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Abstract: The virus Hardycor1 was isolated in 1998 and infects the haloarchaeon Halorubrum coriense.
DNA from a frozen stock (HC1) was sequenced and the viral genome found to be 45,142 bp of ds-
DNA, probably having redundant, circularly permuted termini. The genome showed little similarity
(BLASTn) to known viruses. Only twenty-two of the 53 (41%) predicted proteins were significantly
similar to sequences in the NCBI nr protein database (E-value ≤ 10−15). Six caudovirus-like pro-
teins were encoded, including large subunit terminase (TerL), major capsid protein (Mcp) and tape
measure protein (Tmp). Hardycor1 was predicted to be a siphovirus (VIRFAM). No close relation-
ship to other viruses was found using phylogenetic tree reconstructions based on TerL and Mcp.
Unexpectedly, the sequenced virus stock HC1 also revealed two induced proviruses of the host:
a siphovirus (Humcor1) and a pleolipovirus (Humcor2). A re-examination of other similarly se-
quenced, archival virus stocks revealed induced proviruses of Haloferax volcanii, Haloferax gibbonsii
and Haloarcula hispanica, three of which were pleolipoviruses. One provirus (Halfvol2) of Hfx. volcanii
showed little similarity (BLASTn) to known viruses and probably represents a novel virus group.
The attP sequences of many pleolipoproviruses were found to be embedded in a newly detected
coding sequence, split in the provirus state, that spans between genes for integrase and a downstream
CxxC-motif protein. This gene might play an important role in regulation of the temperate state.

Keywords: archaea; haloarchaea; temperate virus; Haloferax; Haloarcula; Halorubrum; halobacteria;
pleolipovirus; caudovirus; siphovirus

1. Introduction

Viruses of prokaryotes are extraordinarily numerous in aquatic environments [1,2],
commonly outnumbering cells by a factor of 5 to 10 [3]. They play significant roles in a
variety of important biological and biogeochemical processes, including the lysis of cells
and the consequent release of organic matter, selective sweeps of prokaryotic populations
that drive the evolution of both virus and host, the acceleration of genetic exchange and
the redirection of host metabolism [4]. They continue to provide a source of surprising new
discoveries and insights, such as the BREX (BacteRiophage EXclusion) defense system [5]
of bacteria and the viral counter defense to this based on the DNA mimic protein Ocr [6].
Another impressive example of their ingenuity is the recently described phage-specific
peptide communication system, termed the arbitrium system, that allows proviruses to
decide between lytic and lysogenic lifestyles [7].

Viruses of diverse morphotypes are known to infect extremely halophilic archaea (class
Halobacteria), including caudoviruses such as phiH1 [8] and HF1 [9] (reviewed by [10–13]);
spindle shaped viruses such as His1 [14–16]; lipid enveloped pleolipoviruses such as
His2 [17,18] and the spherical/icosahedral, membrane-containing sphaerolipoviruses such
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as SH1 [19,20]. All possess DNA genomes, and many are temperate, with numerous related
proviruses being found in the genome sequences of haloarchaea. While the packaged
genomes of haloarchaeal caudoviruses are always linear dsDNA [13], they are derived
from concatemeric intermediates that are either cut at sequence-specific sites resulting
in unit-length genomes, such as in HF2 [21], or they are cut after head-full packaging,
producing genomes that are circularly permuted and terminally redundant [13].

Sequencing technology is now sufficiently robust to allow the recovery of valuable
information from archival biological material containing low amounts of DNA, and this
was recently applied to haloviruses Serpecor1 and Hardycor2 [22]. Frozen stocks of these
viruses had been stored since 1998 and although no longer viable, their genomes could be
sequenced and compared to other viruses, revealing they were related to the caudovirus
HF1 and similar viruses of the recently approved genus Haloferacalesvirus [9,12].

In this study, the archival virus stock of Hardycor1 (originally labelled HC1) was
analysed to determine its viral genome sequence, genetic composition and relationship to
other known viruses. Hardycor1, like Hardycor2, was recovered in 1998 from Lake Hardy,
a hypersaline lake in Victoria. It gave clear plaques on lawns of Halorubrum coriense. Based
on its genome, Hardycor1 is a novel siphovirus, probably representing a distinct genus.
Surprisingly, the virus stock also contained two induced proviruses of Hrr. coriense, and this
was found to be a common phenomenon in other halovirus stocks. A stock from the model
haloarchaeon Hfx. volcanii contained two induced proviruses, one being a previously
unrecognized provirus (Halfvol2) that may represent a novel virus genus.

2. Materials and Methods
2.1. Virus Isolation

The methods have been described recently in [22]. Briefly, a hypersaline water sample,
collected in 1998 from Lake Hardy, Victoria (35◦ 04′ S, 141◦ 44′ E), was used to isolate
viruses on soft-agar lawns of Hrr. coriense Ch2T (DSM 10284) incubated at 37 ◦C. A clear
plaque was picked, purified 3 x by further titrations, and then stored in HF diluent [23] at
−80 ◦C. The stock was labelled HC1.

2.2. DNA Isolation, Sequencing and Assembly

The strategy and methods have been described previously [22]. Briefly, the virus stock
was processed to extract DNA, which was then amplified using the Qiagen REPLI-g Mini
Kit in order to achieve sufficient material for next-generation sequencing. One microgram
of the qualified DNA was sequenced at Yourgene Health Co. (Taipei, Taiwan) using the
Illumina platform (HiSeq 2500 sequencer; 2 × 250 bp paired-end reads). Assembly of
Illumina reads was performed using the de novo assembler within Geneious version
10.2.6 [24,25].

2.3. Bioinformatics Analyses

For gene annotation, a combination of gene prediction with GeneMarkS-2 [26] and
manual refinement using database searches (BLASTp/BLASTn) was used. The gene calling
program Glimmer3 [27], available within the Geneious Prime environment, was used to con-
firm the GeneMarkS-2 predictions of genes hrrhc1_050 and hrrhc1_095. Dot plot comparison
used the YASS alignment tool [28], available via the webserver [29]. Genome comparisons
were performed using the GeneWiz browser 0.94 [30]. CRISPR spacer searches used the
IMG/VR spacer BLAST tool [31], or the BLAST CRISPRs tool [32]. VIRFAM typing of
head-neck-tail proteins was performed using the webserver at [33,34]. Transmembrane
domain and signal sequence prediction used Phobius at [35,36].

3. Results
3.1. Isolation and Sequence

Upon isolation in 1998, Hardycor1 produced 2–3 mm clear plaques on lawns of
Hrr. coriense. In 2015, DNA from a stored stock of this virus (labelled HC1) was extracted
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and sequenced. Read assembly produced a high coverage contig of 45,142 bp in length,
and circular in form. As shown later, the most parsimonious interpretation of the circular
assembly is that the virus genome is packaged as linear dsDNA molecules with ends that
are terminally redundant and circularly permuted. A summary of the sequencing results is
shown in Table 1.

Table 1. Sequencing details for Hardycor1.

Virus Host Sequence
Reads 1 Total Mb Genome

Length (bp)
G + C

%
Read

Coverage Accession

Hardycor1 Hrr. coriense 17,097 21.6 45,142 67.8 95× MT152698
1 Read length, 250 nt.

The %G + C of the host, Hrr. coriense, is 66.6% [37], very close to that of the virus.
Contig sequences from contaminating DNA in the same virus sample exactly matched the
genome of Hrr. coriense, confirming the host.

BLASTn searches against the GenBank nr/nt nucleotide database (E-value ≤ 10−15,
March, 2020) returned hits to only two short (~400–500 bp) regions of the Hardycor1
genome, and one of these (nt 39800–40246) was non-specific to highly repetitive eukaryotic
sequences. The other region, of 436 bp (nt 25604–26035), matched sequences from two
haloarchaeal siphoviruses, HCTV-1 and HHTV-2, at 66–69% nucleotide identity.

Analysis of tetramer frequencies revealed the absence of three tetrameric sequences,
all of which are palindromic (Table 2). Another three non-palindromic tetramers were
strongly avoided. A similar analysis of palindromic 6-mers (excluding those with absent or
under-represented tetrameric cores shown in Table 2) found that the viral genome lacks
22 such motifs (Table 3). The results are indicative of a strong selection against numerous
4–6 bp sequence motifs, particularly palindromic motifs. Most likely, this helps to avoid
host defences such as restriction-modification (R-M) systems. The host species, Hrr. coriense,
has five annotated genes involved in R-M (Supplementary Table S1) and has previously
been shown to be dam-methylated [38].

Table 2. Absent or under-represented tetramers in the Hardycor1 genome 1.

AGCT CTAG TGCA CAGC CATC CCAG

0 0 0 0.01 0.03 0.11
1 Under-representation calculated as Odds Markov values where they are not zero.

Table 3. Absent palindromic 6-mers in the Hardycor1 genome 1.

First Base 6-mer Motifs Not Present in Hardycor1

A ACATGT, AGATCT, AGCGCT, AGTACT, ATTAAT

C CACGTG, CCATGG, CTCGAG, CTRYAG

G GAATTC, GACGTC, GATATC, GCATGC, GGCGCC, GGTACC, GGGCCC,
GRGCYC, GTATAC

T TGGCCA, TGTACA, TTCGAA, TTTAAA
1 Excluding all motifs that include those listed as absent or under-represented in Table 2. All motifs have known
restriction enzymes (REBASE, [39]).

Repeat sequences: A number of related repeats of varying length (20–83 bp) occur
in several intergenic regions, upstream of six ORFs (HrrHc1_045, _095, _160, _230, _235
and _245). One of these repeats partly overlaps the start of three CDS (HrrHc1_045, _95
and _235) with the result that the predicted proteins have identical N-termini (MNANT...).
There is also a 530 bp direct repeat (nt 21,857–22,916) that spans the borders of three CDS
(HrrHc1_135, _140 and _145), with the latter two predicted proteins sharing 106 aa of
identical N-terminal sequence.



Genes 2021, 12, 149 4 of 23

Annotation of the genome sequence revealed 53 CDS, and the map displayed in
Figure 1 represents the unit genome in linear form with the starting base chosen for its
proximity to the large subunit terminase gene, terL (hrrhc1_030) but placed upstream of
the five closely spaced genes that precede terL because they were in the same orientation,
had overlapping CDS and are likely to be transcribed together. Genes are generally closely
spaced, with 27 genes (50%) overlapping at their start and stop codons, and a further
13 genes (24%) separated by 10 bp or less. Most genes are oriented inwards to a point
around 27 kb (Figure 1b,c). This broad organizational pattern is reflected in the cumulative
AT-skew plot shown above (panel a), which displays a major inflection at this point,
and falls steadily to either side except for short regions corresponding to local reversals in
gene orientation.
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sequences from Halobacteria (taxid:183963) + Viruses (taxid:10239), and at a reduced strin-
gency than before (E-value ≤ 10−10), returned two short matches (Table 4), one of which 
was previously mentioned. These were to tmp (hrrhc1_120), the gene encoding the tape 
measure protein, and hrrhc1_160, which specifies a hypothetical protein. The top match 
for tmp was to a 540 bp region within an annotated tape measure protein gene 
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Figure 1. (a) Cumulative AT-skew plot (window = 45 nt) of Hardycor1 genome. (b) Functional modules and predicted
transcription directions. (c) Genome map of Hardycor1. Gene names and the proteins they specify: dam, Dam methylase;
terL, large subunit terminase; por, portal protein; muf, MuF-family head morphogenesis protein (SSP1 gp7 family); mcp,
major capsid protein; nep1, neck protein of type 1; tmp, tape measure protein; hjc, Holliday junction resolvase Hjc; aaa,
AAA ATPase; vwa, Von Willebrand factor type A (vWA) interaction domain that includes a metal ion-dependent adhesion
site (MIDAS). Asterisks immediately below gene arrows indicate the predicted hypothetical proteins contain CxxC motifs.
The locus tags (e.g., HrrHc1_005) of several genes are shown below the gene map. Scale at bottom represents DNA length
in kb.

The predicted Hardycor1 proteome was submitted to VIRFAM [34], which classified
four of the inferred proteins as caudovirus homologs (TerL, Portal, MCP and Nep1) and
predicted Hardycor1 was most likely a siphovirus.

A BLASTn search of the GenBank nr/nt nucleotide database restricted in scope to
sequences from Halobacteria (taxid:183963) + Viruses (taxid:10239), and at a reduced
stringency than before (E-value ≤ 10−10), returned two short matches (Table 4), one of
which was previously mentioned. These were to tmp (hrrhc1_120), the gene encoding the
tape measure protein, and hrrhc1_160, which specifies a hypothetical protein. The top
match for tmp was to a 540 bp region within an annotated tape measure protein gene
(HPS36_14875) carried on the chromosome of Halorubrum sp. strain RHB-C. The top
match to hrrhc1_160 was the halovirus HCTV-1 gene DNAM5_77. HCTV-1 is a siphovirus
infecting Har. californiae [12].

Nucleotide sequence similarity of Hardycor1 with the genomes of 23 known tailed
haloviruses is presented as a dot plot in Figure 2. Related viruses are clearly detected as
lines of similarity parallel to the main diagonal, such as members of the Myohalovirus genus
(ChaoS9, phiCh1 and phiH1; lower left corner), and members of the Haloferacalesvirus genus
(HF1 to HRTV-8; near upper right corner). Hardycor1 (blue triangle) shows little or no
sequence similarity to any of the other haloviruses.
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Table 4. BLASTn matches to the Hardycor1 genome a.

Hardycor1 Region
(nt); Length

Hardycor1
Locus_Tag

(Gene)

Matching
Sequence

(Accession)

Matched Region
(nt); Name/Gene

Target Locus_Tag
(Accession)

% Identity
(E-Value)

18158–18692;
540 bp

hrrhc1_120
(tmp)

Halorubrum sp.
RHB-C

(CP053941.1)

2930116–2930650;
tape measure

protein

HPS36_14875
(QKG94091.1) 66% (7 × 10−28)

25604–26035;
436 bp

hrrhc1_160
(Hyp)

Halovirus HCTV-1
(KC292029.1)

43575–43153;
hypothetical

protein

DNAM5_77
(AGM11938.1) 69% (2 × 10−21)

a June 10, 2020; BLASTn, default settings, nr nucleotide database.
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and right axes.
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The low nucleotide sequence similarity of Hardycor1 to other tailed haloviruses
prevents any meaningful alignment or phylogenetic inferences; however, whole genome
similarity values are useful to define viral taxa. Figure 3 shows a heat map of intergenomic
similarities of tailed haloviruses, produced using the VIRIDIC suite of programs [40].
Values are calculated using the traditional algorithm recommended by the International
Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee.
In this scheme, members of the same species share ≥95% nt similarity, while members of
the same genus share more than about 70% nt similarity, although more recently, the ICTV
have suggested a threshold of ~50% nt similarity for caudoviruses [41]. Hardycor1 shows
negligible similarity (0–2%) to the other 23 virus genomes and represents a novel species
and genus. An independently described algorithm, VICTOR [42], calculates similarities of
viral genomes based on nucleotide or protein sequences, and in both cases, Hardycor1 was
predicted to represent a novel species and novel genus (Supplementary Table S2).
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3.2. Annotation and Predicted Proteins

Twenty-two of the 53 annotated proteins (41%) returned significant matches (BLASTp,
E-value ≤ 10−15) to protein sequences of the NCBI nr database, and the top matches
are shown in Table 5. Fourteen matched the proteins of various species of haloarchaea,
six matched proteins of three haloviruses (HCTV-1, HHTV-1 and HCTV-2), and two
matched bacterial proteins. The three haloviruses with similar proteins are all siphoviruses
with linear, circularly permuted dsDNA genomes, and infect species of Haloarcula [12,13].

Table 5. Annotated CDS of halovirus Hardycor1 (MT152698).

Start Stop Locus Tag Length Direction Gene Product Protein Homologs a

138 791 HrrHc1_005 654 + hypothetical
protein

E3374_RS16605 [Halorhabdus
sp. H27]

788 1012 HrrHc1_010 225 + CxxC motif
protein

1009 1323 HrrHc1_015 315 + hypothetical
protein

1320 1883 HrrHc1_020 564 + dam
probable

Dam
methylase

DJ70_12660
[Halorubrum halodurans]

1880 2260 HrrHc1_025 381 + CxxC motif
protein

2337 3560 HrrHc1_030 1224 + terL
large subunit

terminase
TerL

L593_06050 [Salinarchaeum
sp. Harcht-Bsk1]

3809 5407 HrrHc1_035 1599 + por portal
protein Por

FE783_12715
[Paenibacillus mesophilus]

5412 7382 HrrHc1_040 1971 + muf
SPP1 gp7

family
protein MuF

CMK96_05475 [Pseudomonas sp.]

7479 8501 HrrHc1_045 1023 + hypothetical
protein

8506 8820 HrrHc1_050 315 – CxxC motif
protein

8986 10,470 HrrHc1_055 1485 + hypothetical
protein

Natgr_1848 [Natronobacterium
gregoryi SP2]

10,474 10,911 HrrHc1_060 438 + hypothetical
protein

10,913 11,989 HrrHc1_065 1077 + mcp major capsid
protein Mcp

IEX84_RS06545
[Halarchaeum rubridurum]

12,070 12,501 HrrHc1_070 432 + hypothetical
protein

12,505 12,933 HrrHc1_075 429 +
DUF1073
domain
protein

12,935 13,288 HrrHc1_080 354 + nep1 neck protein
Nep1 G9C82_17265 [Haloarcula sp. R1-2]

13,285 13,710 HrrHc1_085 426 + hypothetical
protein

13,707 14,201 HrrHc1_090 495 + hypothetical
protein
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Table 5. Cont.

Start Stop Locus Tag Length Direction Gene Product Protein Homologs a

14,337 15,266 HrrHc1_095 930 – hypothetical
protein

15,676 15,879 HrrHc1_100 204 + hypothetical
protein

15,883 17,115 HrrHc1_105 1233 + hypothetical
protein

AArcSl_1282
[Halalkaliarchaeum desulfuricum]

17,143 17,613 HrrHc1_110 471 + hypothetical
protein

G6M89_09280 [Natronolimnobius
sp. AArcel1]

17,688 17,894 HrrHc1_115 207 + hypothetical
protein

17,894 20,005 HrrHc1_120 2112 + tmp tape measure
protein Tmp C484_10631 [Natrialba taiwanensis]

20,007 20,552 HrrHc1_125 546 + hypothetical
protein

20,554 21,759 HrrHc1_130 1206 + hypothetical
protein BBD46_16545 [Natrialba sp. SSL1]

21,756 22,067 HrrHc1_135 312 + hypothetical
protein

22,069 22,527 HrrHc1_140 459 + hypothetical
protein

22,599 24,518 HrrHc1_145 1920 + hypothetical
protein

GS429_08425 [Natronorubrum sp.
JWXQ-INN-674]

24,574 24,813 HrrHc1_150 240 + hypothetical
protein

24,825 25,175 HrrHc1_155 351 +
predicted

membrane
protein

25,290 26,255 HrrHc1_160 966 + hypothetical
protein

DNAM5_77 [HCTV-1],
HHTV2_37 [HHTV-2]

26,324 26,917 HrrHc1_165 594 + hypothetical
protein

EPY72_RS18050 [Halorussus
sp. LYG-36]

27,104 27,502 HrrHc1_170 399 – CxxC motif
protein

27,499 27,936 HrrHc1_175 438 – hjc H-J resolvase
b Hjc

BRC93_05600
[Halobacteriales archaeon]

28,034 28,390 HrrHc1_180 357 – hypothetical
protein

28,390 28,674 HrrHc1_185 285 – hypothetical
protein

28,671 29,117 HrrHc1_190 447 – hypothetical
protein HHTV1_58 [HHTV-1]

29,114 29,314 HrrHc1_195 201 – CxxC motif
protein

29,311 29,610 HrrHc1_200 300 – CxxC motif
protein

29,607 29,867 HrrHc1_205 261 – CxxC motif
protein
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Table 5. Cont.

Start Stop Locus Tag Length Direction Gene Product Protein Homologs a

29,860 31,395 HrrHc1_210 1536 –

nucleic acid
binding
domain
protein

HCTV2_73 [HCTV-2]

31,392 32,585 HrrHc1_215 1194 – hypothetical
protein

HCTV2_75 [HCTV-2], HHTV2_88
[HHTV-2]

32,774 32,938 HrrHc1_220 165 – CxxC motif
protein

32,935 33,327 HrrHc1_225 393 – CxxC motif
protein

33,324 35,321 HrrHc1_230 1998 – hypothetical
protein

DM826_07300 [Halonotius sp.
F13-13]

35,523 37,079 HrrHc1_235 1557 – CxxC motif
protein

37,288 38,694 HrrHc1_240 1407 – aaa AAA ATPase HHTV2_10 [HHTV-2], HCTV2_83
[HCTV-2]

38,836 40,968 HrrHc1_245 2133 – vwa

vWA and
MIDAS
domain
protein

HCTV2_79 [HCTV-2], HHTV2_3
[HHTV-2]

41,082 42,461 HrrHc1_250 1380 – hypothetical
protein

42,458 43,084 HrrHc1_255 627 – hypothetical
protein

43,162 43,923 HrrHc1_260 762 + hypothetical
protein

44,232 44,936 HrrHc1_265 705 + hypothetical
protein

a BLASTp searches (E-value ≤ 10−15, January 2021) against the NCBI nr protein database, with matches specified by their locus_tag
followed by species or virus (in square brackets). Accessions for haloviruses HCTV-2, HHTV-2 and HHTV-1 are given in Figure 3. b H-J,
Holliday Junction.

The presence of conserved protein domains and characteristic VIRFAM profiles of
virus proteins [34] allowed functional assignments for eight proteins, revealing that the
first 27 kb of the Hardycor1 genome carries genes encoding key proteins of caudoviruses,
including the large subunit terminase (TerL), portal protein (Por), major capsid protein
(Mcp) and tape measure protein (Tmp). A muf gene is found just downstream of the
portal protein gene (por), and specifies a MuF (SPP1 gp7) family protein of the longer
type [43]. MuF proteins have been reported to have a number of functions in different
viruses, such as protecting the ends of viral DNA from nuclease attack when entering a host
cell. The close gene spacing and typical arrangement of viral genes identified this region as
being responsible for DNA packaging, virus assembly and morphogenesis. The absence
of genes for tail-sheath or base-plate J proteins is consistent with the VIRFAM prediction
that Hardycor1 is a siphovirus. Upstream of terL is a dam gene (hrrhc1_020) encoding a
putative N-6-adenine-methyltransferase (Dam).

A strongly conserved feature among caudoviruses is a pair of genes upstream of
the tape measure protein gene (tmp) that encode two related chaperone proteins via pro-
grammed ribosomal frameshifting [44,45]. In Hardycor1, these correspond to HrrHc1_110
and HrrHc1_115, and a classical −1 slippery sequence of the type X XXY YYZ is found
at the appropriate position near the end of HrrHc1_110 (nt 17589–17595; G GGA AAT)
that would allow translation of a protein encompassing the CDS of both genes. A similar
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protein to HrrHc1_110 is found in Natronolimnobius (NGM69196.1; 34% aa identity), is
encoded by a gene upstream of a tape measure protein gene and also contains a classical –1
slippery sequence near its 3′ end (G GGA AAG, nt 226569–226575, AAKXY010000003.1).
The inferred tape measure protein (HrrHc1_120) of Hardycor1 is 703 aa long, and would
predict a tail length of about 84 nm using the formula described by [46].

Genes hrrhc1_050 and hrrhc1_095 are unusual, as they are found on the complemen-
tary strand to the other genes in this region (Figure 1b,c). However, both are predicted by
GeneMarkS2 and by Glimmer3 (see Methods), and both proteins have features consistent
with other haloviral proteins. For example, HrrHc1_050 protein contains two CxxC mo-
tifs [22] and a predicted C-terminal membrane spanning domain, and HrrHc1_095 protein
has a pI of 4.24 and an over-abundance of Asp residues, typical features of haloarchaeal
proteins [47]. Manual examination of alternative ORFs in the regions of HrrHc1_050 and
HrrHc1_095 did not reveal any that were more likely.

The right end (27–45 kb) consists largely of genes specifying proteins of unknown
function (yellow in Figure 1), even though seven of these are similar to proteins of haloar-
chaea or viruses (Table 5). All but the last two genes face inwards, an organisation similar
to that of bacterial siphoviruses [48]. Like many siphoviruses, this region includes a gene
specifying a Holliday junction resolvase Hjc (HrrHc1_175), an endonuclease that among
other roles acts in debranching DNA structures to allow packaging of the viral genome
into capsids [49,50].

Two other proteins specified by genes in the replication/accessory module of the
genome have conserved functional domains. The 711 aa protein HrrHc1_245 is predicted
to carry a von Willebrand factor A domain (vWA) and a metal ion-dependent adhesion
site (MIDAS) domain (Table 5). Such domains often function in protein–protein inter-
actions [51]. The encoding gene is situated next to a gene encoding an AAA ATPase
(HrrHc1_240), an arrangement that is commonly found in bacteria and archaea [52,53].
Similar vWA domain proteins have been reported previously in siphoviruses of haloar-
chaea: HCTV-2, HHTV-2 and HVTV-1 [11–13]. In the case of HVTV-1, the corresponding
gene is also near to a gene for an AAA ATPase, and in the same orientation. The close
proximity of genes encoding an AAA ATPase and a vWA-MIDAS domain protein has been
reported in thermophilic archaeal viruses, such as Acidianus Two-Tailed Virus (ATV) [54].
The interaction between AAA ATPase and a vWA-MIDAS domain protein has been closely
studied in several cases, and a common finding is that the vWA-MIDAS domain protein
provides an adaptor function, while the AAA ATPase acts as a chaperone [55,56].

Four annotated proteins have predicted transmembrane domains (TMD) or a signal
sequence (HrrHc1_050, _150, _155 and _165). Ten hypothetical proteins contain one or
more CxxC motifs (asterisked in Figure 1c), a signature feature of zinc-finger domain
proteins [57]. HrrHc1_050 is a 104 aa long, CxxC motif containing protein that carries a
strongly predicted TMD near its C-terminus. The gene encoding this protein is located on
the minus-strand, unlike the other genes around it (Figure 1). HrrHc1_150 has a predicted
signal sequence, and is the only annotated protein to do so. HrrHc1_155 possesses three
evenly spaced TMDs (Phobius) and shares this and other similarities with the well-studied
S105 holin of lambda [58,59]. HrrHc1_150 and HrrHc1_155 are separated by only 11 bp.
The fourth protein, HrrHc1_165, has a TMD near its N-terminus, but this is not predicted to
be a signal sequence. The gene is located just before the major switch in coding strand that
occurs around 27 kb (Figure 1), and its inferred protein matched several similar sequences
in the NCBI nr protein database, although none have an annotated function.

3.3. Protein-Based Phylogenetic Analyses

The large subunit terminase (TerL) is highly conserved in caudoviruses and has often
been used to infer phylogeny [60–62]. The Hardycor1 TerL sequence showed significant
similarity to numerous homologues present in the NCBI nr protein database. A phyloge-
netic tree reconstruction is presented in Figure 4 and shows that the Hardycor1 protein
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clusters with TerL sequences of haloarchaea and haloviruses but is distinct and branches
just outside the other members of this clade.
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The major capsid protein is also commonly used to infer viral phylogeny [63], but the
Hardycor1 Mcp shows low similarity to known homologs (≤31% aa identity), and the top
four BLASTp hits were to a wide variety of organisms, including an oceanic (bacterial)
virus (QDP55370.1) and three diverse taxa of bacteria (Pseudomonas, Bacteroidetes, Paenibacil-
lus). Without more examples of specifically related relatives, no meaningful phylogenetic
inferences are possible based on Mcp trees.

A whole proteome-based phylogenetic reconstruction is presented in Figure 5, and shows
Hardycor1 branches deeply and is not closely related to other known tailed haloviruses.

3.4. Match to CRISPR Spacer

The Hardycor1 genome was used to search for CRISPR spacer matches at the IMG/VR
and CRISPRfinder websites (accessed December 10, 2020; see Methods). Only one sig-
nificant match was found (Supplementary Table S3), to a 40 nt region (nt 17635–17674)
found between the two annotated CDS immediately upstream of the gene encoding tape
measure protein (tmp). The source of the spacer sequence was a halite endolithic microbial
community found in the Atacama Desert, Chile [65].

3.5. Active Proviruses of Hrr. coriense

Assembly of sequence reads of the Hardycor1 virus stock (HC1) revealed another
circular contig, distinct from Hardycor1, that was 11,758 bp in length with a high read
coverage, and matched a region on contig 20 of the Hrr. coriense draft genome (Table 6).
The circular nature of this contig indicated it was an extrachromosomal element and
not simply an amplified fragment of host chromosomal DNA. Its gene content indicated
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it was a virus, closely related to pleolipoviruses such as HRPV-6 (Figure 6), and was
designated Humcor2.
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Table 6. Induced proviruses present in archival virus stocks a.

Provirus Length (nt) Archival Virus
Stock b G + C% Read

Coverage
Assembled

Contig
Affiliation
(Accession) Comments

Humcor1 46,474 CC1 62.5 184 circular
dsDNA

siphovirus
(MW344765)

Matches Hrr.
coriense Ch2T (nt
170617–217091;
AOJL01000026).

Humcor2 11,758 HC1 62.5 54 circular
dsDNA

pleolipovirus
(MW344764)

Matches Hrr.
coriense Ch2T (nt

11011–23038;
AOJL01000020).

Halfgib1 16,280 HG1 56.5 470 circular
dsDNA

pleolipovirus
(MW344766)

Matches Hfx.
gibbonsii Ma2.38T

(nt
269,983–286,444;
AOLJ01000022).

Harhisp1 19,481 HH1 53.2 1403 circular
dsDNA

pleolipovirus
(MW344767)

Matches Har.
hispanica Y27T (nt
2722239 -2741719;

CP006884)

Halfvol1 20,573 HV2 57.6 77 circular
dsDNA pleolipovirus

Matches Hfx.
volcanii DS2T (nt
231453–252025;

CP001956)

Halfvol2 12,275 HV2 62.2 165 circular
dsDNA novel group

Matches Hfx.
volcanii DS2T (nt
329565–341853;

CP001956)

Halfvol3 12,527 - 59.3 - circular
dsDNA pleolipovirus

Matches Hfx.
volcanii DS2T (nt

1307486–1294960)
a All from virus stocks except Halfvol3, which was found to excise using publicly available sequence data (see Section 3.6). b These virus
stocks were described previously in [22].

A map of Humcor2 is shown in Figure 6. It begins just after the 3′ end of tRNA-Pro
gene C464_t04328 and ends after the 13 bp att sequence, which is identical to the 3′ end of
the same tRNA. Near the att sequence is a gene coding for an integrase, a typical pattern
for integrative prokaryotic viruses, including haloviruses [10,66]. Currently, the only
available genome sequence of Hrr. coriense is a draft consisting of 69 contigs (accession
GCF_000337035 [67], and a nucleotide alignment with Humcor2 revealed it to be identical to
Hrr. coriense except for three separate 90 bp long artifactual direct repeats in the Hrr. coriense
draft genome sequence, most likely assembly errors due to poor quality reads. Many of
the predicted proteins of Humcor2 are similar to those of alphapleolipoviruses, such as
HRPV-6 (Halorubrum pleomorphic virus 6) and its close relative HRPV-2 (Halorubrum
pleomorphic virus 2) [17]. In summary, Humcor2 represents the extrachromasomal form
of a pleolipoviral provirus, and most likely originates from virions. Both alpha and beta
pleolipoviruses have circular dsDNA genomes [17].

Humcor1 (Table 6) is a second provirus of Hrr. coriense that was found in the assem-
bled sequence reads from a different archival virus stock, labelled CC1. This virus isolate
was recovered from Cheetham saltern (38◦ 09’ 23.5”S 144◦ 25’ 41”E) in 1998 and infected
Hrr. coriense Ch2T. The provirus Humcor1 present in this stock assembled as a circular con-
tig (Figure 7) and carries many genes that are characteristic of caudoviruses including genes
encoding large subunit terminase (TerL), portal protein (Por), major capsid protein (Mcp)
and tape measure protein (Tmp). No genes for tail sheath, base plate or tail fibres were
detected, so it is most likely of the siphovirus type, as supported by VIRFAM typing of the
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head proteins (see Methods), which predicted Humcor1 as a siphovirus and also identified
the Nep1 homologue (HK97 gp10 family phage protein) as C464_06210. Related proviruses
are found in the genome sequences of Hrr. aidingense JCM 13560 and Halobonum sp. NJ-3-1
(red and green rings of Figure 6). The most closely related halovirus is BJ1 (Figure 7,
blue ring), which shared a similar large subunit terminase (53% aa identity) as well as many
of the accessory genes, such as an integrase, MCM and a strongly similar (82% aa identity)
homologue of the hypothetical protein C464_06065 (nt 34838–35560). The circular assembly
of Humcor1 is most likely due to head-full packaging of the virus genome, which produces
a population that is circularly permuted and terminally redundant. This is also the case
with halovirus BJ1 [68].
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3.6. Proviruses Present in Virus Stocks from Other Haloarchaeal Hosts

Searches for proviruses were made using the sequence data collected from six other
archival virus stocks that, like HC1, had been stored frozen since 1998 and analysed by
sequencing in the same manner (see Methods). Four active proviruses were detected
(Halfgib1, Harhisp1, Halfvol1 and Halfvol2) that matched chromosomal regions of Hfx. gib-
bonsii Ma2.38T, Haloarcula hispanica Y27T and Haloferax volcanii DS2T (Table 6). All as-
sembled to circular contigs with high read coverage. Three are pleolipoviruses, and the
fourth (Halfvol2) represents a novel virus group, and was previously unsuspected in the
Hfx. volcanii genome.
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Halfgib1 is found to be integrated near the end of tRNA-Arg (C454_t15621) in the
Hfx. gibbonsii Ma2.38T genome. The Halfgib1 sequence aligned near perfectly to the draft
Hfx. gibbonsii genome sequence, except that the draft genome sequence across this region
contains two separate 90 bp direct repeats, most likely due to misassembly. Similar errors
were mentioned earlier in the Hrr. coriense draft genome, which was part of the same
sequencing study [69]. The closely related ARA6 strain of Hfx. gibbonsii has no integrated
provirus at this tRNA. In Hfx. volcanii DS2, there is a 12.5 kb provirus present in the
corresponding tRNA (CP001956.1, nt 1294959–1307485), as reported previously [70,71].
We denote this as Halfvol3, and it shares high (>90%) nucleotide similarity with Halfgib1
(Supplementary Figure S1) and both encode predicted proteins that show similarity to
proteins of pleolipoviruses [17].

Harhisp1 assembled as a circular contig from reads recovered from halovirus stock
HH1, which was produced from Har. hispanica. The contig matched a provirus integrated
at tRNA-Ala (HISP_14435) of the host chromosome and encompassed genes hisp_14430
to hisp_14315. This region had previously been identified as being related to betaple-
olipoviruses, such as HHPV3 (see Figure 6 of [72]), and its excision from the chromosome
had been detected using PCR amplification across the predicted attP region [71].

Halfvol1 and Halfvol2 were recovered as circular contigs from sequence reads derived
from the virus stock HV2, which was produced from cells of Hfx. volcanii. Their summary
characteristics are shown in Table 6. Halfvol1 matched one of two proviruses on the
Hfx. volcanii chromosome that had been pointed out in earlier studies [70,71], and is found
to be integrated at the tRNA-Pro gene (HVO_3017). It is affiliated with the betapleolipovirus
group, and a closely related but smaller provirus (14,675 bp) is found to be integrated in the
corresponding tRNA-Pro of Hfx. volcanii strain SS0101 (VMTR00000000.1, Supplementary
Figure S2).

Halfvol2 had not previously been recognised as a provirus because its encoded pro-
teins do not show significant matches to known viruses. It was first reported at the 2019
Halophiles conference [73]. The genome size, circular form and the ten annotated pro-
teins with predicted transmembrane domains (asterisked in Figure 8) suggest it may be a
lipid enveloped virus belonging to a novel virus group. Related proviruses are found in
other haloarchaea (Supplementary Figure S3), and an example of similar size (12,732 bp)
found in Hfx. volcanii SS0101 is compared to Halfvol2 in Figure 8. It is integrated in the
corresponding tRNA-Ala of that strain. Searches of the ArcPP proteome database [74]
revealed that the proteins expressed from several genes of both Halfvol1 and Halfvol2 have
been detected in Hfx. volcanii. For example, HVO_0271 of Halfvol1 (dataset PXD011015)
corresponds to the virus structural protein VP4 of Halogeometricum pleomorphic virus 1
(HGPV-1), and was detected in enriched fractions of cell surface proteins (archaella/pilins)
after partial purification by CsCl centrifugation [75].

We designate the remaining previously described provirus of Hfx. volcanii as Halfvol3
(CP001956, nt 1294959–1307485), and for convenience, it is also shown in Table 6. While most
of the genes of Halfvol3 have been shown to be transcribed [76], only one of the pre-
dicted proteins (HVO_0143) has been detected in proteomic studies (datasets PXD006877,
PXD009116 and PXD011056) available from the ArcPP database [74].

No contig matching the length and sequence of Halfvol3 was produced by de novo
assembly of the HV2 reads, and mapping of reads to Halfvol3 revealed they were only
present in a low number, resulting in patchy coverage. However, reads spanning the termini
were present, indicating that the element can excise and circularise. As added support
for these findings, we examined the publicly available sequence archives of previous
genomic sequencing studies of Hfx. volcanii and also found reads traversing the joined
termini of Halfvol1 and Halfvol3. Two examples are given in Supplementary Tables S4A,B
and the accompanying Supplementary Figures S4–S6. In the case of Halfvol1, the read
coverage of the provirus region was significantly higher than the read coverage outside of
the provirus (Supplementary Figure S6), indicating a high level of induced virus in strain
Hv1 (sequenced in the study of [77]). Reads traversing the circularised termini of Halfvol2



Genes 2021, 12, 149 16 of 23

were not found. In a recent study on hypermotile mutants of Hfx. volcanii, the deletion of
Halfvol3 was detected as a secondary genome alteration in one of the analysed strains [78].
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predicted to contain transmembrane domains (Phobius/TMPred).

3.7. A CDS Frequently Encompasses the attP Sequence of Pleolipovirus-Like Proviruses

Curiously, the attP sequences of the pleolipovirus-like proviruses described in this
study are all found within a putative CDS that begins just downstream of the integrase
gene and terminates adjacent to, or overlaps, the next CDS (a CxxC motif protein) in the
circular form of their genomes (Figure 9). In all cases, the three adjacent CDS are on the
same DNA strand, and so closely spaced that they may be transcribed together. A bridging
CDS also occurs in the novel virus Halfvol2, as well as viruses and proviruses reported in
earlier studies, such as SNJ2 and HRPV-9 (Figure 9). Although the lengths and inferred
protein sequences of these genes vary, they regularly span the region between the genes for
integrase and CxxC protein, genes that would be widely separated in the provirus state.
Since the CDS is only complete when the virus genome is circularised, there is an obvious
potential for switching off its activity upon provirus integration into the host genome.
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4. Discussion and Conclusions

Hardycor1 was isolated 22 years ago and is a lytic halovirus infecting Halorubrum
coriense strain Ch2T, but its genetic makeup was unknown until this study. It was found
to have a 45,142 bp dsDNA genome encoding proteins that are typical of siphoviruses,
a classification supported by gene organization, the presence of a tmp gene that predicts
a tail length of 84 nm, and the absence of genes for tail sheath or baseplate J family protein
(BpJ) [79]. This classification was confirmed by the conserved features of its head and neck
proteins (VIRFAM). At the DNA sequence level, Hardycor1 shares little similarity with
other described haloviruses, and standard comparisons show that it represents a novel
species and genus. Inferred phylogenies using conserved proteins such as terminase (TerL)
and the major capsid protein (Mcp) also support this conclusion.

The genome is most likely linear and packaged in a head-full manner that produces
terminally redundant, circularly permuted ends. This was supported by protein similarities
and protein phylogenetic tree reconstructions that indicated a distant relationship to
haloviruses HCTV-2 and HHTV-2, both of which are siphoviruses with dsDNA genomes
that are circularly permuted and terminally redundant [13]. Consistent with the view that
Hardycor1 leads a lytic lifestyle, the genome does not carry a tRNA-like attP sequence or a
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gene for a site-specific integrase, and it lacks a gene for a DNA replicase. The absence of
replicase genes means that the virus is dependent on host enzymes for this process, and in
this respect, Hardycor1 is similar to HHTV-2 [12].

The viral genome has undergone strong selection against palindromic motifs, as ev-
idenced by the absence of three tetrameric motifs (AGCT, CTAG and TGCA). This is a
common finding among prokaryotic viruses [22], and protects the viral DNA from attack by
sequence-specific defences of host species, such as restriction-modification (R-M) systems
that are widespread in Halobacteria [80]. Hrr. coriense alone carries five genes predicted to
encode R-M enzymes including a Dam methylase and two restriction endonucleases (Mrr)
that target methylated DNA.

Three other haloviruses that infect Hrr. coriense have been described previously,
the myoviruses HF2, Hardycor2 and Serpecor1 [9,22,81,82]. Like Hardycor1, their ds-
DNA genomes lack CTAG motifs and are under-represented in TGCA. Unlike Hardycor1,
they lack the motif GATC and have the expected frequency of AGCT. Differences in the
under-representation of palindromic (and non-palindromic) motifs seen in the genomes
of viruses infecting the same host probably reflect distinct evolutionary histories, such as
differing alternate host species, but could also be modulated by the defence systems carried
by each virus. For example, DNA methylase genes are carried by Hardycor1 (hrrhc1_020),
HF1 and Hardycor2 but not by Serpecor1 [22].

The overall pattern of gene organisation in Hardycor1 is typical of many siphoviruses [48].
Genes are generally oriented towards the centre, with a transition point at around 27 kb,
and this divides the genome into two major regions that are functionally distinct. The left
region carries genes for DNA packaging (TerL) and virus assembly (head and tail pro-
teins). At the inner end of this region, near the major switch in gene orientation at 27 kb,
there are three genes specifying proteins that contain transmembrane domains (hrrhc1_155,
hrrhc1_160 and hrrhc1_165), which could represent the lysis module. They occur in the corre-
sponding region that holin and lysin genes are found in many siphoviruses [48], and which
are usually transcribed late in the infection cycle. In bacterial viruses, these proteins are
regulated so that cell lysis only occurs after virion assembly has been completed [59].

The right end of the genome (27–45 kb) is designated as the replication and accessory
gene region but has many genes specifying proteins of unknown function. In well-studied
siphoviruses, the corresponding region is transcribed early in infection and carries a variety
of genes involved in the evasion of host defences, genome replication and the alteration of
host metabolism to enhance virus production [48]. In Hardycor1, only a few genes code
for proteins with conserved domains indicative of function, such as a Holliday junction
resolvase (Hjc), an AAA ATPase and a von Willebrand factor type A (vWA) interaction
domain protein that includes a metal ion-dependent adhesion site (MIDAS). Genes for
Holliday junction resolvases are widespread in caudoviruses of bacteria [49,83], and occur
in some haloarchaeal viruses, such as HCTV-2 [12], as well as other archaeal viruses [84].
Hjc functions to resolve recombination intermediates but can also debranch DNA prior to
packaging as well as degrade host DNA [83,84].

The close association of genes for AAA ATPase and vWA-MIDAS proteins has been
well documented [52], and examples are known among archaeal viruses such as Acidianus
Two-Tailed Virus [54] and the haloarchaeal siphovirus HVTV-1 [11]. The functions of these
proteins are unclear, but it is thought that vWA domain proteins interact with and assist
the activity of AAA ATPases, which may function as chaperones [54].

Seven genes of the replication and accessory gene region code for proteins contain-
ing CxxC motifs, a signature feature of zinc-finger (ZF) domains that are commonly in-
volved in interaction modules, such as DNA binding [85]. Such proteins are often small,
commonly occur in haloviruses and are most frequently encoded by genes situated outside
of the virus assembly module [22]. In Hfx. volcanii, small CxxC motifs containing proteins
have been shown to be important in a variety of phenotypes, including stress adaptation,
biofilm formation and swarming [86].
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Two genes within the virus assembly module of the Hardycor1 genome are unusual
(hrrhc1_050 and hrrhc1_095), as they are found on the strand complementary to the other
genes. This is uncommon, as the genes for head and tail proteins are typically closely
spaced and all in the same orientation [48], allowing them to be transcribed together [81,82].
However, hrrhc1_050 and hrrhc1_095 are predicted independently by two gene callers
(GeneMarkS2 and Glimmer3; see Methods), and the specified proteins have characteristics
similar to other viral proteins. HrrHc1_050 contains two CxxC motifs [22,86] and a C-
terminal membrane spanning domain, while the HrrHc1_095 protein has a low pI of 4.24
and an over-abundance of Asp residues, typical features of haloarchaeal proteins [47].
Alternative CDS options on the other strand are less likely. It is unclear why Hardycor1 is
organised in this way. The haloarchaeal siphovirus HCTV-5 also has two CDS encoded on
the opposite strand in the head and tail assembly module (HCTV5_113 and HCTV5_115).

The frequent presence of active proviruses in archival virus stocks was unexpected
and facilitated the discovery of a novel and previously undocumented provirus (Halfvol2).
The genome sequences of six induced proviruses were determined at high read coverage
from five different virus stocks, and evidence for the presence of one more (Halfvol3) was
detected using publicly available sequence read data. In the latter case, the increased read
coverage of the virus sequence also indicated a high level of virus production. Three groups
of viruses were identified: a siphovirus (Humcor1), five different pleolipoviruses and the
novel virus Halfvol2. The gene content of Halfvol2 suggests it is probably lipid enveloped.
In a previous study, the induction of specific proviruses in four species of haloarchaea
was detected by PCR of att sequences [71], and evidence for the excision of Harhisp1 in
Har. hispanica, as well as four others (in Har. marismortui and Hmc. mukohataei), was re-
ported. In the current study, induced proviruses were not expected but were significant
contaminants occurring in cell-free virus stocks, and their genomes were sequenced and
assembled inadvertently.

In comparing the numerous proviruses described in this study, a surprising obser-
vation was the frequent occurrence of a CDS that overlaps the attP sequence, and which
neatly spans between the viral integrase gene and a gene coding for a CxxC motif protein.
This protein can only be produced after circularization of the virus genome and would
not exist in the provirus state. The function(s) of the encoded protein will be interesting
to elucidate, but its position and fragmentation upon integration into the host genome
suggest it is intimately involved in the regulatory mechanisms underlying the transition
between virulent and temperate states.

The frequency and multiplicity of active proviruses present in virus stocks highlight
important issues when studying haloarchaea and their viruses. At the cell level, the interac-
tions, mutations and phenotypes of haloarchaea may be influenced by provirus induction,
loss or cross-infection. It is also unclear what perturbations in cell physiology might trigger
provirus induction and subsequent virulent growth. To control for these variables, it would
be prudent to document all functional proviruses of the species under study, and assess
their activity when cells are placed under experimental conditions. As shown in this study,
an unsuspected provirus was able to be detected by sequencing cell-free DNA preparations,
such as viral lysates. On the other hand, when studying viruses, it is important to realise
that one or more induced proviruses of the host may well be present, and could be diffi-
cult to remove from virus preparations using standard purification regimes. This would
be most problematic if they share similar physical characteristics to the virus of interest,
for example, if growing the pleolipovirus His2 on Har. hispanica, a host species known to
produce the endogenous pleolipovirus Harhisp1.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/2/149/s1, Table S1: DNA methyltransferases and restriction endonucleases of Hrr. coriense
Ch2T (DSM 10284). Table S2: VICTOR prediction of taxonomic classification of tailed haloviruses.
Table S3: CRISPR spacer match to Hardycor1. Supplementary Figure S1. Comparison of the genomes
of Halfgib1 and Halfvol3 proviruses. Supplementary Figure S2: Comparison of the genomes of
proviruses Halfvol1 and SS0101-prov1. Supplementary Figure S3: Gene Ortholog Neighbourhoods
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of Halfvol2 aligned using HVO_2248 of Hfx. volcanii DS2 as the reference. Table S4: Sequence reads
spanning the circularized termini of the three chromosomal proviruses (Halfvol1, Halfvol2 and
Halfvol3) of Hfx. volcanii DS2. Supplementary Figure S4: Screenshot of Geneious window showing
Hfx. volcanii Hv90 reads (SRR11888928_Hv90) mapped to the termini of circularised Halfvol3.
Supplementary Figure S5: Screenshot of Geneious window showing Hfx. volcanii Hv1 reads
(SRX8436462) mapped to the termini of circularised Halfvol1. Supplementary Figure S6: Screenshot
of Geneious window showing Hfx. volcanii Hv1 reads (SRX8436462) mapped to Hfx. volcanii DS2,
showing the region around the left end of provirus Halfvol1 in the main chromosome.
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