the vast majority of
reported MSAs do not contain a central cavity. Recently, there
have been a few reports of guest binding [anions (Goetz and
Kruger, 2006; Cui et al., 2012), sugars (Yang et al., 2021) and small
aromatic molecules (Fazio et al., 2018; Jiang et al., 2019)] within
[Fe2L3]

4+ helicates that feature small cavities. As the cavities of

FIGURE 2 | X-ray structures showing the overlaid stick and spacefill representations of [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 with related partial 1H NMR spectra
(500 MHz, CD3CN, 298 K) and associated ESI-mass spectra. Fe-Fe distances; [Fe2(L1)3](BF4)4 � 14.2 Å, [Fe2(L2)3](BF4)4 � 19.1 Å. Solvent molecules and counter
anions were omitted for clarity.
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the [Fe2(L1)3]
4+ and [Fe2(L2)3]

4+ helicates are both lined by
functional groups that could interact with guests through
either hydrogen bonding or π-interactions, we sought out
some small drug molecules that could potentially interact with
the helicates using those non-covalent interactions. Therefore, the
guest molecules 1,4-benzoquinone, nalidixic acid, acridine (as an
analogue of proflavine), cisplatin and 5-fluorouracil were selected
as they are either known or analogues of known anticancer and
antibacterial drugs (Figure 3; Supplementary Material). The
host-guest (HG) interactions were examined using 1H NMR
spectroscopy and ESIMS. One of the potential guest molecules
(2 equiv.) was combined with one of the helicates (1 equiv.) in
CD3CN at 298 K and the 1H NMR spectrum acquired
(Supplementary Material). 1H NMR spectra of the host-guest
mixtures were then compared to the 1H NMR spectra of the
corresponding “free” host and guest compounds (Supplementary
Figures S23, S24). Disappointingly, no complexation induced
shifts were observed for either the host or the guest resonances
suggesting that none of the guests bound within the cavities of
the helicates. Molecular models (SPARTAN16, MMFF,
Supplementary Figures S25, S26) showed that there are no
obvious steric interactions that would prevent host-guest
formation for the majority of the examined HG pairs. Thus,
the lack of guest binding in the cases examined appears to be due
to the absence of the correct combination of complementary non-
covalent and solvaphobic interactions. Additionally, the BF4

−

counter-anions may be competing for the cavity as has been
observed in other cationic MSA systems (August et al., 2016).

Related [Fe2L3]
4+ helicates have shown excellent anticancer

activity (Song et al., 2021). Therefore, we examined the
cytotoxicity of [Fe2(L1)3]

4+ and [Fe2(L2)3]
4+ against a panel of

cancer cell lines. As the [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4
complexes were only soluble in polar organic solvents (DMSO,
CH3CN, CH3NO2, and acetone) we attempted to render the
helicates water soluble by exchanging the BF4

− counter anions
with Cl− or OTf− (Supplementary Material). While we were able
to generate the new [Fe2(L1)3](X)4 and [Fe2(L2)3](X)4 (where X �
Cl−, OTf−) salts, they proved even less soluble than the original
BF4

− salts. The OTf− salts were soluble in CH3CN and
DMSO, however, the Cl− salts were only soluble in DMSO
with none of the systems showing any appreciable water
solubility (Supplementary Figures S18–S21). Due to these
complications, we carried out the cytotoxicity experiments with
[Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 dissolved in DMSO and

these solutions were then diluted with biological media to the
required concentrations.

Due to the modest water solubility of many drug candidates, it
is common to use DMSO to solubilize compounds for
cytotoxicity experiments. However, it is also well known that
DMSO can displace coordinated ligands and decompose metal
complexes (Patra et al., 2013; Vellas et al., 2013; Hall et al., 2014;
Huang et al., 2017). Therefore, the stability of the helicates in
neat DMSO and a 1:19 v/v DMSO:water mixture was examined
before carrying out the cytotoxicity experiments. The stabilities
of [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 in these solvents
were monitored using 1H NMR and UV-vis spectroscopy
(Supplementary Figures S14, S15). Both complexes
completely decomposed (ca. 3 h for [Fe2(L1)3](BF4)4 and 24 h
for [Fe2(L2)3](BF4)4) in neat DMSO liberating the free ligands
and presumably forming [Fe(DMSO)6]

2+ (White et al., 2007).
The helicates were more long lived in 1:19 v/v DMSO:water

mixtures. A 72 h UV-visible stability study of [Fe2(L1)3](BF4)4
and [Fe2(L2)3](BF4)4 in 1:19 v/v DMSO:water was conducted to
replicate the timeframe of the biological testing (Supplementary
Figures S16, S17). Interestingly, the smaller [Fe2(L1)3](BF4)4
showed no signs of decomposition (within the uncertainty of
the measurement) whereas the larger [Fe2(L2)3](BF4)4 did slowly
degrade, approximately 43% of the [Fe2(L2)3](BF4)4 was still
present in solution after 72 h. Given the moderate to good
stability of the helicates under conditions similar to those
required for the cytotoxicity assay we proceeded to measure
the in vitro antiproliferative activity of the compounds.

The ligands (L1 and L2) and helicates [Fe2(L1)3](BF4)4 and
[Fe2(L2)3](BF4)4 were subjected to the sulforhodamine B
cytotoxicity assay in the human cancer cell lines HCT116
(colorectal carcinoma), NCI-H460 (non-small cell lung
carcinoma), SiHa (cervical carcinoma), and SW480 (colon
adenocarcinoma) (Table 1). L1 and L2 proved to be insoluble
under the conditions of the experiments, and therefore their
antiproliferative activity could not be determined (Table 1). The
helicates [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 were both active
in vitro against all the cancer cells tested. The smaller
[Fe2(L1)3](BF4)4 was more active than [Fe2(L2)3](BF4)4 against
all the cell lines examined, and displayed low μM activity against
HCT116 (IC50 � 7.1 ± 0.5 μM) and NCI-H460 (IC50 � 4.9 ±
0.4 μM) cancer cells. Unfortunately, direct comparisons with
the previously studied isostructural helicates [Fe2(LPyim)3]

4+

and [Fe(LpyimR)3]
2+ are difficult as their cytotoxicity was

FIGURE 3 | Guest molecules examined in the host-guest study with the helicates.
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determined with different cell lines. However, the low μM activity
observed for [Fe2(L1)3](BF4)4 suggests that it could be more
active than the [Fe2(LPyim)3]

4+ helicates (IC50 values ranged
from 19–52 μM, despite having been determined in different
cell lines) (Hotze et al., 2008). The observed activity of
[Fe2(L1)3](BF4)4 is similar in magnitude to that found by Scott
et al. for their family of [Fe2(LpyimR)3]

2+ helicates (Song et al.,
2021). However, the [Fe2(LpyimR)3]

2+ systems are more effective
overall with some of that family displaying nanomolar activities
(Kaner et al., 2016; Song et al., 2020). We have recently studied
the cytotoxicity of a small family of dimetallic organometallic (Ru,
Rh, Os, and Ir) complexes (Steel et al., 2021a) of LPyim against the
same series of cell lines enabling a more direct comparison
(Table 1). Both helicates displayed better activity than the
dimetallic complexes and LPyim across the range of cell lines.
Presumably the higher activity of the helicates is associated with
the different molecular shape and higher charge. While the
in vitro activity of the [Fe2(L1)3](BF4)4 helicate is promising
we note that the widely used anti-cancer drug cisplatin is more
active in all the cell lines examined (Table 1). However, the mode
of action of this covalent DNA binder, in comparison to
supramolecular structures that are more likely to form non-
covalent interactions with biological targets, will be very
different, making any direct comparison difficult.

CONCLUSION

Two new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-
ylethynyl)-pyridine (L1) and bis(4-([2,2′-bipyridin]-5-ylethynyl)-
phenyl)methane (L2) were synthesized and exploited to generate
two triple-stranded metallo-cylinders, [Fe2(L1)3](BF4)4 and
[Fe2(L2)3](BF4)4. The ligands and cylinders were characterized by
elemental analysis, ESIMS andUV-vis, 1H−, 13C−, andDOSY-NMR
spectroscopies. The molecular structures of the [Fe2L3](BF4)4
cylinders were confirmed using X-ray crystallography. Both
[Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 crystallized as racemic (rac)
mixtures of the ΔΔ (P) and ΛΛ (M) helicates. NMR spectroscopy
and ESIMS confirmed the presence of the [Fe2L3]

4+ supramolecular
architectures in solution. However, 1H NMR spectra showed that in

solution the larger [Fe2(L2)3](BF4)4 was present as a mixture of the
rac-ΔΔ/ΛΛ and meso-ΔΛ isomers. The host-guest chemistry of the
helicates, which both feature an accessible central cavity, was
examined with several small drug molecules, including cisplatin
and 5-fluorouracil. However, none of the potential guests were found
to bind within the helicates, despite molecular modelling confirming
that there were no obvious steric impediments to the interaction.
Cytotoxicity assays demonstrated that both helicates were active
against the four cell lines examined. The smaller rac-
[Fe2(L1)3](BF4)4 helicate was more cytotoxic than the larger rac/
meso-[Fe2(L2)3](BF4)4 analogue and displayed promising low μM
antiproliferative activity against HCT116 (IC50 � 7.1 ± 0.5 μM) and
NCI-H460 (IC50 � 4.9 ± 0.4 μM) human cancer cells. Although both
helicates were less active than the widely used anti-cancer drug
cisplatin, these results suggest that helicates constructed fromdi(2,2′-
bipyridine) ligands have potential as anti-cancer agents in their own
right. The combination of a cytotoxic supramolecular structure with
encapsulated drugs may result in synergistic activity. However, the
poor aqueous solubility and modest stability in biological media of
the current [Fe2(L1)3](BF4)4 helicates means that the properties of
these compounds will need to be fine-tuned to overcome these
shortfalls. This could potentially be achieved by using more
kinetically inert metal ions such as Ru(II) (Glasson et al., 2008;
Kumar et al., 2015) or Co(III) (Symmers et al., 2015; Burke et al.,
2018; Crlikova et al., 2020) to assemble the helicates.
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