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Background: Pressure support ventilation (PSV) is a standard method for non-invasive home ventilation. A bench study was
designed to compare the effectiveness of patient-ventilator inspiratory termination synchronization with au-
tomated and conventional triggering in various respiratory mechanics models.

Material/Methods: Two ventilators, the Respironics V60 and Curative Flexo ST 30, connected to a Hans Rudolph Series 1101 lung
simulator, were evaluated using settings that simulate lung mechanics in patients with chronic obstructive pul-
monary disease (COPD), acute respiratory distress syndrome (ARDS), or normal lungs. Ventilators were oper-
ated with automated (Auto-Trak) or conventional high-, moderate-, and low-sensitivity flow-cycling software
algorithms, 5 cmH,0 or 15 cmH,0 pressure support, 5 cmH,0 positive end-expiratory pressure (PEEP), and an
air leak of 25-28 L/min.

Results: Both ventilators adapted to the system leak without requiring adjustment of triggering settings. In all simulat-
ed lung conditions, automated cycling resulted in shorter triggering delay times (<100 ms) and lower trigger-
ing pressure-time product (PTPt) values. Tidal volumes (V,) increased with lower conventional cycling sensitiv-
ity level. In the COPD model, automated cycling had higher leak volumes and shorter cycling delay times than
in conventional cycling. Asynchronous events were rare. Inspiratory time (Tinsp), peak expiratory flow (PEF),
and cycling off delay time (Cdelay) increased as a result of reduction in conventional cycling sensitivity level.
In the ARDS and normal adult lung models, premature cycling was frequent at the high-sensitive cycling level.

Conclusions: Overall, the Auto-Trak protocol showed better patient-machine cycling synchronization than conventional trig-
gering. This was evident by shorter triggering time delays and lower PTPt.
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Background

Noninvasive pressure support ventilation (PSV), delivered via a
nose- or a face-mask, is widely used because it reduces patient
work of breathing (WOB) [1-3]. This is critical for patients with
impaired lung mechanics resulting from lung diseases such as
COPD or ARDS. The effectiveness of PSV depends on the abili-
ty of the ventilator to adjust breath-by-breath inspiratory flow
to match the patient’s inspiratory demand. Juban et al. report-
ed that some COPD patients recruit their expiratory muscles to
terminate inspiration when the ventilator was still inflating the
lungs [4]. However, Chiumello et al. observed that the breath-
ing rate and tidal volume could be modified by regulating the
flow-cycling criteria in patients recovering from acute lung in-
jury (ALI) [5]. Breathing rate, tidal volume, and inspiratory time
depend on the level of pressure support (PS) and the individu-
al patient’s lung mechanical properties (impedance and mus-
cle effort) [6]. Each PSV breath is flow-cycled and termination
criteria can be either a fixed flow value (e.g., 5 L/min), or a per-
centage of the peak inspiratory flow (e.g., 25%) [7], referred
to as conventional cycling. The ability to adjust flow-cycling
criteria to use either conventional or automated regulation
software algorithms is now available in many devices [4,8,9].

Patient-ventilator asynchrony, a misalignment between the
timing of the ventilator cycle and the patient’s respiratory
cycle, is very common during assisted ventilation. High lev-
els of asynchrony may prolong the time required for ventila-
tor support and subsequently result in further complications
and prolonged weaning from mechanical ventilation [10-12].
Approaches to auto-adjust triggering and cycling have been
developed to minimize these problems [13,14]. The aim of
this bench study was to evaluate and compare the effects on
breathing pattern and patient-ventilator cycling synchroniza-
tion between automated cycling and conventional flow-cycling
protocols during PSV.

Material and Methods

Stimulator settings

The stimulator settings used in this study are consistent with
the protocol published by Ferreira et al., with some modifica-
tions [15]. The Series 1101 Lung Simulator (Hans Rudolph Inc.,
Shawnee, KS, USA) is a computerized lung simulator that con-
sists of a piston that moves inside a cylinder. Compliance, resis-
tance, and inspiratory muscle pressure profile (negative pressure
created by the respiratory muscles) may be set by the user. The
simulator was adjusted to simulate a patient or a healthy adult
placed in a semi-reclined position (incline 45°). Three combi-
nations of inspiratory resistance (Rins), expiratory resistance
(Rexp), respiratory compliance (Crs), and breathing rate (BR)
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were set to simulate lung mechanics in a patient with COPD
(Rins=20 cmH,0/L-s™*, Rexp=20 cmH,0/L-s™*, Crs=50 mL/cm-
H,0, BR=15 bpm), a patient with ARDS (Rins=5 cmH,0/L-s?,
Rexp=5 ¢cmH,0/L-s™*, Crs=25 mL/cmH,0, BR=30 bpm), and
normal adult lungs (Rins=5 cmH,0/L-s%, Rexp=5 cmH,0/L-s?,
Crs=100 mL/cmH,0, BR=15 bpm) [16-18]. The inspiratory times
of the 3 types of respiratory mechanics (1.0 s for COPD, 0.8 s
for ARDS, and 1.5 s for normal adult) were chosen to assess
the effect of inspiratory time on triggering and cycling syn-
chronization [19]. Patient inspiratory effort was set at -5 cm-
H,0 in the 3 patterns of respiratory mechanics, and pressure
reduction generated 300 ms after the onset of an occluded
inspiratory effort was —3.6 cmH,0. The simulator incorporates
user-controlled leaks by a plateau exhalation valve (PEV). For
this experiment, the leak flow was maintained at 25-28 L/min
during a peak airway pressure of 20 cmH,0 [20,21]. All mea-
surements were performed at an inspired oxygen fraction of
021 (F0,=0.21).

A mannequin head was used to simulate the patient-mask in-
terface. An endotracheal tubes (ID, 22 mm) inserted through
the mouth was used to direct gas coming from the facemask
to the simulator. A medium-sized oronasal facemask with-
out an exhalation port (BestFit™; Curative Medical Inc., Santa
Clara, CA, USA) was affixed tightly to the head of the manne-
quin with standard straps. A leak of <1-2 L/min was measured
at 20 cmH,0 of positive pressure when the PEV was removed.

Ventilator settings

Two bilevel ventilators were compared using the lung simula-
tor with a system leak: V60 (Respironics; Murrysville, PA, USA)
and Flexo ST 30 (Curative Medical Inc., Santa Clara, CA, USA).
Each ventilator was connected to the lung simulator by a stan-
dard disposable corrugated circuit (length, 2.0 m). All the ven-
tilators were studied with a dry circuit. Humidifiers and heat
and moisture exchangers were removed.

Both of the ventilators were set in PSV mode, as follows: pos-
itive end-expiratory pressure (PEEP), 5 cm H,O; pressure sup-
port (PS) level, 5 cmH,0 (normal adult) and 15 cmH,0 (COPD
and ARDS); back-up respiratory rate, 10 breaths/min; maxi-
mal duration of the inspiratory phase, 4.0 s. The trigger sen-
sitivity was set to be as sensitive as possible while avoiding
auto-triggering. The inspiratory rise time was set to 100 ms.

Data collection

Air leaks generated by the PEV were added sequentially to the
system. Once the baseline pressure had stabilized, at least 5
min was allowed for the ventilator to synchronize with the
simulator. If synchronization did not occur, changes in sensi-
tivity, inspiratory effort, or both were made and recorded. If
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Figure 1. Representative breathing cycles during
Auto-Trak protocols in the 3 models.
(A) Obstructive pattern (COPD). (B)
Restrictive pattern (ARDS). (C) Normal
adult pattern.
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synchronization was not finally achieved, the ventilator was
considered to be unable to provide assisted ventilation at the
level of the leak. In all cases, failure to synchronize resulted
in rapid auto-triggering or an inability to trigger. After stabili-
zation, 10 representative breaths were collected with a sam-
pling interval of 1 min. Offline analysis of each breath was per-
formed by the Series 1101 lung simulator software.

Inspiratory triggering synchronization was assessed using the
triggering delay (Td), the triggering pressure-time product
(PTPY). Inspiratory time included ventilator insufflation time (T,
vent), the time between the beginning of the simulated inspi-
ratory effort and the end of the ventilator’s insufflation, and T,
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simu, the simulated active inspiration time. Cycling delay time
(Cdelay) was measured as the time from the end of the inspi-
ratory effort of the simulator to the moment when the ven-
tilator cycled from inspiration to expiration. A negative value
reflects premature interruption of pressurization (premature
cycling), and a positive value reflects a pressurization time that
exceeds the patient’s inspiratory effort (delayed cycling) [22].

The peak inspiratory flow (PIF), the peak expiratory flow (PEF),
and the inspiratory tidal volume (V, insp) were monitored by
the simulator. The expiratory tidal volume was measured by
the ventilator (V, exp), and the leak volume (V, leak) was cal-
culated from the difference of V. insp and V. exp.
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Table 1. Ventilation and synchronization variables in the COPD patient model with conventional and Auto-Trak protocols ({+s).

Cycling Breathing Td Cdelay Insp. f'low
criteria L i i (ms) (ms) at cycling/
(bpm) PIF (%)
Auto- 882.70 670.50 212.20 15 105.66 65.30 944.90 86.90 88.00 14.51
Trak +14.11 +28.67 +29.06 +0.42 +1.23 +21.64 +13.76 +17.35 +2.65
High 857.10 750.70 106.40 15 83.76 58.88 896.50 48.00 51.30 34.52
+13.60  +26.65**  +27.35** +0.44** +0.49**  £23.81** +15.49* +12.63**  +3.36™
Moderate  879.40 816.00 63.40 15 84.11 65.07 1010.30 57.00 162.40 16.04
+14.43 +15.71%*  +17.48* +1.00** +0.51 +25.14  +22.14** +15.59%**  +2.58
(t=4.190) (t=12.755) (t=17.5726)
(P=0.265) (P=0.195) (P=0.082)
Low 962.60 937.40 25.20 15 83.86 72.81 3399.70 57.00 2522.80 0
+17.99*  +12.17***  £7.16*** +0.76** +0.44***  £63.12%**  +22.14** £55.92***
(t=38.066) (t=22.077) (t=9.083) (t=66.535) (t=117.337) (t=136.319)
(P=0.046) (P=0.001) (P=0.008) (P=0.056) (P<0.0001) (P<0.001)
F 753.090 285326  133.731 = 2435983 585.903 11444.817  8.191 15336.913 320.623
P <0.001 <0.001 <0.001 = <0.001 <0.001 <0.001 <0.001 <0.001

Data are plotted as the mean +SD. * P<0.05 vs. the highest sensitive level of cycling criteria. ** P<0.05 vs. the Auto-Trak protocols.

Table 2. Ventilation and synchronization variables in the ARDS patient model with conventional and Auto-Trak protocols (j+5).

Cycling V. insp V. exp V. leak Breathing PIF PEF i Cdelay Insp. f'low
criteria Eml) (Tml) Eml) rate (L/min)  (L/min) (ms) at cycling/
(bpm) PIF (%)
Auto-Trak  598.20 480.60 117.60 30 133.32 113.55 717.40 66.00 15.00 4.60
+16.30 +14.74 +18.64 +0.83 +1.36 +25.95 +7.75 +0.10 +0.74
High 548.50 491.60 56.90 30 114.21 62.84 467.60 51.00 -231.70 34.12
+14.43** +6.50 +8.39** +0.77** +1.04**  £31.02**  +7.75**  +14.50*  +4.38**
Moderate  591.40 534.90 56.50 30 114.29 90.47 642.00 51.00 -69.20 15.72
+13.13 +5.71%** +7.82** +0.67** +1.02%**  +26.87***  £12.65** +17.40%** +2.39***
(t=15.831) (t=59.969) (t=13.436) (t=22.686) (t=11.662)
(P<0.001) (P<0.001)  (P<0.001) (P<0.001)  (P<0.001)
Low 609.90 557.80 52.10 30 115.29 110.18 715.20 54.00 15.20 4.26
+12.85%** +10.79*** +11.76** +0.54** +1.35* +14.76* +10.49%*  +0.42%* +0.78*
(t=36.884) (t=16.619) (t=136.786) (t=22.791) (t=53.825) (t=21.228)
(P<0.001)  (P<0.001) (P<0.001) (P<0.001) (P<0.001) (P<0.001)
F 371.261 246.624 113.689 = 1734.232 9138.618 284.115 5.231 1054.964 301.606
P <0.001 <0.001 0.465 = 0.02 <0.001 <0.001 0.004 <0.001 <0.001

Data are plotted as the mean +SD. * P<0.05 vs. the highest sensitive level of cycling criteria. ** P<0.05 vs. the Auto-Trak protocols.

Statistical analysis Results

Data are presented as the meanzstandard deviation (SD). The Respironics V60 and Curative Flexo ST 30 ventilators were

Statistical analyses were carried out using the statistical soft- able to adapt to the system leak (25-28 L/min) without requir-
ware package, SPSS version 11.0 (SPSS; Chicago, IL, USA). ing adjustment of the triggering settings. Representative breath-
Comparisons of variables at different cycling sensitivity set- ing cycles with Auto-Track setting in the 3 models are shown
tings were made using the t test. A value of P<0.05 was con- in Figure 1. As shown in Table 1, the V, leak differed under the
sidered as statistically significant. cycling criteria in the COPD model (p<0.001), which was the

highest with the Auto-Trak cycling criteria (212.2+29.06 ml) and
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Table 3. Ventilation and synchronization variables in the normal adult model with conventional and Auto-Trak protocols (j[£5).

Cycling V, insp V., exp V; leak Breraat':mg PEF Tinsp Td Cdelay al:scp.cfil:w/
criteria (ml) (ml) (ml) ) (L/min) (L/min) (ms) (ms) (UD) PI‘I: (%)g
Auto-Trak 930.60 624.80 305.80 15 105.41 58.09 1091.80 48.00 -271.00 15.71
+13.95 +15.39 +14.21 +1.66 +1.16 +24.51 +13.78 +28.28 +1.63
Hich 852.50 527.00 325.50 15 94.54 49.34 878.40 45.00 -496.00 37.62
& +14.6*  +14.45** +16.04** +1.96** +0.87**  +19.02** +15.81 +15.81** +2.88
948.60 595.40 61.65 1122.00 -225.00 15.88
Moderate +15.2*  +10.36***  353.20 15 93.40 +1.17* +24.70* 45.00 +15.89* +2.24*
t=43. =19. +12.74%, +1. =26. t=24. +15. t=38. t=18.
(t=43.617) (t=19.182) +12.74*** 1.90**  (t=26.715) (t=24.713) 15.81  (t=38.325) (t=18.834)
(P<0.001) (P=0.037) (P<0.001) (P<0.001) (P<0.001) (P=0.031)
983.20 620.50 96.92 1455.80 105.10 5.16
Lo +14.96*,**  +24.80* 362.70 15 93.82 +1.05%**  +20.95%* 60.00 +15.82%**  +1.01*
W (t=60.932) (t=11.736) +27.01*** +1.86** (t=110.192) (t=64.537) +20.04 (t=84.994) (t=33.595)
(P<0.001) (P=0.001) (P<0.001) (P<0.001) (P<0.001) (P=0.027)
[ 1378.341  105.894 28.591 = 376.004 5087.795 1132.113 1.872 1586.363  438.261
P <0.001 <0.001 <0.001 - 0.056 <0.001 <0.001 0.152 <0.001 <0.001

Data are plotted as the mean +SD. * P<0.05 vs. the highest sensitive level of cycling criteria. ** P<0.05 vs. the Auto-Trak protocols.

decreased with sensitivity level using conventional triggering
(high: 106.4+27.35, moderate: 63.4+17.48, low: 25.2 v 7.16).
There were few asynchrony events defined as auto-triggering
or ineffective triggering. No significant change in breathing
rate was observed under any of the experimental conditions.

Inspiratory triggering and flow

The Td was <100 ms for the 2 ventilators in all respiratory
mechanics models. For an inspiratory effort of =5 cmH,0, the
PTPt was similar despite the modification of cycling criteria.
Higher values for PIF were found during the Auto-Trak proto-
col than for conventional cycling criteria in COPD and ARDS
models (P<0.05 Tables 1, 2).

Patient ventilator synchrony in automated and
conventional cycling criteria

At 5 and 15 cmH,0 of pressure support, the V, increased at lower
cycling criteria sensitivity levels with conventional PSV settings
in all conditions. In the COPD model, delayed cycling always ex-
isted during both conventional and Auto-Trak protocols. Tinsp,
PEF and Cdelay were also increased as a result of reducing the
sensitivity level of the conventional cycling criteria (Table 1).

In the ARDS model, similar outcomes were observed (Table 2).
Premature cycling was found during conventional protocols
when cycling criteria was preset at the high and moderate lev-
els. Cycling delays only occurred at the lowest sensitivity lev-
el of the conventional cycling criteria (15.0+0.10 ms) and dur-
ing Auto-Trak protocol (15.24+0.42 ms).

In the normal adult model (Table 3), Tinsp was raised from
878.40+19.02 ms to 1455.80+20.95 ms after the cycling crite-
ria was set at the lowest sensitivity level (P<0.05). Premature
cycling was also eliminated and a small delay in cycling
(105.1+15.82) was found. Premature cycling occurred during
PSV with the Auto-Trak system.

Inspiratory flow with cycling criteria

According to the 3 respiratory mechanics models, the value
of the inspiratory flow at the end of inspiration with the high,
moderate, and low sensitivity levels for the cycling criteria dur-
ing conventional protocols were approximately 35% PIF, 15%
PIF, and 5% PIF (Figure 2).

Discussion

During noninvasive positive pressure ventilation, air leak
around the mask is unavoidable, and this can interfere with
patient-ventilator synchrony and aggravate intolerance [23,24].
Asynchronous events include ineffective triggering, double-
triggering, auto-triggering, premature cycling, and delay cy-
cling. Vignaux et al. observed patient-ventilator asynchrony
incidents in 60 patients with acute hypercapnic or non-hyper-
capnic respiratory failure during noninvasive PSV [25]. These
asynchronous events occurred frequently and were severe in
26 patients (43%) [25]. Calderni et al. evaluated the effects on
patient-ventilator synchrony with 2 different expiratory cycling
mechanisms (flow-cycling and time-cycling) in the recovery of
patients with acute lung injury. In the presence of air leak, the
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Figure 2. Comparisons of effectiveness of patient-ventilator inspiratory termination synchronization in the 3 patient models with
conventional and Auto-Trak protocols. (A) Peak inspiratory flow (PIF) values. (B) Peak expiratory flow (PEF). (C) Inspiratory
time (Tinsp) values. (D) Cycling-off delay time (Cdelay). (E) Inspiratory flow at the end of inspiration (expressed as percentage

of PIF).

time-cycling mechanism provided a better patient-machine in-
teraction than the flow-cycling mechanism (25% of PIF) [26].
Nevertheless, Tikioka et al. found that in ARDS or ALl patients
the patient-ventilator interaction could be adjusted by modi-
fying the conventional flow-cycling criteria. Premature cycling
with double-triggering appeared when the flow-cycling crite-
ria sensitivity was set at a high level (>35% of PIF). Delayed
cycling was often observed with the lowest sensitivity flow-
cycling level (1%) [27].

In the present study of simulated obstructive, restrictive, and
normal respiratory mechanics, automated triggering and con-
ventional cycling at different flow sensitivities had significant

effects on patient-ventilator cycling synchrony. Independent
of the cycling criteria, delayed cycling was always observed in
the COPD model. Improved cycling synchrony was found with
high-level cycling criteria, in which the cut-off point for inspi-
ratory flow was about 35% of PIF. However, the selection of
high-level cycling criteria could result in severe premature cy-
cling in restrictive and normal lung conditions. These data sug-
gest that modification of cycling criteria may be able to im-
prove patient-ventilator synchrony.

Optimal patient-ventilator synchrony, especially during non-
invasive ventilation (NIV), can be very difficult to achieve due
to the presence of air leaks. Although several intensive care
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units (ICU) and transport ventilators are now designed spe-
cifically to provide NIV, algorithms, inherent in the design of
a mechanical ventilator, are the most critical element for pro-
viding automated ventilator adjustments to compensate for
leaks [28]. The absence or deficiency of leak compensation
can increase the risk of asynchrony and lead to an increase
in WOB and patient discomfort. Vignaux et al. found that dif-
ferent NIV algorithms provided by ICU ventilators could result
in various cycling patterns. Some of NIV algorithms generat-
ed premature cycling, but others led to delayed cycling [29].
A recent study compared the performance and patient-ven-
tilator synchrony between different kinds of ventilators dur-
ing NIV. By using a lung model that simulated obstructive dis-
ease with spontaneous breathing effort, the authors observed
that auto-triggering and delayed cycling occurred with ICU and
transport ventilators [30]. Dedicated NIV devices that use an
NIV algorithm demonstrated better performance and fewer
asynchrony events [31]. Some dedicated NIV machines, such
as the Respironics BiPAP Vision, required no adjustment of
triggering and cycling sensitivity because it can adapt to air
leaks ranging from 0 to 37 L/min [15]. Poor performance was
observed at the preset PS and PEEP levels in the Respironics
BiPAP Vision and Drager Carina bi-level ventilators when the
leakage was increased to 52 L/min [32].

The algorithm inherent with BiPAP Vision, registered name
“digital Auto-Trak™”, is referred to as a shape signal technique.
This is a pattern of the actual airflow of the patient, offset by
15 L/min and delayed by 300 ms. When the inspiratory flow
of the patient crosses the shape signal, the ventilator termi-
nates inspiration and cycles to exhalation [13,14]. The Auto-
Trak system improves patient-ventilator synchrony by adjust-
ing to changing breathing patterns and dynamic leaks. The
auto-adaptive triggering, cycling, and leak adjustments may
help reduce the time that clinicians spend adjusting thresh-
olds and re-fitting masks.

Previous studies have shown that a triggering delay times
between 100 and 120 ms do not generate adverse clinical
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effects [33,34]. Vasconcelos et al. compared the Auto-Trak soft-
ware algorithm with conventional settings in terms of patient-
ventilator synchrony and discomfort in 12 healthy volunteers
who underwent PSV via an endotracheal tube (6 mm) positioned
with a mouthpiece [35]. The asynchrony index (Al) and discom-
fort scores were not significantly different between the 2 pro-
tocols. However, in the present study, the use of the Auto-Trak
system was associated with a greater triggering delay (169 ms)
in the COPD model and premature cycling in the ARDS mod-
el. No asynchronous events were observed under either con-
dition. The limitations of the Vasconcelos et al. study are that
the tests were performed by an ICU ventilator with convention-
al settings and the performance of the Auto-Trak system was
evaluated with a 6-mm endotracheal tube, not a mask [35].

In the present bench model study, the use of automatic trig-
gering and cycling systems with a facemask demonstrated dif-
ferent inspiratory termination characteristics than the conven-
tional flow-cycling setting used for PSV. However, triggering
delay times were similar and shorter (about 60 ms). The ben-
efit of an automatic cycling setting is better patient-machine
cycling synchronization in patients with respiratory failure,
simplified ventilator management, and fewer errors caused
by individual manipulations.

Conclusions

In conclusion, the use of automatic triggering during PSV has
a better effect on patient-ventilator cycling synchrony, as ev-
ident by shorter triggering time delays and lower PTPt, than
conventional flow-cycling settings in respiratory failure pa-
tients. The advantage of conventional flow-cycling criteria set-
tings was found to be the avoidance of serious asynchronous
events when respiratory mechanics are extremely unstable.
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