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Filip Rázga1, Jaroslav Koča2, Ali Mokdad3 and Jiřı́ Šponer1,*

1Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech
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ABSTRACT

Explicit solvent molecular dynamics (MD) was
used to describe the intrinsic flexibility of the helix
42–44 portion of the 23S rRNA (abbreviated as
Kt-42þrGAC; kink-turn 42 and GTPase-associated
center rRNA). The bottom part of this molecule
consists of alternating rigid and flexible segments.
The first flexible segment (Hinge1) is the highly
anharmonic kink of Kt-42. The second one (Hinge2)
is localized at the junction between helix 42 and
helices 43/44. The rigid segments are the two arms
of helix 42 flanking the kink. The whole molecule
ends up with compact helices 43/44 (Head) which
appear to be modestly compressed towards the
subunit in the Haloarcula marismortui X-ray struc-
ture. Overall, the helix 42–44 rRNA is constructed as
a sophisticated intrinsically flexible anisotropic
molecular limb. The leading flexibility modes
include bending at the hinges and twisting. The
Head shows visible internal conformational plastic-
ity, stemming from an intricate set of base pairing
patterns including dynamical triads and tetrads.
In summary, we demonstrate how rRNA building
blocks with contrasting intrinsic flexibilities can
form larger architectures with highly specific
patterns of preferred low-energy motions and
geometries.

INTRODUCTION

The ribosome is a ribonucleoproteinmachine that catalyzes
protein synthesis (1,2). It consists of a small (30S in
prokaryotes) and a large (50S) subunit (3–5). The ribosome
dynamically interacts with tRNAs, mRNA and translation
factors and shows large-scale dynamical movements (6,7).

There are three tRNA binding sites (A-aminoacyl,
P-peptidyl and E-exit) localized across both subunits (8).
The small subunit binds mRNA, mediates the codon—
anticodon interaction between mRNA and tRNA and is
responsible for proofreading of the codon–anticodon
helix. The peptide bond is formed at the peptidyl
transferase center located at the large subunit. After the
reaction the A- and P-site tRNAs (and mRNA) translo-
cate by one codon to the P- and E- sites. Finally the E-site
deacylated tRNA leaves the ribosome and a new
aminoacyl tRNA binds to the A-site (9,10).
There is a growing number of structural studies of

subunits and the whole ribosome, such as cryo-electron
microscopy (cryo-EM) (8,11–16) and X-ray crystallogra-
phy studies (5,17–20). Cryo-EM (3,21) reveals conforma-
tional changes of particular parts of the ribosome during
different phases of protein synthesis. Coarse-grained
modeling (22,23) also provides crude estimates of the
ribosome dynamics and correlation between motions of
its most flexible parts (e.g. the L1 and L7/L12 stalks).
These methods, however, do not provide atomic resolu-
tion insights. The X-ray studies (4,5) show basically
static structural snapshots and some presumably
flexible regions are often not resolved. Thus, many key
structural and dynamical features of the ribosome
remain unclear.
Translocation involves movement of tRNAs and

mRNA through the central cavity between the subunits
and is accompanied with large movements of the L1
stalk. Recent studies reveal also high mobility of the
L7/L12 stalk (21, 24–27). Translocation is accompanied
with conformational changes coupled by GTP hydrolysis
(25) which is catalyzed by translation factor EF-G
(in bacteria) and triggered by its interaction with the
L7/L12 stalk domain. Translation factor EF-G interacts
with the rRNA portion of GTPase-associated center
(rGAC; helices 43 and 44) known also as the factor
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binding site. This causes EF-G-induced conformational
changes in the ribosome (28–30).
Here we complement the preceding studies of the

L7/L12 stalk dynamics by explicit solvent molecular
dynamics (MD) simulations focused on the rGAC. MD
simulations have often been used to provide qualitative
information about the structure and dynamics of RNA
molecules (31–43). MD simulations can be also used
for fitting the low-resolution cryo-EM maps with the aim
to provide better structural information. For example,
recent study of L11-rGAC complex (i.e. the complete
GAC) (44) focused on A1067 flipping and improved
overlap of fitted MD structures with available cryo-EM
maps. Thus, they found out possible structural candidates
matching the functional L11-rGAC conformations
captured by cryo-EM. It is obvious, that the MD
simulation method is limited by the force field approxima-
tions and the short simulation time scale [for a review see
(45)]. Nevertheless, the simulations are well poised to
capture, e.g. qualitative differences in the basic intrinsic
dynamical flexibility of various RNA segments and motifs
(35–37). Due to the limited simulation time scale, the
simulated rRNA segments remain in the ribosome-like
geometries even for molecules that would unfold in
solution experiments in the absence of the adjacent
ribosomal parts. In simulations, before any unfolding,
the molecule first extensively samples the conformational
space around its ribosome-like geometry (35). Simulations
thus suggest regions of easily accessible conformations
that are available for the motions inside the ribosome.
MD simulation captures also quasiharmonic and anhar-
monic contributions which often are of primary impor-
tance and are not included with methods like normal
mode analysis (NMA) that are based on harmonic
approximation. When qualitatively addressing the RNA
flexibility, the outcome of simulations is less sensitive
to force field approximations compared to majority of
other MD applications often dealing with quite subtle
structural details.
Recently, we have shown that rRNA kink-turns

(K-turn; Kt) (46) show profound elbow-like intrinsic
flexibilities around the ribosome-like geometries, without
disruption of any single structural feature characteristic of
a folded K-turn (47). The K-turn oscillatory dynamics is
pivoting at the A-minor interaction (48) mediating the
contact between the C- and NC-stems, is associated with a
dynamical water insertion and the motion is very
anharmonic (35). Anharmonic structural elements are
well suited to passively mediate large motions due to their
very wide and flat free energy minima. We speculated that
Kt-42 of helix 42 of the large subunit could contribute to
the dynamics of factor binding site (i.e. rGAC) (49) seen in
experiments (6,7,50). Also other studies (38,51–53)
revealed K-turn flexibility. In this work, we show that
the GTPase-associated center rRNA contains a second
flexible region formed by the helix 42—helix 43/44
junction. The direction of preferred motion at this
junction roughly coincides with the direction of the
elbow-like motion of the Kt-42 and both motions
preferably shift the rGAC towards or outwards the body
of the subunit. The two consecutive flexible elements

create a highly versatile RNA limb characterized by a
complex set of bending and twisting essential dynamical
modes. In other words, MD technique shows that
individual rRNA building blocks have contrasting intrin-
sic dynamical predispositions and consecutive rRNA
segments can further create molecular structures with
characteristic patterns of internal flexibilities (intrinsically
preferred low-energy motions). We assume that the basic
physico-chemical properties of the RNA motifs as
characterized by MD method can often be maintained in
the RNA assemblies, and thus are worth to analyze.

MATERIALS AND METHODS

Starting structure

The starting geometry of helices 42–44 of Domain II of
23S rRNA of Haloarcula marismortui was taken from
the X-ray structure of the 50S subunit of H. marismortui
(PDB file 1JJ2) (5). Helix 42 forms the kink-turn motif
(Kt-42) (46) while helices 43 and 44 form the GTPase-
associated center rRNA (rGAC). The whole rRNA system
named as Kt-42þrGAC was simulated as single-stranded
RNA molecule containing 84 nucleotides (nt); residues
1140–1223 using H. marismortui numbering (Figure 1).
The system can be roughly divided into two parts: Kt-42
with the attached stems (residues 1140–1157 and 1210–
1223) and the rGAC (helices 43/44; residues 1158–1209,
Figure 1C). The V-shaped Kt-42 contains the canonical
stem (C-stem), internal loop (Kink) and non-canonical
stem (NC-stem). The rGAC comprises a very complex
pairing pattern described in detail in Figure 1A using the
standard nomenclature (54). The starting structures of
helices 42–44 of 23S rRNA of Escherichia coli were taken
from PDB files 2AW4 and 2AWB (18) (residues 1036–
1119 using E. coli numbering).

Molecular dynamics simulations

Simulations were carried out using the Sander module of
AMBER-6.0 with the Cornell et al. (55) force field (30.5 ns
of standard and 11 ns of control restrained MD—details
available in Supplementary Data). The control MD
simulations of E. coli (2� 10 ns) were carried out using
AMBER-8.0 (56). The RNA molecules were neutralized
by Naþ monovalent cations, initially placed using the
Xleap module of AMBER at the most negative solute
positions. The counterions were displaced away from the
solute to improve sampling [see (49) for justification]
and these starting coordinates are available in
Supplementary Data. Naþ radius was 1.868 Å and well
depth 0.00277 kcal/mol (57). Solute molecules were
solvated by a water box with periodic boundary condi-
tions using �20 000 TIP3P water molecules. Prismatic
water box was added around the rRNA to a depth of
16 Å (H. marismortui) and 17 Å (E. coli). The actual size of
water box was ca. 112� 76� 88 Å3 forH. marismortui and
115� 86� 79 Å3 for E. coli systems. Due to large motion
occurring in the first 5 ns of MD and the length of the
simulated molecule (see ‘Results’ section), we monitored
its position inside the box after every ns of simulation.
No contacts with the periodic image structures occurred in
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the simulations. Equilibration was carried out in the
following way. First, the RNA structures were kept rigid
while only solvent molecules with counterions were
allowed to move. Then the RNA structures were relaxed,
the systems were heated gradually from 50 to 300K and
simulations were initiated under periodic boundary
conditions. A 2 fs time step was used and the PME
(particle mesh Ewald) (58) method was employed to
calculate electrostatic interactions. Structures were visua-
lized using VMD (59). Solute-solvent contacts were
monitored over the entire trajectories using the Carnal
and ptraj modules of AMBER. All cation binding sites
with inner-shell occupancy 440% were analyzed.
Histograms were calculated from the original MD data,
with bin widths 0.1 Å and 1.08.

Bending and displacement of rGAC pivoting at Hinge2
(Figure 1C) was quantified via angle between the rGAC
and the Kt-42 NC-stem, defined using three centers of
mass: the NC-stem of Kt-42 (residues 1152–1157 and
1210–1214), nucleotides involved in base triples forming
the Hinge2 (residues 1158, 1159, 1208, 1209, 1188 and
1189) and the rest of rGAC (residues 1160–1187 and

1190–1207). Twisting and coupled shift of rGAC was
described as virtual torsion angle formed by four centers
of mass. The 1st one contains the C-stem of Kt-42
(residues 1142–1146 and 1217–1221). The 2nd one
contains C¼G pair of the type I A-minor interaction of
Kt-42 (residues 1147 and 1216), the 3rd one contains its
A/G pair (residues 1152 and 1214) and the 4th one
comprises the rest of rGAC (residues 1161–1185 and
1191–1206). Analogous centers of mass were also defined
for the E. coli structure.

Essential dynamics analysis

The essential dynamics analysis [EDA, known also as
principle component analysis and related to quasiharmo-
nic analysis (QHA)] was performed using trjconv, g_covar
and g_anaeig modules of GROMACS (60). EDA filters
out unessential motions (noise) and decomposes the
overall motion into individual modes (directions of
motions), which belong to individual eigenvectors with
particular eigenvalues, derived by diagonalization of the
covariation coordinate matrix from the atomistic MD
trajectory (61,62). EDA, as applied in our study, is more

Figure 1. Kt-42þrGAC rRNA system. (A) Base pairing in the simulated Kt-42þrGAC system (helices 42–44 from the 23S rRNA of H. marismortui)
using standard nomenclature (54). The two flexible regions are marked as rectangles and the individual helices are marked as H42, H43 and H44.
Strand connectivity is not highlighted to keep the figure readable. (B) Secondary structure of the Kt-42þrGAC. (C) Schematic representation of the
Kt-42þrGAC showing its modularity with five consecutive segments (C-stem, Hinge1, NC-stem, Hinge2 and Head) with very distinct intrinsic
mechanical properties and dynamics (see the text). Two flexible Hinges (circles) link three rigid segments (C-stem, NC-stem and Head). Arrows
indicate the direction of preferred motions at both Hinges.
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general compared to related QHA which, after diagonal-
ization, would approximate the free energy surface by
harmonic modes (61,62). EDA thus reflects the full-scale
motion sampled during the simulation including harmo-
nic, quasiharmonic and anharmonic contributions. Never-
theless, the distributions along individual modes
(cf. Supplementary Figure S2) seem to be reasonably
well approximated by gaussian functions which would be
assumed by QHA (63).

Elastic network mode analysis

The NMA, based on the harmonic approximation of
potential energy surface around the minimum energy
conformation, was performed using ElNemo (64) web
server (http://igs-server.cnrs-mrs.fr/elnemo/index.html). It
allows the analytic solution of the equations of motion by
diagonalizing the Hessian matrix. The eigenvectors of this
matrix are the normal modes, and the eigenvalues are the
squares of associated frequencies. The macromolecule
movement can then be represented as a superposition of
normal modes, fluctuating around a minimum energy
conformation (65). Instead of using the atomistic force
field, the potential function is simplified with single-
parameter ‘coarse grained’ Hookean potential (elastic
network mode analysis—ENM) (66). We standardly used
cut-off radius 12 Å, force constant 10N/m and 1 nt as the
block. Note that since the spring constant is arbitrary,
ENM does not predict the absolute values of the
fluctuations.

RESULTS

The Kt-42þrGAC rRNA is formed by alternating
rigid and flexible segments

We carried out 31 ns MD simulation of the Kt-42þrGAC
rRNA of H. marismortui. During the first 5 ns the
molecule gradually changed its initial (X-ray) arrangement
to a new stable geometry. The relaxation changes the
initial position of helices 43/44 by ca. 258 with respect to
helix 42 (Figure 2A). After the initial transition is
completed, the overall RMSD fluctuates in the range of
5–11 Å and 1–5 Å versus the starting and averaged
structures, respectively (Figure S1). This initial structural
transition is pivoting around the junction between helices
42 and 43/44, specifically base triples G1158¼C1209/
A1188 and G1159¼C1208/A1189. We suggest that this
structural transition reflects the relaxation of the system in
the absence of the adjacent ribosomal elements. The initial
relaxation does not lead to any changes in base pairing or
isostericity of the simulated molecule.
The simulated system consists of three rigid segments

(one of them shows breathing, see subsequently) that are
inter-linked by two flexible segments, leading to a double-
elbow intrinsic dynamics (Figure 1C). The first flexible
segment (Hinge1, Figure 1) includes nucleotides
1147–1152 and 1214–1216, i.e. the Kt-42. It shows
anharmonic elbow-like oscillatory dynamics correlated
with insertion of long-residency waters into its A-minor
type I base pair (C1147¼G1216/A1152) between the
C- and NC-stems. The Kt-42 dynamics is described

elsewhere (35,49) while the present article is aimed at
description of the rGAC helices 43/44, the junction
between helices 42 and 43/44 and coupling of all motions.
Hinge2 is localized at the junction between NC-stem of Kt-
42 and helices 43/44 (residues 1158–1160, 1207–1209, 1186
and 1188–1190, Figure 1) and is responsible for the initial
shift of the Head during the first 5 ns (Figure 2A). After
the initial relaxation it shows substantial oscillations
around its averaged geometry, preferably in direction
back towards or further away from the starting structure
but with a smaller amplitude (Figure 2D).

The most rigid segment is the C-stem of Kt-42
(1140–1146 and 1217–1223, with internal RMSD of ca.
1.0 Å). The other rigid segment is the NC-stem arm of
Kt-42 (1153–1157 and 1210–1213) with RMSD
1.7� 0.5 Å. The compact helices 43/44 of the rGAC
(1161–1185 and 1191–1206) do not contribute to
the global motion but show internal breathing
(see subsequently) with internal RMSD 1.9� 0.8 Å.

Essential dynamics analysis confirms presence of two
independent flexible hinges

The EDA finds essential motions occurring during the
simulation (61), disregarding the first 5 ns. The ratio of
EDA eigenvalues of modes 1–4 is ca 1.0: 0.20: 0.18: 0.12
(plots of displacement along the individual eigenmodes are
given in Supplementary Data, Figure S2). The first mode
(ca. 60% of the overall motion) corresponds to the hinge-
like oscillatory global motion of the upper part of the
structure with respect to the C-stem at the base of helix 42
with a range �20 Å (Figure 2B) and pivoting around the
Kt-42 (49). The second mode represents internal breathing
of the compactly folded rGAC not associated with
displacements of distant parts of the simulated system
(Figure 2C). It can be described as reversible expansions
and compactions of the Head within the range of ca. 5 Å
(Figure S3). The third mode (Figure 2D) is oscillation
around the relaxed geometry of the helix 42–helices 43/44
junction in direction of the initial structural rearrange-
ment. Thus, the initial position of the Head in the
H. marismortui crystal structure can be interpreted as a
large amplitude deflection along the EDA mode 3.
Interestingly, this direction roughly coincides with the
preferred direction of the elbow-like motion of the
Kt-42. Thus, the overall flexibility is highly anisotropic,
with both hinges shifting the rGAC either towards or
outwards the body of the subunit. The mode 3 oscillations
produce movement of rGAC on a scale of �10 Å
(displacement of U1170(P)) due to �108 oscillation of
the angle between rGAC and Kt-42’s NC-stem (see
‘Materials and Methods’ section). The fourth mode
represents twisting fluctuations of the rGAC with respect
to the helix 42 (Figure 2E) due to combined twisting
around the NC-stem of Kt-42 and the internal twisting
of Kt-42. Note that although the Kt-42 is a genuine elbow-
like element, it is also associated with non-negligible
twisting components of its low-energy modes, cf.
Figures S10–11 in Razga et al. (35). Mode 4 is associated
with �13 Å range of U1170(P) atom fluctuations and �258
range of fluctuations of the fictive dihedral angle between
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the Head of rGAC and the C-stem of helix 42 (see
subsequently).

Structure and dynamics ofHinge2

The junction between helix 42 and helix 43/44 comprises
the bases localized at the border between the extended
Kt-42 NC-stem and the rGAC, namely base triads
G1158¼C1209/A1188 and G1159¼C1208/A1189 and

tetrad A1207/G1160 . . .G1190/C1186 (Figures 1 and 3).
This Hinge2 represents the pivoting point of the initial
displacement of rGAC. Then it becomes the center of the
directional (anisotropic) oscillations (Figure 2D) of the
angle between the upper part of helix 42 and rGAC.
The intrinsic Hinge2 bendability is not localized as in case
of Kt-42, where the motion is pivoting around a single
H-bond of the A-minor interaction (35). For Hinge2,
the structural dynamics of the A-minor interaction,

Figure 2. Essential dynamics of Kt-42þrGAC rRNA system. Schematic (left) and surface (right) representations of the leading essential dynamics
motions, double arrows indicate oscillations. (A) The initial displacement of the Head stemming from the rearrangement of Hinge2 (purple) observed
during the first 5 ns of simulation and causing the permanent increase of the inter-helical angle by ca 258 (initial geometry in black, final in red).
(B) Anisotropic anharmonic oscillation of rGAC pivoting at Kt-42 (Hinge1) (purple, EDA mode 1). (C) Internal breathing of rGAC (EDA mode 2)
not contributing to the overall motion of rGAC and involving mainly the dynamics of non-canonical base pairs (see Supplementary Data).
(D) Fluctuations of rGAC around Hinge2 (purple, EDA mode 3) characterized as anisotropic oscillatory bending of the duplex containing the upper
part of helix 42 and helix 43. (E) Twisting of rGAC (EDA mode 4) stemming from twisting inherent to Kt-42 (35) and twisting in the Hinge2 region.
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triad and tetrad (see Supplementary Data) are not coupled
with either the initial displacement of rGAC or the
subsequent EDA mode 3 dynamics.
The movement of rGAC (the initial displacement and

the EDA mode 3) correlates with change of major groove
width of the RNA duplex formed by the upper part of
helix 42 and bottom of rGAC. Spontaneous initial
straightening of this rRNA duplex from its bent form
(X-ray) to straight canonical-like form is indicated by
increase of the following inter-phosphate distances:
G1210(P)-A1152(P) from 9.5 Å (X-ray) to 16.0 Å (relaxed
MD), C1209(P)-C1153(P) from 9.2 Å to 19.1 Å, C1208(P)-
A1154(P) from 12.4 Å to 22.9 Å and A1207(P)-G1155(P)
from 11.3 Å to 23.0 Å (Figure S4). The 11 ns restrained
MD simulation confirms (see Supplementary Data)
that motion around Hinge2 is fully independent of the
dynamics of the triads in this region and the initial
displacement of rGAC can be best described as a
spontaneous straightening of an initially bent duplex to
a straight conformation. Additionally, two free MD

simulations of corresponding rRNA segment in E. coli
structures reveal similar initial dynamical behavior of the
Head position. Full details about the complex pairing
patterns and rich local dynamics at Hinge2 are present in
Supplementary Data.

Conservation and isostericity ofHinge2

We compared the sequence, base pairing and
3D-architecture of the Hinge2 region in crystal structures
of large ribosomal subunits of H. marismortui, D. radio-
durans, and E. coli (codes 1JJ2, 1NKW, 2AW4 and
2AWB). We also examined sequence alignments obtained
from the latest release of the European Ribosomal
Database (67) and isostericity analysis was carried out
by Ribostral (68). The data show that the 3D-structure of
this region is universally conserved in all organisms even if
individual nucleotides are not the same. Full details are
given in Supplementary Data.

Twisting motion of the rGAC with respect to helix 42

The X-ray study of 70S E. coli ribosome (18) reveals
modest conformational changes in the position of the
rGAC. The authors concluded that there is a twisting of
the C-stem of Kt-42 with no structural change in the K-
turn itself. However, we suggest that the two X-ray
structures of E. coli (2AW4 and 2AWB) could within the
limits of the resolution equally well reflect the dynamics of
the A-minor interaction of the Kt-42. As shown earlier,
the elbow-like flexibility of Kt-42 (Hinge1) involves also
substantial twisting motions, see Supplementary Data in
Razga et al. (35). Thus, some Kt-42 twisting can easily
occur even without a visible elbow-like bending. The key
inter-atomic distance C1043(O20)-A1048(O20) in the dyna-
mical A-minor type I interaction of the Kt-42 is 2.6 and
3.8 Å in the 2AW4 and 2AWB structures while the
corresponding C1147(O20)-A1152(O20) distance in
H. marismortui structure (1JJ2) is 3.0 Å. The range of
open/closed dynamics of this distance in simulations is
2.6–4.0 Å. The dynamical inter-phosphate distance
C1043(P)-A1048(P) is 13.4 and 14.4 Å in 2AW4 and
2AWB structures. The corresponding C1147(P)-A1152(P)
distance is 14.7 Å in H. marismortui and 13.6–16.7 Å in
simulations. Thus, if these X-ray distances are accurate
enough, they match the typical internal K-turn dynamics
(35). Similarly, the virtual torsion angle describing the
overall helix 42–44 twisting (see ‘Materials and Methods’
Section and Figures S5 and S6) is �598 and �838 in the
2AW4 and 2AWB E. coli structures and �678 in the
H. marismortui crystal structure. MD reveals broad
distribution of this angle with peaks around ca. �658
and �908 (Figure S6), similar to what is seen in the X-ray
structures. In contrast, RMSD of 0.7 Å characterizes the
base of the helix 42 containing the C-stem of Kt-42 for the
two E. coli structures when residues 1036–1041 and
1114–1119 are overlaid. Comparing structures of E. coli
and H. marismortui the helical properties of the base of
helix 42 look different (RMSD¼ 1.15 Å). However, E. coli
sequence contains two non-canonical cis WC/WC base
pairs (A1039/G1116 and A1040/G1115) instead of the
standard base pairs in the H. marismortui. This may

Figure 3. Base tetrad A1207/G1160 . . .G1190/C1186 at the helix
42/rGAC junction. The overall X-ray geometry (A), the trans H/SE
A1207/G1160 base pair with dynamical water insertion (B left), the
trans WC/WC G1190/C1186 base pair assisted either by water or ion
(B right) and the unusual G1190/G1160 base pair (X-ray structure,
C left). A similar A1192/C1182 contact is shown (C right). Extended
analysis of base pairing dynamics is given in Supplementary Data.
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contribute to different helical parameters and mechanical
properties of this region (69), and thus detailed compar-
ison of H. marismortui and E. coli C-stem regions is not
straightforward. We, therefore, tentatively suggest that the
modest X-ray variability of the rGAC positions can be
reasonably explained as a combination of twisting around
NC-stem of Kt-42 and twisting component of Kt-42
dynamics. It resembles the EDA mode 4 analyzed above,
with participation of motion of the Head stemming from
Hinge2.

Breathing of the rGAC

To investigate the substantial internal breathing of rGAC
(helix 43/44, EDA mode 2) we carried out detailed analysis
of the dynamics of all base pairs. The non-canonical
interactions reveal considerable structural dynamics and
primarily contribute to the internal breathing of the rGAC.
Many rGAC non-Watson–Crick interactions are mediated
by complex long-residency hydration sites and we also
identified several sites with a substantial occupation
by monovalent cations. We noticed a dynamical
A1192 . . .C1182 interaction involving base-sugar
A1192(C8)-C1182(O20) H-bond, A1192(C20)-C1182(O2)
and A1192(C30)-C1182(O2) contacts, and some sugar–
sugar contacts (Figures 3C and S7). This interaction is seen
as planar in the crystal structure but prefers a perpendi-
cular orientation of bases in the simulation (Figure S8). An
analogous tertiary contact is also seen in the Hinge2
between G1160 and G1190, with bifurcated H-bonds
between O20 of G1160 and O20 and C8 of G1190. This
interaction remains coplanar in the simulations. This base
pairing pattern does not belong to any characterized types
of base pairs according to Leontis et al. classification
and may represent a new recurrent type of tertiary
interactions. This is supported by structural motif search
in available ribosome structures (70) which in addition
reveals that this type of interaction is frequently found as a
perpendicular contact in the ribosome. Full details about
this interaction and about structural dynamics of all other
interactions in the helix 43/44 area are given in
Supplementary Data.

Length of the stems flanking Kt-42 is conserved

The motion of the two Hinges in the Kt42þrGAC
region is highly anisotropic and actually both hinges
have preferable motions in the direction towards
and outwards the body of the subunit. Variation of
the length in any of the stems of helix 42, on which
the rGAC region is based, would considerably change
the direction of flexibility. This is not likely to occur
if the motions are of biological significance.
We thus investigated the stem lengths of helix 42 in
available sequence alignments (71), to see if they
are conserved throughout evolution. The area studied
corresponds to E. coli numbers 1030–1055 (50 strand)
and 1104–1124 (30 strand). After filtering out repeated
sequences and obvious alignment or sequencing errors,
we ended up with an alignment that includes 34 archaeal,
751 bacterial and 154 eukaryal unique sequences. With the
help of Ribostral (68) we found out that the length of

helix 42 is completely conserved across all three domains.
The only exception was found in about 15% of bacteria
that have the 30 strand longer by 3–5 nt compared to the
remaining sequences. This increase in the 30 strand length
is not complemented by any change in the 50 strand length,
and occurs near the edges of the kink turn internal loop
area (Figure S9). Therefore, the extra nucleotides do not
seem to lengthen the helix, and could be probably bulged
out near the internal loop area without causing any major
change in the overall structure and flexibility.
If we compare the conservation of length of helix 42 to

that of other large ribosomal subunit helices in the three
domains of life, we conclude that helix 42 is among the
�50% most conserved in length (Figure S10). Even more
striking is that when the two organelles, mitochondria and
chloroplasts, are considered, helix 42 is among �30% of
the most length-conserved helices (Figure S10). The two
organelles are under substantially different evolutionary
pressure than members of the three domains of life,
and thus the subunits are smaller in size, with some helices
shortened or even missing. Helix 42 has, therefore, been
suggested to be an integral part of a minimal functional
ribosome (72).

Comparison with coarse-grained normal mode analysis

Coarse-grained methods were used earlier to evaluate
the dynamics of ribosome (22,23). Such calculations
typically perform a normal mode analysis (NMA) within
the elastic network mode (ENM) approximation. ENM
uses a simplified potential to create a network of harmonic
springs that connects atoms or pseudoatoms within a
given cut-off distance. It works well for, e.g. globular
proteins where interatomic interactions are quite homo-
genous. It is less likely to work for something as specific
and non-globular as the stalk elements of ribosome.
We performed the ENM NMA analysis on

Kt-42þrGAC RNA system (starting from the X-ray
structure) using ElNemo (64) web server (http://igs-
server.cnrs-mrs.fr/elnemo/index.html) and analyzed the
four lowest-frequency modes of Kt-42þrGAC. The
NMA (NME) mode 1 with frequency (f) equal to 1 and
collectivity (c) equal to 0.5467 (64) represents the bending
motion with the origin in the Hinge2 area. This motion is
similar to the initial displacement of the Head (observed
during the first 5 ns) or EDA mode 3 (Figure 2A and D).
The mode 2 (f¼ 1.65 and c¼ 0.6994) represents the overall
twisting of the rGAC with respect to the helix 42,
stemming from a combined twisting around the NC-stem
of Kt-42 and the internal twisting of Kt-42, similar to our
EDA mode 4 (Figure 2E). The mode 3 (f¼ 2.15 and
c¼ 0.3350) represents mainly the internal twisting of
Kt-42. The mode 4 (f¼ 3.16 and c¼ 0.1754) shows some
breathing of the Kt-42’s C-stem and is already rather
insignificant. In conclusion, the ENM ElNemo analysis
captures only two out of four dominant motions of the
Kt-42þ rGAC system observed in MD. Most impor-
tantly, the key elbow-like dynamics of the Kt-42 appears
to be missed and also the breathing of the Head
(EDA mode 2) is not observed.
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Another assessment of the applicability of normal mode
type of calculations applied to RNA can be found in the
literature (63) and for additional information see also (73).
Our ENM results are given in Supplementary Data.
In conclusion, the atomistic simulations with explicit
inclusion of solvent followed by EDA have no alternative
for the present system, where we need to describe details of
H-bonding dynamics including the dynamical water
insertion. Further, we deal with a system, which has a
very broad free energy minimum, and thus is anharmonic.

Comment on ions

The present simulations were carried out in presence of a
net-neutralizing set of Naþ ions. This can be justified in
the following way. The non-polarizable pair additive
force field relies on a quite primitive approximation,
representing the ions as simple van der Waals spheres with
atom-centered point charges of þ1 orþ 2. Due to this
crude approximation, the force field is unlikely to exactly
mimic the ‘experimental’ ion conditions and it is quite
justified to run the simulations using the net-neutralizing
set of monovalent ions only. A meaningful description of
divalent cations is fairly outside the applicability of the
force field while sampling of divalent cations in simula-
tions is terribly insufficient. Therefore, inclusion of
divalent ions into nucleic acid simulations may cause
artifacts and basically is not advised. Fortunately, the
simulations are usually too short to exhibit instabilities
stemming from inexact salt conditions. We have shown
recently that the K-turn dynamics is independent of the
type of ions used in simulation (49). Further discussion of
the ion issue can be found in our recent papers (36,45,74).

DISCUSSION

We carried out 31 ns MD simulation on Kt-42þrGAC
rRNA (complete rRNA helices 42–44 including kink turn
42 and GTPase-associated center rRNA), starting from
the X-ray structure of the 50S subunit of H. marismortui
(5). Simulation was supplemented by restrained control
simulation, control simulations of helix 42–44 rRNA of E.
coli X-ray structure, and sequence, isostericity and motif
search analyses. The aim was to highlight the basic
intrinsic dynamical flexibility of this rRNA segment in the
ribosome-like geometry.
The simulation trajectory can be divided into two parts.

During the first 5 ns, we observed a smooth initial
rearrangement which changes the initial position of helices
43/44 by ca. 258 with respect to helix 42 (Figure 2A).
This initial rearrangement brings no visible local changes
in the base pairing and isostericity of the interactions. The
structural transition is roughly pivoting around the
junction between helix 42 and helices 43/44, specifically
around the type II A-minor base triple G1158¼C1209/
A1188 and its neighboring triad G1159¼C1208/A1189.
It can be best described as straightening of rRNA duplex
from its bent geometry (X-ray) to straight, canonical-like
RNA. We suggest that some other component of the
ribosome (this area is substantially disordered in the X-ray
structures) may push the rGAC towards the large subunit.

This simulation in any case clearly indicates that the
junction between helices 42 and 43/44 is easily deformable.
After the initial transition is completed, the simulated
molecule shows no further structural development,
but exhibits profound stochastic fluctuations revealing
that this rRNA region possesses a unique internal
flexibility.

The Kt-42þrGAC rRNA consists of three rather rigid
(one of them internally ‘breathing’) segments linked by
two flexible ones. The basically rigid segments are the
C- and NC-stems of Kt-42 and the compact helices 43/44
of the rGAC. The first flexible segment (Hinge1) is the
Kink region localized between C- and NC-stem of Kt-42.
The Kt-42 shows anharmonic elbow-like oscillatory
dynamics correlated with insertion of long-residency
waters into its A-minor type I base pair between the
C- and NC-stems (49). Hinge2 is localized at the junction
between the NC-stem of Kt-42 and helices 43/44
(Figure 1). Bendability of this region is, however, not
localized, in contrast to Kt-42. Hinge2 is responsible for
the initial shift of theHead (helices 43 and 44) (Figure 2A).
After the initial relaxation it shows substantial oscillations
around its averaged geometry, preferably in direction
towards or away from the starting structure but with
smaller amplitude.

The intrinsic flexibility of the helix 42–44 23S rRNA
segment is visualized by EDA filtering out unessential
motions and noise. EDA (disregarding the initial dis-
placement of the Head of the GTPase-associated center
rRNA) reveals several leading motions. The first EDA
mode represents ca. 60% of the overall motion and
corresponds to the hinge-like oscillatory global motion
of the GTPase-associated center rRNA with respect to the
C-stem at the base of helix 42, stemming from the Kt-42.
There are three additional modes that substantially
contribute to the dynamics. The second mode represents
internal breathing of the compactly folded rGAC. The
third mode represents oscillations (around the relaxed
geometry) of the rGAC at the junction between helix
42 and helices 43/44 (Figure 2D) in direction of the initial
structural rearrangement. Thus, the initial position of the
Head in the crystal structure can be interpreted as a large
amplitude deflection along the EDA mode 3. Interestingly,
this direction also coincides with the preferred direction of
the elbow-like motion of the Kt-42. The Hinge2 dynamics
does not stem from any specific oscillation of base pairs,
triples or quadruples but correlates with changes of major
groove width of the RNA duplex formed by the upper
part of helix 42 and helix 43. The fourth mode represents
twisting fluctuations of rGAC with respect to the helix
42 stemming from combined twisting around the NC-stem
of Kt-42 and the internal twisting of Kt-42.

The simulation results were compared with NMA using
the ENM approximation that is commonly used for
coarse-grained modeling. As expected, the leading EDA
modes 1–2 were missed by the ENM approach. Note that
these include mainly the elbow-like dynamics of the Kt-42.
The present system therefore requires full-scale atomistic
explicit solvent simulation to be properly described.

The dynamics should be interpreted in the following
way. The free MD simulation samples spontaneously the
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available space of low-energy geometries of the studied
system. In other words all geometries that are significantly
populated in such simulation are intrinsically very easily
accessible for the studied RNA. The helix 42–44 region is
thus an internally highly flexible (deformable) and
anisotropic RNA modulus with preferred motions
towards and outwards the 50S subunit, localized at two
hinges and complemented by twisting motions.

The motion of the two Hinges in the Kt42þrGAC
region is highly anisotropic. Variation of the length of
stems of helix 42 would considerably change the direction
of flexibility. This is not likely to occur if the motions are
of biological significance. Indeed, we found that helix 42
length is entirely conserved and when mitochondria
and chloroplasts are considered, helix 42 is among
�30% of the most length-conserved helices (Figure S10).
Although there are many conceivable structural and
functional constraints that would require essential
helices to be conserved in length, such as preservation
of local or tertiary interactions (75), it is likely that
helix 42 has the additional constraint of housing two
important hinges whose movement would be asynchro-
nized and re-directed, if helix length is changed. Base
pair substitutions do occur in the helix 42 stems and may
subtly modify the directionality of motions (69). The
entire conservation of the length of both rigid arms
flanking the Kt-42 indicates that the profound anhar-
monic and anisotropic double-elbow flexibility of the
Kt-42þrGAC rRNA segment may be important in tRNA
selection and translocation. For example, it may be
involved in positioning the L7/L12 stalk with respect to
the 50S ribosomal subunit. The flexible rRNA
Kt-42þrGAC segment is in a close contact with the
highly dynamical L7/L12 complex, whose exact position is
yet to be determined. The Kt-42þrGAC rRNA segment
flexibility is very different from the anisotropic spring-like
stiffness of the tRNA (76), since the Kt-42 is a highly
anharmonic element suitable to act as a passive and
adjustable elbow to mediate motions of the surrounding
structural elements.

Analysis of the sequence conservation and isostericity
of the junction between the helix 42 and the rGAC
shows that all observed base substitutions appear to fully
keep conserved isosteric structure of this region. We,
however, made two interesting observations. The second
triple in the junction region (G1159¼C1208/A1189 in
H. marismortui, G1066¼C1115/A1096 in D. radiodurans
and G1055¼C1104/A1085 in E. coli) forms a typical
A-minor interaction in the latter two species. In
H. marismortui, however, the adenine is flipped to syn
and forms a rather unexpected trans Hoogsteen (H)/Sugar
edge (SE) interaction between A1189 and G1159
(Figure S11). Since the overall compactness of the triad
is almost the same for both arrangements, both geometries
are compatible with the sequence analysis. There is a
tertiary contact in the adjacent tetrad between G1160 and
G1190, with bifurcated H-bonds between O20 of G1160
and O20 and C8 of G1190. This is replaced by identical
G . . .A contacts in both bacterial organisms while
sequences belonging to the three domains are GA, AG,
GG and AA. There is an almost identical base pair also in

U1164–A1192/C1182 base triad between A1192 and
C1182 (Figure 3C). This base pairing pattern does not
belong to any characterized types of base pairs (54) and
may represent a new recurrent type of tertiary interactions
in ribosome, as supported by the structural motif search
(70) (Figure S8, Table S1).
The compact region (Head) formed by helices 43 and 44

contains an intricate set of base pairing patterns including
triads and tetrads. Many of these interactions are very
dynamical, conferring a substantial structural plasticity to
the shape of the rGAC. The Head shows visible inflation/
deflation dynamics and also the local RNA structure on
its surface is variable. The structural dynamics of this
region is intimately associated with long-resideny hydra-
tion and cation binding sites (32,35,74). It forms a typical
family C three-way junction with extensive interactions
between the P1 and P3 stems and between J31 and the
shallow groove of P2 (77). The ‘breathing’ described
above originates in the dynamics of the P1/P3 inter-stem
interactions and the bending is localized in the area of
J31/P2 interactions.
The recent crystallographic study of 70S E. coli

ribosome (18) indicates modest conformational changes
in the position of the rGAC in two independent structures
of the ribosome. The structural difference was attributed
to twist of the C-stem region below the Kt-42 at the base
of helix 42. However, we also found a 1.2 Å variability of
the key inter-atomic distance C1043(O20)-A1048(O20) in
the dynamical A-minor type I interaction of the Kt-42
(corresponding to the C1147(O20)-A1152(O20) distance in
H. marismortui structures). This indicates that the crystal
data could also by interpreted assuming the flexibility
of the Kt-42, because its dynamics is pivoting
around this inter-atomic distance. Since the K-turn
low-energy conformational space has non-negligible twist-
ing components, K-turn twisting motions could occur
without any substantial bending, and can be combined
with twisting motions of the Head of the rGAC
(Figure 2E).
In summary, we demonstrate that rRNA building

blocks posse contrasting intrinsic flexibilities (flexibility
signatures) and can be combined to form larger archi-
tectures with complex patterns of preferred low-energy
motions and geometries. MD simulation technique
appears to be particularly suitable to capture the
qualitative differences in intrinsic flexibilities of rRNA
building blocks since it captures atomic resolution
dynamics while the molecules do not unfold on the
simulation time scale away from the ribosomal
geometries. In contrast to, e.g. the NMA method the
MD simulations include the key anharmonic contribu-
tions. We suggest that the basic intrinsic physico-chemical
properties of the RNA motifs can in many cases be
maintained in the RNA assemblies, and thus are worth
to analyze.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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