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Abstract

Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external
stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory
pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly
understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and
across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used
Bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond
precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic Bayesian networks over many repeated
trials, with network similarity of 83.366% within whisker, compared to only 50.3618% across whiskers. These networks
further provided information about whisker identity that was approximately 6 times higher than what was provided by the
latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined
separately. Furthermore, prediction of individual neurons’ precise firing conditioned on knowledge of putative pre-synaptic
cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest
the presence of a temporally precise network coding mechanism that integrates information across neighboring columns
within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by
layer V.
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Introduction

The massive size of neocortical networks, their convergent-

divergent links and their nested feedback loops suggest the vastly

complex information processing mechanism that underlies their

operation. In the rat primary somatosensory (barrel field) cortex

(S1), neurons are known to encode vibrissa movements in their

individual firing patterns [1–3]. It has been suggested that precise

spike timing relative to stimulus onset carries most of the

information about whisker displacement [4], and that this

mechanism aids the animal during active whisking episodes to

recognize external objects. This mechanism is primarily present in

layer IV as this layer receives numerous inputs from the ventral

posterial medial (VPM) thalamus through the lemniscal and

paralemniscal pathways [3,5]. Neurons in infragranular layer V,

on the other hand, exhibit more complex dynamics as they

integrate inputs from multiple barrels within and across hemi-

spheres [6–8]. This integration creates larger receptive fields than

those typically found in layer IV cells [9,10].

Because layer V is a major output layer to multiple structures

such as the posterior medial nucleus, zona incerta, pontine nuclei

and the primary motor cortex [11–13], the frequently observed

stimulus-dependent correlation among layer V cells is believed to

play an important role in providing two streams of information

[14]: a spatial code from ascending pathways representing current

whisker position, and a corticothalamic feedback representing

information about past whisker position [15]. These two streams

are necessary to provide sufficient information to primary motor

cortex for mediating active whisking cycles during adaptive

exploratory behavior of objects, much like the dexterous control

of hand digits by primates [16].

Despite the large body of reports suggesting that individual

layer V neurons encode spatial information, the precise

mapping of this spatial information to temporal coordination

among these neurons during whisker movements remains poorly

understood. In this study, we examined how the precise spike-

by-spike correlation among multiple, locally observed layer V

cells plays a role in encoding whisker movement. We

simultaneously recorded layer V multiple single unit activity in

anesthetized rats during unilateral mechanical stimulation of

individual whiskers. We analyzed the firing patterns of these

units by fitting dynamic Bayesian network (DBN) models to the

spike trains sampled at sub-millisecond time scale [17–20].

Model fit represented the effective connectivity between the cells

and resulted in networks expressing whisker-specific, causal

influence between their individual outputs. We hypothesized

that for a given whisker movement, a stable network

representation would be obtained - as measured by the degree

of structural similarity between individual networks inferred

across multiple repeated trials. In addition, the structure of these
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networks would be less similar to those inferred during

mechanical stimulation of other whiskers.

Our results demonstrate that stable, whisker-specific, local

network structures were present. Moreover, the categorization of

putative pre- and post-synaptic cells in these networks was strongly

consistent with the cells’ post stimulus first spike latency.

Specifically, cells with shorter response latency were mostly pre-

synaptic, while those with longer response latency were mostly

post-synaptic. Furthermore, the inferred networks could be

efficiently used to decode the identity of the deflected whisker

with much higher accuracy compared to the case when the first-

spike latency was the only feature used. Finally, prediction of the

temporally precise firing pattern of putative post-synaptic cells

using pre-synaptic cell activity was achieved with much higher

fidelity than using stimulus onset time only. These findings suggest

that network population coding in the somatosensory cortex

occurs at a much finer temporal and spatial resolution than

previously thought, and that this highly coordinated encoding

mechanism relies on relatively few - but rather strong -

connections between population elements. These results are

consistent with previous reports demonstrating similar mecha-

nisms in other cortical layers and across many species [21–26],

albeit at a much coarser temporal resolution, suggesting that

localized network codes are a universal encoding mechanism for

mediating information flow across many neocortical structures.

Results

Firing Characteristics
We recorded a total of 80 single units from layer V of the barrel

cortex in five anesthetized rats (R1–R5). Microelectrode arrays

with 32 channels were used in each rat to record neural responses

to unilateral stimulation of individual whiskers, one at a time. Each

whisker was stimulated 900 times at a frequency of 1 Hz.

Compared to previous studies that addressed individual neurons’

firing characteristics in which only 50 trials were used [1,4,9], we

used this large number of trials (900 trials) to guarantee a

sufficiently large sample size to infer causal networks. Figure 1

illustrates the discharge patterns of two sample neurons during the

deflection of three whiskers in rat R2. Onset response latencies

were in the range of 10+ ms, corresponding to typical response

patterns of pyramidal cells in layer V of the barrel cortex [27,28].

Neurons showed significant preference to modulate their firing

pattern in response to whisker-specific deflection, with 71.3% of

the recorded units exhibiting a significantly stronger response to

stimulation of a principal whisker during the first 100 ms post

stimulus onset compared to other non-principal whiskers (P,0.05,

two-sample t-test for each pair of whiskers).

It has been reported that the first spike post-stimulus onset in a

barrel column conveys most of the information about the

corresponding whisker deflection [4,29]. Therefore, we used the

post stimulus first-spike latency as a measure of tuning as well as

temporal response fidelity of the recorded neurons. We found that

83.8% of the recorded neurons had a significantly smaller first-

spike latency for a single whisker compared to other whiskers

(P,0.05, two-sample t-test for each pair of whiskers). A fraction of

the recorded units (46.3%) showed preference to the same whisker

in terms of both firing rate and first-spike latency, suggesting the

presence of both rate and temporal coding mechanisms [30].

Neurons with strong response modulation to a given whisker also

exhibited short latency as illustrated in Figure 1C (r = 20.76,

P,0.0001, n = 240, t-test).

To confirm the salience of spike timing in encoding whisker

movements, we computed the mutual information between the

stimulus and each individual response property (namely, the first-

spike latency and the spike count) [4,31]. More information was

conveyed about the stimulus by the first-spike latency than the

spike count as illustrated in Figure 1D (P,0.0001, n = 80, two-

sample t-test). Indeed, 96.25% of the recorded neurons had larger

first-spike latency information than spike count information,

indicating that temporal coding was more pronounced compared

to rate coding (Information in first-spike latency: 0.1960.08 bits,

information in spike count: 0.0560.04 bits, Normalized informa-

tion in first-spike latency: 0.0460.02, normalized information in

spike count: 0.0160.01, mean 6 SD).

Whisker-specific Networks
As illustrated in Figure 1, variability in the temporal

characteristics of the responses across whiskers was observed. We

asked whether this variability could be accounted for using a

network model of the recorded ensemble beyond what is provided

by individual neurons’ response variability. To address this

question, we analyzed the data by fitting a dynamic Bayesian

network (DBN) model [17]. Unlike pair-wise metrics of connec-

tivity such as cross-correlograms or directed coherence [20], a

unique advantage of DBN is its ability to explain away unlikely

causes of firing while taking into account the activity of the entire

observed population. This enables DBN to identify direct - and

possibly nonlinear - coupling between neurons and rule out

possible indirect, or spurious, connections that may be inferred, for

example, due the presence of a common observed input to the

cells.

For each stimulated whisker, one hundred 18-sec long spike

train datasets were formed from the 900 trials of each whisker by

randomly sampling 180 trials out of the 900 trials following a

uniform distribution. DBN fit was then obtained for each of these

datasets. Figure 2A illustrates sample inferred networks for three

distinct whiskers in one rat. To assess the validity of these networks

in the absence of knowledge of the underlying true connectivity,

we examined the connection probability as a function of the

horizontal and vertical separation between electrodes. We

expected that neurons recorded on the same or adjacent electrodes

are more likely to be connected in the inferred networks, consistent

with anatomical and physiological studies in the neocortex

suggesting that connectivity tends to be mostly local for economic

wiring [32–34]. Figure 2B demonstrates that neurons recorded on

the same or on adjacent electrodes have a higher probability of

being connected. Furthermore, the connection probability de-

creased with increasing electrode separation (r = 20.47, P,0.05,

n = 24, t-test).

To examine whether the inferred networks are indeed whisker-

specific, we compared the similarity between the networks inferred

for the same whisker (termed herein within-whisker similarity) to the

similarity between the networks inferred for different whiskers

(termed across-whisker similarity). To do this, principal component

analysis (PCA) was used to construct a feature space of these

networks, where each point in that space corresponded to one

network as illustrated in Figure 3A [35]. We quantified the

similarity between a pair of networks as (1 – the normalized

distance between their corresponding projections in the PCA

network space). Distance normalization ensured that the maxi-

mum possible pair-wise distance measure in the network feature

space did not exceed ‘1’. As illustrated by Figure 3B, networks

inferred for the same whisker were significantly more similar

(closer in the feature space) compared to those inferred for other

whiskers (83.366% within whisker, 50.3618% across whiskers,

P,1e-6, two-sample t-test). This suggests that the inferred

networks are whisker-specific, and that temporal coordination

Network Coding in the Somatosensory Cortex
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among the observed neurons bore a signature of the deflected

whisker identity.

We next examined whether the overlap between the datasets

extracted for the same whisker (2064% overlap between any

given pair of datasets) may have resulted in a statistical bias

towards the within-whisker similarity measures. We estimated that

bias by creating multiple surrogate datasets for each population.

Each surrogate dataset consisted of 900 trials, 300 trials from each

whisker. One hundred 18-sec long datasets were then extracted

from each surrogate dataset after shuffling in the same way as the

original 100 datasets/whisker were extracted. This shuffling

procedure destroyed whisker-specific features within each dataset

but maintained the same amount of overlap (Figure S3).

Therefore, any similarity within each surrogate dataset that

exceeds similarity across surrogate datasets would only result from

the overlap between the datasets within each surrogate. We found

the bias of within-whisker similarity to be 1.863% (Figure S3). In

addition, the projection of the networks inferred from the

surrogate data clustered around the origin in the network space

as seen in Figure 3A. This demonstrates that the networks inferred

from the shuffled data represented pure noise and confirmed that

the networks inferred from the original data were whisker-specific

(distance from the origin for the original data: 1.8360.9, distance

from the origin for the surrogate data: 0.7560.5, P = , two-sample

t-test).

We then examined the amount of information conveyed by the

networks about the stimulus and compared it to those conveyed by

single individual neuron responses. Averaged across subjects,

information of 0.2860.08 (Un-normalized: 1.460.3 bits) was

obtained from the original data compared to only 0.0960.07

(Un-normalized: 0.2860.28 bits) from the shuffled data. The latter

could also be used as an estimate of the bias resulting from the

overlap between within-whisker datasets (Figure 3C). Therefore,

after correcting for the bias, the inferred whisker-specific networks

Figure 1. Firing characteristics of the recorded neurons. Two sample neurons: (A) Neuron 2a and (B) Neuron 10a from rat R2 response to
stimulation of whiskers C2, D1 and D2. (Top) Whisker displacement. (Middle) Spike raster over multiple repeated trials. (Bottom) Post-stimulus Time
Histogram (PSTH) with 0.5ms bin size. Neuron 2a shows stronger and faster response to whisker C2 than other whiskers while Neuron 10a shows a
slightly stronger and faster response to whisker D1. (C) Peak PSTH counts of each neuron for each whisker versus its mean first-spike latency (n = 240).
Each dot corresponds to the response of a single neuron to a single whisker. (D) Normalized mutual information between spike count/first-spike
latency and whisker identity. Each dot corresponds to one neuron. Black diagonal line represents equal mutual information (n = 80).
doi:10.1371/journal.pone.0021649.g001
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convey an average net normalized information of ,0.2.

Compared to individual neurons’ response information, we found

network information to be approximately 6 times the information

provided by the first-spike latency and 13 times the information

provided by the spike count. This suggests that the network code

provides orders of magnitude more information about the stimulus

compared to rate and temporal codes combined.

Within each of the networks inferred, some neurons exhibited

strong participation in subnetworks. Here we sought to infer

how much information about the stimulus was conveyed in each

neuron subnetwork compared to its individual response

characteristics. This was done by, first, extracting the subnet-

work where each neuron was an actual element, and second,

computing the principal components (PCs) of these subnetworks

as illustrated in the example of Figure 4A. Individual neurons’

subnetworks conveyed more information about the stimulus

than individual responses (first-spike latency and spike count),

albeit at a reduced precision compared to the entire network

case as illustrated in Figure 4B (Normalized information for

original data: 0.1560.06, shuffled data: 0.0860.02, P = 0, two-

sample t-test; Un-normalized information for original data:

0.8260.3 bits, shuffled data: 0.460.2 bits, P = 0, two-sample t-

test). Moreover, 78.6% and 94.3% of the neurons conveyed

more information through their subnetworks than their

individual first-spike latency and spike count, respectively, as

can be seen in Figure 4C. This suggests that the network code

provides better stimulus discrimination than rate and temporal

codes at the local subnetwork level as well as the global

population level.

The significant amount of information conveyed by the network

suggests that decoding whisker identity based on network features

would be more accurate. For each test dataset, the identity of the

deflected whisker was decoded as the whisker whose inferred

network had the highest similarity to the network inferred from the

training dataset (using a leave-one-out cross-validation method).

Overall, decoding accuracy reached 97.663% across subjects

(1464 of 1500 datasets were classified correctly), compared to only

79.7612% when the response latency of each neuron was used as

a feature for decoding, whereas using a majority voting method using

all neurons reached an accuracy of 87.7613%.

Figure 2. Sample whisker-specific networks. (A) DBN networks inferred from one population (Rat R2) for 3 individually stimulated whiskers: C2,
D1 and D2. Undirected links indicate bidirectional connections. Network of each whisker was inferred from a dataset of length 18 sec (180 trials x
100 ms). (B) Connection probability in the DBNs as a function of the horizontal and vertical separations between the electrodes on which neurons
were recorded. The number of connections inferred at each distance was normalized by the corresponding total number of possible connections.
doi:10.1371/journal.pone.0021649.g002
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Relating Network Properties to Individual Neuronal
Responses

From the causal DBN fit, neurons could be categorized as

putative pre- and post-synaptic cells. To examine whether this

categorization is consistent with individual neuron response

properties, we first examined whether the direction of an inferred

connection between a given pair of neurons is consistent with the

sign of the difference between their mean first-spike latencies. As

Figure 5A illustrates, we found that for 93.3% of the inferred

unidirectional connections, neurons categorized as pre-synaptic

cells had smaller latencies than neurons categorized as post-

synaptic cells.

Neurons could also be categorized as sources and sinks, based

on the number of outgoing (fan-out) and incoming (fan-in)

connections in the DBN fit, respectively. We tested this

categorization by finding the relationship between the ratio of

the number of outgoing to incoming connections for each neuron,

termed the source index, and the response latency. Figure 5B

illustrates the source index as a function of the first-spike latency.

This index decays exponentially with the mean first-spike latency

(Time constant = 20.67, r2 = 0.53, n = 240, t-test). Neurons with

relatively large number of outgoing connections constituted central

hubs in the network, thereby acting as ‘‘source’’ nodes (as can be

seen in Figure 2A). Neurons with high source index were found to

convey more information about the stimulus than neurons with

low source index as seen in Figure 5C (r = .61, P,1e-8, n = 80, t-

test). The identity of these source neurons was again whisker–

specific (for e.g., neuron 2b for whisker C2, neuron 16b for whisker

D1, and neuron 17b for whisker D2) and was highly correlated

with short response latency. On the other hand, neurons with large

response latency were observed to have more incoming connec-

tions, thereby acting as ‘‘sink’’ nodes. One way to interpret these

observations is that neurons with short response latency receive

information about whisker deflection before neurons with larger

response latency. This suggests that few, strongly connected hub

neurons are key players in orchestrating the local population

response to the stimulus.

Cross-correlogram Comparison
The cross-correlogram is a classical method to identify

functional connectivity between cells over very short time scales

(,5 ms) [32,36]. Cross-correlogram analysis of our data revealed

some similarity - but also some substantial differences - compared

to the DBN analysis. In particular, Figure 6A shows the

Figure 3. Networks similarity within- and across-whiskers. (A) Network feature space of rat R2 for 3 different whiskers (C2, D2 and D1) and a
shuffled dataset. Each dot corresponds to the projection of one network onto a 2-dimension principal components (PC1 and PC2) feature space.
Insets: Sample networks from the 3 whiskers. Black edges represent common connections with the top left sample network (whisker C2). (B) Similarity
between networks inferred for the same whisker and between networks inferred for different whiskers averaged across subjects (mean 6 SD).
Similarity for a given pair of networks was quantified as 1 – the normalized distance between the projections of the pair in the principal component
space. Within whisker similarity was corrected for the bias resulting from the overlap in the data (estimated from the shuffled data). The figure
indicates that the within-whisker networks cluster more closely compared to across-whisker networks. *P,1e-6, two-sample t-test. (C) Normalized
mutual information between each of the networks inferred from the original and shuffled data, and the stimulus averaged across subjects (mean 6
SD). *P,0.001, two-sample t-test.
doi:10.1371/journal.pone.0021649.g003
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connection probability calculated from cross-correlogram analysis

as a function of the difference between post and pre-synaptic

neuron latencies. Contrary to the DBN result in Figure 5A, the

probability of inferring a connection from small latency neurons to

large latency neurons was not significantly higher than inferring a

connection in the opposite direction (Cross-correlogram: 50.1%,

DBN: 93.3%). Similar to Figure 5B, Figure 6B shows a negative

correlation between the source index and response latency but less

significant than what was obtained using DBN analysis (Cross-

correlogram: time constant = 20.23, r2 = 0.04, n = 240; DBN:

time constant = 20.67, r2 = 0.53, n = 240). The cross-correlogram

analysis, however, revealed some inconsistency with individual

neuron response analysis. In particular, more connections were

observed to be inconsistent with the response latency of individual

neurons, suggesting they represent spurious connections. From a

statistical standpoint, this was not surprising because, in contrast to

DBN, the cross-correlogram method – by virtue of the fact that it

is a pair-wise measure – does not explain away unlikely causes of

correlation. To demonstrate that this is indeed the case, consider a

simple example of 3 neurons A, B and C forming a chain, where

ARB and BRC but no connection exists between A and C. A

pair-wise measure such as the cross-correlogram would infer the

direct connection ARC. In the case of the common input A

driving both B and C, the cross-correlogram would detect the

spurious connections BRC or CRB. We quantified the ability of

the DBN method to infer direct causal influence in the 3-neuron

chain case as well as the common input case and compared it to

the cross-correlogram method. As shown in Figure 6C, we found

that the cross-correlogram inferred a significantly higher number

of spurious connections compared to DBN (P,0.001, two-sample

t-test). On average, the cross-correlogram inferred 36.2% more

connections than DBN for the 3-neuron chain case, and 64.4%

more connections for the common input case. These results

suggest the limited ability of the cross-correlogram in inferring

effective connectivity between simultaneously observed neurons.

Network Model-based Prediction of Single Neuron Firing
Prediction of neuron firing is a well-established method to

measure a model’s goodness of fit. We therefore examined the

ability of the inferred networks to predict the firing of individual

neurons. The probability of firing of each neuron at any given time

point was estimated based on the firing history of the neuron’s pre-

synaptic connections as determined by the network structure for a

given whisker dataset and stimulus onset. Predicted spike trains

were obtained by comparing the probability of firing to a variable

threshold (see Materials and Methods) and computing the

percentage of times the spikes in the predicted spike train matched

the original spike train (True positives) and the percentage of times

they did not match (False positives) for each threshold value [37].

We then compared the Receiver Operating Characteristics (ROC)

Figure 4. Individual neuron subnetwork information. (A) Network feature space of one sample neuron (Neuron 16b of rat R2) for 3 different
whiskers (C2, D1 and D2). Each dot corresponds to the projection of one network onto a 2-dimension principal components (PC1 and PC2) feature
space. (B) Normalized information in the individual neurons’ networks inferred for the shuffled data versus the original data (mean 6 SD). * P = 0, two-
sample t-test. (C) Normalized information in first-spike latency and spike count versus information in the networks of each neuron. Each dot
corresponds to one neuron. Black diagonal line represents equal information. Network information was corrected for any statistical bias by
subtracting the network information computed for each neuron from the shuffled data in (B).
doi:10.1371/journal.pone.0021649.g004
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obtained using DBN fit to those obtained using another known

statistical model – the Generalized Linear Model (GLM) [38] -

conditioned on pre-synaptic cell history and stimulus. GLMs have

been shown to fit spike train data in a number of brain structures [37–

40]. Figure 7A demonstrates sample ROC curves of two cells. As can

be seen, the predictive power of DBN conditioned on the pre-

synaptic cells’ history as well as the stimulus onset was the highest,

suggesting that network model fit using DBN was more accurate.

To quantify the predictive power for each neuron, we used the

area under the ROC curve (AUC) [37]. An AUC of 0 indicates a

prediction that is similar to chance level, while an AUC of 1

indicates perfect prediction, with a highly deterministic condi-

tioned response. Figure 7B shows a comparison between the

predictive power of different models. DBN predictive power

conditioned on the history of pre-synaptic cell firing and the

stimulus onset time was significantly higher than that obtained

conditioned on the stimulus onset time only (stimulus only:

0.260.24, DBN pre-synaptic cells’ history and stimulus:

0.5860.16, P = 0, two-sample t-test). The predictive power of

the DBN was slightly higher than that of the GLM (GLM:

0.5360.16, P,0.001, n = 240, two-sample t-test) as illustrated in

Figure 7C. DBN predictive power was inversely proportional to

the variability in response latency as seen in Figure 7D (r = 20.56,

P,1e-20, n = 240, t-test). Thus, better overall prediction was

obtained for cells with small variance in the response temporal

precision compared to cells with high variance. For this group of

cells, DBN prediction was better than GLM as shown in Figure 7E

(r = 20.26, P,0.001, n = 240, t-test).

Discussion

Neural coding theories in the sensory neocortex posit that fast

integration of sensory information is crucial to the organism’s

ability to guide motor actions. In the rat somatosensory cortex,

previous studies have consistently demonstrated that putative

pyramidal neurons in layer IV receiving input from trigeminal

nuclei through VPM thalamus showed the prevalence of temporal

coding over rate and correlation coding [4,9,30,41,42]. Whether

temporal coding at the population level provides sufficient

information to subserve the rapid sensorimotor integration

mechanisms needed to perform active whisking remained poorly

understood.

Here, we examined the dynamics of spike timing correlation

between local, simultaneously observed neurons in layer V in

response to unilateral whisker stimulation. We showed that rapid

network dynamics between these neurons, as determined by the

stable, whisker-specific dynamic Bayesian networks, provided

evidence of a synergistic code that mediates information flow.

Furthermore, we were able to demonstrate that the effective

connectivity revealed by the structure of these networks provided

more information about the stimulus than what was provided by

both temporal and rate codes of each neuron analyzed

individually. In particular, we showed that the decoding

performance of these networks was ,18% higher compared to

that of the first-spike latency, and that the inferred connections

were important in predicting individual neurons’ firing patterns.

This agrees with previous studies that addressed similar questions

Figure 5. Network properties and individual neuronal responses. (A) Histogram of the difference between the mean first-spike latency of the
post-synaptic cells and the pre-synaptic cells for each inferred connection. Only unidirectional connections were counted in the histogram. Red bars
indicate the fraction of connections consistent with the difference between latencies while blue bars indicate connections that are not. (B) Ratio
between the number of outgoing connections and incoming connections for each neuron (source index) as a function of its mean first-spike latency
for each whisker. Each dot corresponds to one neuron for a given whisker (n = 240). Z-scores of the mean first-spike latency and the source index are
reported on the X-axis and the Y-axis, respectively. Gray curve indicates decaying exponential fit. (C) Information in the networks of each neuron as a
function of the source index averaged across whiskers (n = 80). Each dot corresponds to the standardized z-scores of one neuron. Gray line indicates
regression line.
doi:10.1371/journal.pone.0021649.g005

Network Coding in the Somatosensory Cortex

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21649



in other brain areas [39,43,44], albeit at a much coarser temporal

and spatial resolution.

It is widely accepted that complex, possibly nonlinear, response

characteristics occurring at the population level such as those

described here are more pronounced in higher cortical areas such

as the prefrontal cortex, or subcortical areas such as the

hippocampus and the thalamus [32,45,46]. These characteristics

have been also hypothesized to underlie the fast oscillatory

patterns observed throughout many cortical layers [47,48]. These

patterns are known to originate in the cortex and do not require

rhythmic drives from the thalamus, as demonstrated by direct

electrical stimulation studies [16,49]. Here we demonstrated that

the origin of these dynamics may be rooted in the precise temporal

coordination among layer V neurons, possibly to subserve the

integration of multiple information processing streams needed to

mediate sensorimotor transformations by areas innervated by layer

V, and in particular the motor cortex. Whether confirming that

the connectivity inferred in this study represents actual anatomical

connectivity between the cells was not possible with our recording

or analysis methods. Nevertheless, there is substantial evidence in

the literature indicating that local anatomical connectivity in

sensory cortices is predominantly present [50,51], and our results

provide strong support of these findings.

A plausible interpretation of our findings would be that since

layer V is a major output of the barrel cortex to other brain areas

such as the thalamus, the motor cortex and the pontine nuclei

[11], information has to be rapidly integrated across cortical

columns to regulate the whisking behavior needed to discriminate

between different objects that come in contact with the whiskers

[15]. Thus, these high-level functions might require a gain-

modulation mechanism that is dynamically shaped by a variable

number of participating neurons coordinating their information-

bearing signals to represent stimulus attributes that cannot be

provided by single units responding individually to their principal

whiskers. Our results therefore suggest a strong account for a

synergistic coding mechanism in layer V that may reflect stimulus-

dependent states of the observed population. While these findings

agree with previous reports of multi-whisker integration in layer V

of the barrel cortex at the single cell level [9,11], it provides the

first evidence that this integration occurs at the network level

within millisecond timescales.

It should be noted that modulation of the firing rates of S1

neurons in response to whisker deflection is known to be relatively

weaker in the sleep state (here under anesthesia) than in the awake

state, while response latencies are more elongated [52–54].

Response to adjacent (non-principal) whiskers drops significantly

in the sleep state compared to the awake state, suggesting less

integration across neighboring barrels [10]. Therefore, we expect

that stronger across-whisker integration in the awake state would

be manifested by an increase in the across-barrel connectivity

compared to the sleep state. In addition, the elevated firing rate of

neurons recorded in the awake state is expected to enhance the

statistical significance of the results and may provide a sharper

estimate of networks with less overlap across whisker representa-

tions.

Studies of individual neuron responses to multi-whisker

deflection suggest that single-whisker responses are superimposed,

but not necessarily linearly [55–57]. It remains to be investigated,

Figure 6. Comparison with networks inferred using cross-correlograms. (A) Histogram of the difference between the mean first-spike
latency of the post-synaptic neurons and the pre-synaptic neurons for each connection inferred using the cross-correlogram technique. Only
unidirectional connections were counted in the histogram. Red bars indicate the fraction of connections consistent with the difference between
latencies while blue bars indicate connections that are not. (B) Ratio between the number of outgoing connections and incoming connections for
each neuron (source index) as a function of its mean first-spike latency for each whisker. Each dot corresponds to one neuron for a given whisker
(n = 240). Z-scores of the mean first-spike latency and the source index are reported on the X-axis and the Y-axis, respectively. Gray curve indicates
decaying exponential fit. (C) Fraction of possible chain effect-induced connections and common input-induced connections inferred by cross-
correlogram and DBN (mean 6 SD). * P,0.001, two-sample t-test.
doi:10.1371/journal.pone.0021649.g006
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however, whether network responses to multi-whisker movements

could be similarly represented as a superposition of the

corresponding individual whisker-specific networks. Evidence in

the literature suggest that supralinear summation of AMPA-

mediated EPSPs and an increase in recurrent inhibition caused

by incremental recruitment of inhibitory interneurons may have

significant effect on the sensitivity and dynamic range of

recurrent S1 circuits [58,59]. It would be critical therefore to

identify the neuron type in the inferred network graphs to

ascertain that superposition of responses takes place. In addition,

studying intra- and trans-laminar circuitry would be needed to

assess how any disproportionate increase in inhibition with

increase in excitation – for example, when multiple whiskers

move simultaneously - is represented in the network graphs. We

nonetheless expect that the net outcome of the network responses

to multi-whisker movements should conform to a sparse network

coding dynamics, consistent with numerous studies in other

sensory areas. Such sparse code is important to maintain a time

scale-dependent correlated activity that varies with the relative

distance between neural elements [25].

It is noteworthy that the recurrent nature of cortical circuits,

particularly those present in layer V, makes it especially difficult

for pair-wise connectivity measures such as cross-correlograms to

differentiate between direct and indirect coupling, such as in a

neuronal chain, or when a common input is present. The DBN

approach overcomes these limitations, as it integrates immediate

evidence with prior information (long-term knowledge) and uses

this process to explain away unlikely causes of firing [17]. In

addition, DBN does not assume a specific model of the firing

probability for the observed neurons.

Figure 7. Predicting single neuron firing. (A) ROC curves of sample neuron 2b in response to whisker C2 deflection (left) and neuron 17b in
response to whisker D2 deflection (right) in rat R2. Predicted spike trains were obtained using the pre-synaptic cells’ history inferred by DBN and
stimulus onset time, pre-synaptic cells’ history inferred by the GLM and stimulus onset time, and the stimulus onset time only. Each curve was
computed from tenfold cross-validation datasets. (B) Predictive power comparison across all rats for multiple models (mean 6 SD). * P,0.001, two-
sample t-test. (C) GLM predictive power versus that obtained using DBN and stimulus onset time. Black diagonal line represents equal prediction
(n = ). (D) Predictive power obtained using DBN and stimulus as a function of the variability in mean first-spike latency. (E) Difference between
predictive power for each neuron obtained using DBN and stimulus and that obtained using GLM as a function of the variability in mean first-spike
latency. Each dot corresponds to one neuron for a given whisker (n = 240). Gray lines in (D) and (E) indicate regression lines.
doi:10.1371/journal.pone.0021649.g007
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Finally, it is important to bring our findings in perspective with

two related hypotheses, namely cell-assemblies and synfire chains

[60,61]. Integration across neighboring columns as demonstrated

by our analysis seems to support the cell assembly hypothesis,

given the active participation of the observed neurons in whisker-

specific networks. Participation of neurons in transient assemblies

that are task/stimulus-dependent have been hypothesized to occur

in multiple brain areas [32,62,63]. This implies that each

postsynaptic neuron in the transient assembly reads patterns of

firing of its pre-synaptic peers within temporal integration

windows with possibly variable lengths. This is particularly

interesting, in part because cell assemblies that reflect different

degrees of synchrony between their elements have been hypoth-

esized to correlate with presumed ‘top-down’ processing of sensory

information [45,64]. Herein, our findings suggest that similar

mechanisms occur during bottom-up processing where sensory

information is propagated to upstream cortical networks, and that

coordination among the cells at millisecond timescale is a more

wide spread phenomenon than previously thought.

Materials and Methods

Ethics Statement
All procedures involving animals were approved by the

Michigan State University Institutional Animal Care and Use

Committee (IACUC) (Animal Use Forms number 07/07-102-00

and 05/10-054-00).

Barrel Cortex Recording
Five adult female Sprague Dawley rats weighing ,300 g were

used in this study (Rats R1–R5). Animals were anesthetized using

a cocktail of ketamine and xylazine (75 and 5 mg/kg injected

intrapertoneally, respectively). The left somatosensory cortex was

exposed (4 x 4 mm craniotomy, 0–4 mm posterior and 4–8 mm

lateral to bregma). A 32-channel microelectrode silicon array

(NeuroNexus Technologies, Ann Arbor, MI, USA) with 4 shanks,

8 recording sites/shank, 400 mm shank separation and 100 mm

electrode separation within shank was advanced into the barrel

field in 100 mm steps. Acquired signals were amplified and band-

pass filtered in the range 300–5000 Hz and sampled at 25 KHz.

Stimulus-driven activity was recorded at depths of 1100–1500 mm

corresponding to layer V of the barrel cortex. Subjects were

perfused at the end of the experiments using 0.1 M phosphate-

buffered saline and 4% paraformaldehyde. Coronal sections

(50 mm) were cut and sections were Nissl-stained. The laminar

depth of the arrays was confirmed to be in layer V by examining

either the length of the electrode tracks or electrolytic lesions

created by passing 4 mA current for 5 sec (Figure S1).

Prior to vibrissae stimulation, whiskers were all trimmed to

6 mm length. For each rat, 3 whiskers were selected for

mechanical stimulation that resulted in maximal modulation of

the firing rate based on the observed neuronal response to manual

deflection (Whiskers C2, C3 and D2 for R1; C2, D2 and D1 for

R2; C1, D1 and D2 for R3; B2, B3 and B4 for R4; B1, B2 and B3

for R5). The selected whiskers were deflected one at a time by

inserting each whisker into a capillary tube glued to a piezoelectric

bimorph (Piezo Systems, Cambridge, MA, USA). Each whisker

was horizontally deflected 900 times with a displacement of 80 mm

for 100 ms (rise time and fall time were each set to 1 ms) at 1 Hz

frequency [4,65].

Spikes in multiple single unit activity were detected and sorted

using NeuroQuest; a MATLAB toolbox for neural data processing

and analysis [66]. Spikes presence was confirmed if the raw

waveform surpassed a threshold set at 3 times the noise standard

deviation. Due to the observed overlap in the recorded spikes in

the data, a short spike length of 0.5 ms was used for spike sorting

(0.25 ms pre threshold crossing and 0.25 ms post threshold

crossing). Our analysis appeared not to be affected by the spike

length (Figure S2). Spikes were aligned at their trough. Principal

Component Analysis (PCA) was applied to the detected spikes, and

the first 2 principal components were used as features for spike

sorting. An average population size of 1667.8 single units/rat was

recorded (12 units for R1, 27 for R2, 21 for R3, 8 for R4 and 12

for R5). Spike trains were binned at D= 0.5 ms. Quality of the

spike sorting was assessed using inter-spike interval histogram (ISI)

to ensure that no spikes with inter-spike intervals of less than

1.5 ms were classified as belonging to the same unit. Neurons were

indexed by channel number (1–32) and unit number (a, b, c, etc

…).

Single Unit Analysis

For each neuron, Post-stimulus Time Histograms (PSTHs) were

computed as the average firing across trials for each stimulated

whisker with 0.5 ms bin size within a window of 100 ms post

stimulus onset. The peak PSTH count for a given neuron for each

whisker was then extracted. The mean first-spike latency Liw of

each neuron i for a given whisker w was computed as[4,29]

Liw~
1

Tw

XTw

tw~1

ttw
i 1ð Þ ð1Þ

where Tw is the total number of trials for whisker w and ttw

i is a

vector of the spike times of neuron i on trial tw relative to stimulus

onset.

We quantified the amount of information present in the

individual neuron and population response property, namely the

first-spike latency, spike count and network graph representation,

about the deflected whisker identity using mutual information

[4,31]. For a given neuron i, the mutual information between its

response property Xi and the stimulus W (in our case the whisker

identity) was computed as

I Xi; Wð Þ~
X

xi

X
w

Pr xi,wð Þ log
Pr xi,wð Þ

Pr xið ÞPr wð Þ

� �
ð2Þ

where Xi corresponds to the time stamp of the first spike of neuron

i within 100 ms of the stimulus onset in the case of first-spike

latency, Xi corresponds to the total number of spikes fired by

neuron i during the same time interval in the case of spike count,

and Xi corresponds to the subnetwork of neuron i in the case of

network representation as detailed later. The more distinct the

response distribution of a given neuron to different whiskers is, the

higher the mutual information, and thus, the higher the

information it conveys about the identity of the deflected whisker.

To normalize I(Xi;W) between 0 and 1, we divided equation (2) by

the joint entropy H(Xi,W).

Dynamic Bayesian Networks Analysis
Dynamic Bayesian Networks (DBNs) are graphical models used

to fit spike train data. In these models, a directed acyclic graph

(DAG) [18], denoted by G, and a set of conditional probabilities,

denoted by P, represent the statistical dependence between the

simultaneously observed spike trains (r1, r2,…, rn), and are used to

represent the network B as B = ,G, P.. Each graph G consists of a

set of nodes V and edges E. Each node in V, denoted by vi(t),
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corresponds to the spike train of neuron i at time t, where ri(t) = 1

represents a ‘spike’, and ri(t) = 0 represents ‘no spike’. Each

directed edge in E, denoted by vi(t1)R vj(t2), indicates that rj(t2) is

conditionally dependent on ri(t1).

The state of each variable ri(t) in a DBN is determined only by

its putative pre-synaptic cells’ history, denoted rp(i)(1:t-1), and is

independent of the state of any other cell. Thus, the probability

Pr r1 tð Þ,r2 tð Þ,:::,rn tð Þ r 1 : t{1ð Þjð Þ can be expressed in terms of

the conditional probabilities Pr(ri(t)|rp(i)(1:t-1)) as

Pr r1 tð Þ,r2 tð Þ,:::,rn tð Þ r 1 : t{1ð Þjð Þ

~P
n

i~1
Pr ri tð Þ rp ið Þ

�� 1 : t{1ð Þ
� �

:
ð3Þ

Learning DBN structure from the data can be achieved by

searching for the structure G* that maximizes the posterior density

of the network structure G for a given dataset D, denoted Pr(G|D),

expressed using Bayes’ rule as

Pr G Djð Þ~ Pr D Gjð ÞPr Gð Þ
Pr Dð Þ ð4Þ

where Pr(D|G) is the likelihood of the data D given the structure G,

Pr(G) is the structure prior, and Pr(D) is the probability of the

observed data. Assuming a uniform distribution for Pr(G) (i.e. no

prior information about the structures) and given that Pr(D) is

independent of the choice of G, G* can be found by maximizing

Pr(D|G). A closed form for Pr(D|G) can be obtained under

Dirichlet distributed priors [67]. A search is then carried out

through the space of all possible structures to find the model with

maximum likelihood.

To infer whisker-specific networks, we used the Bayesian

Network Inference with Java Objects (BANJO) toolbox [19] with

simulated annealing search algorithm [68]. For each deflected

whisker, spike trains within 100 ms of each stimulus onset were

considered as one trial. A total of 100 datasets, 18 sec each, for

each whisker were extracted from the recorded 900 trials/whisker,

where each dataset was formed by concatenating 180 trials that

were randomly chosen with a uniform distribution from the 900

trials. This results in an overlap between any given pair of datasets

that follows a binomial distribution with a mean overlap of 20%

and a standard deviation of 4% (Figure S3). The spike trains of

each dataset were analyzed using DBN with Markov lags in the

range [1,10] bins ([0.5, 5] ms). A Markov lag range of [1,5] bins

([0.5, 2.5] ms) was found to be the best range for all datasets based

on calculations of an influence score that measures the degree of

influence each pre-synaptic cell has on post-synaptic cells [17,69].

In case a connection was inferred at more than one Markov lag,

only the largest lag was considered. The maximum number of pre-

synaptic cells for each cell was set to 10.

Network Similarity and Network Information
To quantify the similarity between the inferred networks, we

first represented each inferred network as an n 6 n binary

adjacency matrix A, where n is the total number of neurons in the

network. Each element A(i, j) takes the value ‘1’ if there is a

connection from neuron i to neuron j and ‘0’ if there is no

connection between the corresponding neurons. For a given

population of n neurons, K deflected whiskers and M datasets per

whisker, all the adjacency matrices of the inferred networks were

vectorized and stacked together into one KM 6 n2 matrix.

Principal component analysis (PCA) was then applied to this

matrix to extract significant features from the inferred networks by

projecting the adjacency matrices into a p-dimension network

space, where p#n2, that accounts for most of the variance in the

networks [35]. The similarity R(Al, Am) between a pair of adjacency

matrices Al and Am was defined as

R Al ,Amð Þ~1{ ql{qmk k ð5Þ

where ql and qm are the projections of Al and Am in the p-dimension

network space, respectively, and ||.|| is the Euclidean distance

(lp-norm) between the two projections. The network space was

normalized such that the maximum possible distance between any

pair of projections is 1. The number of principal components used

p was set to 2. The average across-whiskers similarity �RRAcross and

the average within-whisker similarity �RRWithin for a given popula-

tion were therefore defined as

�RRAcross~
2

K K{1ð Þ
X
w1

X
w2=w1

�RR w1,w2ð Þ,

�RRWithin~
1

K

X
w

�RR w,wð Þ
ð6Þ

where the average similarity between the networks inferred for a

given pair of whiskers w1 and w2, �RR w1,w2ð Þ, and within a given

whisker w, �RR w,wð Þ, were defined as

�RR w1,w2ð Þ~ 2

M2

X
l

X
m

R A
w1
l ,A

w2
m

� �

�RR w,wð Þ~ 2

M M{1ð Þ
X

l

X
m=l

R Aw
l ,Aw

m

� � ð7Þ

Similar to the expression given in equation (2), the mutual

information between the network projection Q and the stimulus W

was computed as

I Q; Wð Þ~
X

q

X
w

Pr q,wð Þ log
Pr q,wð Þ

Pr qð ÞPr wð Þ

� �
ð8Þ

where the probabilities used in equation (8) were computed from

the 2-dimensional network space after discretizing it into

10610 bins. For the mutual information measure of individual

neurons’ subnetworks, Q corresponds to the projection of the

subnetworks of each neuron onto the network space. The

normalized I(Q;W) was computed by dividing equation (8) by the

joint entropy H(Q,W). It is noteworthy that the estimated

probabilities, and so the computed mutual information, vary with

the discretization bin size. Our results, however, did not seem to

be affected by the choice of the bin size (Figure S4).

In order to estimate any bias in �RR w,wð Þ and I(Q;W) that results

from the overlap in the datasets of each whisker, surrogate datasets

were created from the original data such that each surrogate

contains trials from all whiskers that has the same degree of

overlap as the original datasets (Figure S3). Thus, within a

surrogate, any excess similarity between the networks inferred for

the datasets extracted from it would only result from the overlap
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between these datasets and not from the stimulus. To form the

shuffled datasets, the 900 trials recorded for each whisker were first

split into 3 different groups, 300 trials each. One group was then

selected from each whisker and concatenated with 1 group from

each of the other 2 whiskers forming a 900 trial shuffled surrogate

(For example: group 1 of whisker 1, group 1 of whisker 2 and

group 1 of whisker 3 form one shuffled surrogate; group 2 of

whisker 1, group 2 of whisker 2 and group 2 of whisker 3 form

another shuffled surrogate, … etc). For each subject, 3 shuffled

surrogates, 900 trials each, were formed. A total of 100 datasets, 18

sec each, were then extracted from each shuffled surrogate by

concatenating 180 trials that were randomly sampled from the 900

trials following a uniform distribution. Therefore, these datasets

were not whisker-specific and thus any similarity between the

networks inferred within the same shuffled surrogate that is larger

than that across surrogates would only result from the overlap

between the datasets extracted from the same surrogate. Similarly,

any non-zero mutual information between the networks inferred

for the shuffled surrogates and the identity of these surrogates

would also result from the overlap between the datasets extracted

from the same surrogate. We used the difference between the

within-surrogate similarity and the across-surrogates similarity as

an estimate of the bias in the within-whisker similarity of the

original data that results from the overlap. We also used the

mutual information computed for the shuffled datasets as an

estimate of the bias resulting from the overlap.

Decoding Whisker Identity
We used a leave-one-out cross-validation approach to test the

ability to decode the identity of the deflected whisker using the

inferred networks [70]. The network obtained for each dataset of a

given whisker was compared to the other networks inferred for the

same whisker (M - 1 networks) and the other whiskers (M(K-1)

networks). The identity of the deflected whisker w* for a given test

dataset was computed as

w �~ arg max
w

1

Z

XZ

z~1

R A,Aw
z

� �
ð9Þ

where Z = M when w ? w* or Z = M21 when w = w* (to exclude

the test dataset network from the similarity comparison).

Therefore, w* is the whisker whose inferred networks (templates)

result in maximum similarity with the test data fit A.

Decoding based on the response latency of individual neurons

for a given test dataset was obtained as follows: we first computed

the mean first-spike latency for each neuron from all datasets of all

whiskers excluding the test dataset (training datasets). The mean

first-spike latency for each neuron in the test dataset was computed

and compared to that obtained from the training datasets.

Whiskers whose training datasets for each cell had the least absolute

latency difference were identified as the ones being stimulated.

Single-cell decoding accuracy was then computed as the

percentage of test datasets for which the decoded whisker identity

matched the actual whisker. The overall decoding accuracy was

computed by averaging across cells. For comparison, we also

computed the decoding accuracy using a majority-voting rule in

which whisker identity was determined as the one with the

majority of cells having the least absolute latency difference

between training and test datasets.

Cross-correlogram Analysis
For the sake of comparison, we computed the standard cross-

correlogram approach to assess potential causal influence between

pairs of neurons with bin size of 0.5 ms and range [25, 5] ms [36].

Ten jittered versions of each of the datasets analyzed using DBN

were formed in which each spike was randomly displaced over a

uniform interval in the range [210, 10] ms around the original

spike time. A peak or trough (indicating excitation or inhibition,

respectively) in the cross-correlogram for a given neuron pair in

the original dataset was determined to represent a connection if it

crossed a confidence level computed from the jittered datasets.

The upper and lower limits of the confidence level were computed

from the maximum and minimum counts of the jittered cross-

correlograms, respectively, with an acceptance level of 0.99 [32].

Predicting Single Neuron Firing from Putative
Pre-synaptic Peers

The firing probability of each neuron was estimated using the

firing history (5 bins or 2.5 ms) of pre-synaptic cells determined

from the networks inferred for each whisker and the stimulus. The

conditional firing probability of a given neuron i at time t was

estimated as

Pr ri tð Þ~1 rj t{ lij{5
� �

D : t{lijD
� �� �

j[p ið Þ

��� ,S t{Liw{5D : t{Liwð Þ
	 


~
Pr ri tð Þ~1, rj t{ lij{5

� �
D : t{lijD

� �� �
j[p ið Þ,S t{Liw{5D : t{Liwð Þ

	 

Pr rj t{ lij{5

� �
D : t{lijD

� �� �
j[p ið Þ,S t{Liw{5D : t{Liwð Þ

	 
 ð10Þ

where p(i) is the set of pre-synaptic neurons inferred for whisker w,

lij is the Markov lag at which a connection from neuron j to neuron

i was inferred, S(t) is a binary vector with a nonzero entry of ‘1’

only at the stimulus onset and 0 otherwise, and Liw is the mean

first-spike latency computed in equation (1). Using ten-fold cross-

validation, 10 training datasets (72 sec duration each) were

extracted from each 90 sec whisker dataset by sliding a 72 sec

window with 5 sec steps. The joint probabilities on the right hand

side of equation (10) were computed from each training dataset

using kernel density estimation with a normal function kernel and

a bandwidth of 0.001 [71]. The probabilities estimated from each

training dataset were used to predict the firing of each neuron in

the remaining 18 sec test dataset. When conditioned on the

stimulus only, equation (10) can be re-written as

Pr ri tð Þ~1 S t{Liw{5D : t{Liwð Þjð Þ

~
Pr ri tð Þ~1,S t{Liw{5D : t{Liwð Þð Þ

Pr S t{Liw{5D : t{Liwð Þð Þ :
ð11Þ

The probability estimates were then smoothed by applying a

moving average filter with a window of 15 ms. Predicted spike

trains were computed for test datasets (10 datasets/whisker, 18 sec

each) using the smoothed estimates for threshold values in the

range [0, 1] with a step of 0.001. At each time point, the original

spike trains were used in the prediction. True and false positive

rates were computed from the predicted spike trains for each

threshold. Receiver Operating Characteristic (ROC) curves were

constructed from the true and false positive rates for each cell for a

given whisker. The area under the ROC curve was used as a

measure of the predictive power as 26 (Area under ROC – 0.5)

[37].

We compared the predictive power using the DBN method to

that obtained using Generalized Linear Models (GLMs) [38].

GLM expresses the firing probability of a neuron i as
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Pr ri tð Þ~1 rj t{ lij{5
� �

D : t{lijD
� �� �

Vj=i

��� ,S t{Liwð Þ
	 


~ exp
X
j=i

X5

m~1

aij mDð Þrj t{mDð Þz
X5

m~1

aiw mDð ÞS t{Liw{mDð Þ
 !

D
ð12Þ

where aij models the coupling filters between neurons i and j and

aiw models the stimulus filter. The history interval was set to 5 bins

(2.5 ms) similar to the DBN analysis. The coupling and stimulus

filters were estimated using the same training datasets for the

DBNs using iterative reweighted least squares (IRLS). These filters

were then used to compute the firing probability of each neuron at

each time point of the test datasets. Spike train predictions were

computed by comparing the estimated firing probability to

threshold values in the range [0, 1]. ROC curves were constructed

and the predictive power was also computed for each neuron for a

given whisker.

Supporting Information

Figure S1 Nissl stained coronal section (50 mm) in rat
R5. This rat was chronically implanted over 35 days. Dashed curve

indicates the original shape of the section that was damaged during

the removal of the implant. Black arrowhead points to an electrolytic

lesion mark of the deepest recording site on one of the shanks of the

multi-electrode array. The depth of the lesion mark (,1250 mm) is

consistent with the depth recorded using the micromanipulator

during the surgery and corresponds to layer Vb of the barrel cortex

(1.1 mm posterior and 5.2 mm lateral to bregma).

(TIF)

Figure S2 Variability in spike length and bias. Using a

spike length of 1 ms during spike sorting and a spike train bin width

of 1 ms for rat R5 did not bias the results. (A) Similarity between

networks inferred for the same whisker (left) and networks inferred

for different whiskers (right) for the same population (mean 6 SD).

* P,0.001, two-sample t-test. Similar to Figure 3B, more similarity

is observed between within-whisker networks compared to across-

whisker networks. (B) Histogram of the difference between the mean

first-spike latency of the post-synaptic cells and the pre-synaptic cells

for each inferred connection. Only unidirectional connections were

counted in the histogram. Red bars indicate the fraction of

connections consistent with the difference between the latencies

while blue bars indicate connections that are not. The majority of

inferred connections (85.8%) were from neurons with smaller

absolute latencies to neurons with larger absolute latencies similar to

Figure 5A. (C) The ratio between the number of outgoing

connections and incoming connections for each neuron (source

index) as a function of its mean first-spike latency for each whisker.

Z-scores of the mean first-spike latency and the source index are

reported on the X-axis and the Y-axis, respectively. Gray curve

indicates decaying exponential fit. The source index decays

exponentially with the mean first-spike latency (Time constant

= 20.7, r2 = 0.04, n = 36) similar to Figure 5B.

(TIF)

Figure S3 Overlap in the original and shuffled datasets.
(A) Distribution of the amount of overlap between any pair of

datasets for (Right) the original data and (Left) the shuffled data.

Blue curve indicates a binomial distribution fit with parameters

p = 0.2 and n = 180. Both figures indicate that both the original

and the shuffled data have the same degree of overlap, where any

given pair of datasets would have an overlap of 2064%. (B)

Network feature space of the shuffled datasets extracted from rat

R2 data. Each dot corresponds to the projection of one network

onto a 2-dimensional principal components (PC1 and PC2) feature

space. (C) Similarity between networks inferred for the same

shuffled dataset and between networks inferred for different

shuffled datasets averaged across subjects (mean 6 SD). Similarity

for a given pair of networks was quantified as 1 – the distance

between the projections of the two networks in the principal

component feature space.

(TIF)

Figure S4 Network information in the original data is
consistently higher than that in the shuffled data,
independent of the bin size. (A) Normalized network

information in the original and the shuffled data as a function of

the bin size used to estimate the mutual information averaged

across the 5 subjects (mean 6 SD). (B) Normalized information in

the network of individual neurons computed from the original and

the shuffled data as a function of the bin size used to estimate the

mutual information, averaged across 80 neurons (mean 6 SD).

(TIF)
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