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Abstract

Purpose

We examined the cardiorespiratory effect of dexmedetomidine, an α2- adrenoceptor/imida-

zoline 1 (I1) receptor agonist, in spontaneously breathing adult rats.

Methods

Male rats (226−301 g, n = 49) under isoflurane anesthesia had their tail vein cannulated for

drug administration and their tail artery cannulated for analysis of mean arterial pressure

(MAP), pulse rate (PR), and arterial blood gases (PaO2, PaCO2, pH). After recovery, one

set of rats received normal saline for control recording and was then divided into three

experimental groups, two receiving dexmedetomidine (5 or 50 μg�kg−1) and one receiving

normal saline (n = 7 per group). Another set of rats was divided into four groups receiving

dexmedetomidine (50 μg�kg−1) followed 5 min later by 0.5 or 1 mg�kg−1 atipamezole (selec-

tive α2-adrenoceptor antagonist) or efaroxan (α2-adrenoceptor/I1 receptor antagonist) (n = 6

or 8 per group). Recordings were performed 15 min after normal saline or dexmedetomidine

administration.

Results

Compared with normal saline, dexmedetomidine (5 and 50 μg�kg−1) decreased respiratory

frequency (fR, p = 0.04 and < 0.01, respectively), PR (both p < 0.01), and PaO2 (p = 0.04

and < 0.01), and increased tidal volume (both p = 0.049). Dexmedetomidine at 5 μg�kg−1 did

not significantly change minute ventilation (V0E) (p = 0.87) or MAP (p = 0.24), whereas dex-

medetomidine at 50 μg�kg−1 significantly decreased V0E (p = 0.03) and increased MAP (p <
0.01). Only dexmedetomidine at 50 μg�kg−1 increased PaCO2 (p < 0.01). Dexmedetomidine

(5 and 50 μg�kg−1) significantly increased blood glucose (p < 0.01), and dexmedetomidine at

50 μg�kg−1 increased hemoglobin (p = 0.04). Supplemental atipamezole or efaroxan admin-

istration similarly prevented the 50 μg�kg−1 dexmedetomidine-related cardiorespiratory

changes.
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Principal conclusion

These results suggest that dexmedetomidine-related hypoventilation and hypertension are

observed simultaneously and occur predominantly through activation of α2-adrenoceptors,

but not I1 receptors, in spontaneously breathing adult rats.

Introduction

Dexmedetomidine provides its sedative and analgesic effects through its stimulant effect on

α2-adrenoceptors. Its use, which was originally restricted to adult patients in intensive care

units during mechanical ventilation [1, 2], has expanded, for example, to patients undergoing

surgical operations (e.g. dental therapy) [3], or to infants and children undergoing nuclear

medicine imaging examination [4]. In the clinical setting, it has been indicated that dexmede-

tomidine preserves ventilation and may be useful in patients with COVID-19 [5], but hyper-

tension, hypotension and bradycardia are major complications limiting its use [2].

Dexmedetomidine is an α2-adrenoceptor/imidazoline 1 (I1) receptor agonist, and it has been

suggested that activation of I1 receptors [6], as well as activation of α2-adrenoceptors [2], inhibits

sympathetic outflow in the central nervous system and causes hypotension and bradycardia.

However, there has been little attention paid to dexmedetomidine-related decrease in minute ven-

tilation (V0E) [7, 8], because dexmedetomidine-related hypotension stimulates ventilation by acti-

vating chemoreceptors [9] and can minimize dexmedetomidine-related respiratory suppression.

Recently, we examined the cardiorespiratory effects of intraperitoneal injection of dexme-

detomidine (50 μg�kg−1) in spontaneously breathing newborn rats (2−5 days old) [10, 11]. Our

findings suggested that, in newborns, dexmedetomidine suppresses respiratory frequency and

heart rate predominantly through α2-adrenoceptor activation [10, 11], whereas mean inspira-

tory flow (VT/TI, where VT is tidal volume and TI is inspiratory time) was stimulated by I1

receptor activation [11]. Hence, to extend our knowledge of respiratory regulation during dex-

medetomidine administration, we examined cardiorespiratory indices in spontaneously

breathing adult rats (8 weeks old), including VT/TI, mean arterial blood pressure (MAP), and

arterial blood gases (ABGs). We also examined whether activation of I1 receptors, together

with activation of α2-adrenoceptors, is involved in dexmedetomidine-related respiratory sup-

pression by using two different antagonists, i.e. atipamezole (selective α2-adrenoceptor antago-

nist) and efaroxan (α2-adrenoceptor/I1 receptor antagonist) [11].

Materials and methods

The experimental protocol was reviewed and approved by the Animal Research Committee of

the Nippon Dental University School of Life Dentistry at Tokyo, Japan (Protocol Approved

Numbers: 18-02-1 and 19–14). The animals were treated in accordance with the Guiding Prin-
ciples for the Care and Use of Animals in the Field of Physiological Sciences (The Physiological

Society of Japan), and we complied with the ARRIVE guidelines (https://journals.plos.org/

plosbiology/article?id=10.1371/journal.pbio.1000412).

All efforts were made to minimize animal suffering and the number of animals used.

Animals

Adult male Wistar rats were obtained from CLEA Japan Inc. (Tokyo, Japan) and maintained in

the Nippon Dental University’s animal center at 22˚C−25˚C under a 12−hour:12−hour dark:light

cycle with ad libitum access to food and water. On the day of the experiment, male rats (8 weeks
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old, 226−301 g; n = 49) were randomly assigned to the experimental groups. In the current study

we used only male rats to exclude possible effects of gender difference on ventilation [12] and

hypotension [13]; we plan a follow-up study with female animals in future.

Drugs

We used the α2-adrenoceptor/I1 receptor agonist dexmedetomidine hydrochloride (Precedex;

Maruishi Pharmaceutical Co., Osaka, Japan), the α2-adrenoceptor antagonist atipamezole

(Antisedan; Orion Co., Farmos Group Ltd., Espoo, Finland), and the α2-adrenoceptor/I1

receptor antagonist efaroxan hydrochloride (Sigma-Aldrich, St. Louis, MO, USA). Dexmede-

tomidine (at 100 μg�mL−1 in normal saline), and atipamezole and efaroxan (each at 2.5

mg�mL−1 in normal saline) were stored in a freezer (−20˚C). In the experiments, a single dose

the drugs (i.e. normal saline or 5 or 50 μg�kg−1 dexmedetomidine, and 0.5 or 1.0 mg�kg−1 atipa-

mezole or efaroxan), was administered at a volume of 0.4−0.5 mL�kg−1 with a 250−μL syringe

(Gastight Syringe; Hamilton Company, Reno, NV, USA).

Surgical preparations

On the day of the experiment, the rats were and anesthetized with 1%−3% isoflurane (Forane

Inhalant Liquid; Abbott Japan Co., Ltd., Tokyo, Japan). Surgical preparations were performed

under a surgical microscope (SZ60; Olympus, Tokyo, Japan). Briefly, local anesthetic (Xylo-

caine 2%; Aspen Japan K.K., Tokyo, Japan) was applied subcutaneously, and two incisions

(each 5−10 mm long) were made in the ventral surface at the proximal end of the animal’s tail.

At each incision, a catheter (24G × 1@, Nipro, Tokyo, Japan, and PE-50, Intramedic, Becton

Dickinson and Company, Sparks, MD, USA) was gently inserted: one into a tail vein to admin-

ister the drug intravenously and one into the tail artery to monitor the pulse rate (PR) and

mean arterial pressure (MAP) and to sample arterial blood for analysis of ABGs (PaO2,

PaCO2, and pH), hemoglobin, hematocrit, electrolytes (Na+, K+, and Ca2+), and glucose. Each

catheter was filled with saline-heparin solution (100 U�mL−1, a total volume of 0.1 mL). The

rat was then given aspoxicillin (Doyle; Sawai Pharmaceutical Co.,Ltd, Osaka, Japan) and an

analgesic (flurbiprofen axetil, 0.25 mg) intravenously, the catheters were fixed, and the incision

was closed with instant adhesive. No bleeding or blood reflux was observed during the prepa-

rations. After returning the rat to its cage, we monitored its behavior carefully. We observed

that all animals recovered consciousness within 5 min and could access water and laboratory

chow by themselves. About 3 hours later, we started the recording.

The animals were placed individually in a loose and flexible custom-made cylindrical con-

tainer made of soft stainless-steel netting, in which the animal was able to roll and move back

and forth. We used that container to avoid the risk of the animal turning back to bite or pull

out the indwelling temperature probe or catheters during the measurements in the chamber

(Fig 1). Chamber and body temperatures (˚C) were monitored by means of fine chromel-alu-

mel thermocouples (Omega Model 871a; Omega Engineering, Stamford, CT, USA). During

the experiment, ambient temperature in the chamber was controlled at 25˚C ± 2˚C with the

help of a circulating water bath (NCB-2510B; Tokyo Rikakikai Co. Ltd, Tokyo, Japan). To

measure body temperature, the probe was inserted about 5 mm into the rectum with the aid of

lidocaine jelly (Xylocaine Jelly; AstraZeneca K.K., Osaka, Japan) and lightly attached to the tail

with a Band-Aid (Johnson & Johnson Services, Inc., New Brunswick, NJ, USA).

Measurement of ventilation

Ventilation was measured by using a barometric technique [14, 15]. Briefly, we put the rat in the

container into a cylindrical acrylic resin chamber (2300 mL) (Fig 1), and continuously delivered
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air through the chamber from the front (i.e. the inlet) to the back (i.e. the outlet) at a steady flow

of 1400 mL�min−1 at STPD (standard temperature and pressure, dry) controlled by an adjustable

flowmeter. To prevent the animal getting wet from urination during the recording, we laid a thick

paper towel (Kim Towel, Nippon Paper Crecia Co., Ltd., Tokyo, Japan) beneath the container.

Gas concentrations were monitored with a calibrated polarographic O2 analyzer and an infrared

CO2 analyzer (Fox Box; Sable Systems International, North Las Vegas, NV, USA). To measure

spontaneous breathing, the chamber inlet and outlet were temporarily closed, and the pressure

oscillations in the recording chamber were monitored with a differential pressure transducer

(DP45 ± 5.6 cm H2O; Validyne Engineering, Northridge, CA, USA) connected to a pre-amplifier

(Model 1253A; San-ei Instruments, Tokyo Japan); these readings were displayed on a computer

screen and recorded. The chamber was sealed for less than 1 min (mean 30 s), and, when it was

reopened, the CO2 concentration at the outflow did not exceed 1%. We analyzed 20 to 50 regular

breaths (mean 41 breaths), excluding spontaneous augmented breaths, to determine respiratory

frequency (fR) and tidal volume (VT), from which we calculated minute ventilation (V0E = fR�VT),

total respiratory duration (TTOT), and inspiratory and expiratory time (TI and TE). The volume

was computed at BTPS (body temperature and pressure, saturated) and normalized by the weight

of the animal in kilograms. The signal was calibrated for volume by injecting a known amount of

air (e.g. 0.5 mL) when blood sampling was terminated at the end of the measurement.

Measurement of pulse rate and mean arterial pressure

The arterial catheter was connected via a three-way stopcock to a liquid-filled pressure trans-

ducer (MLT0699; AD Instruments, Bella Vista, Australia) for the measurement of PR and

Fig 1. Chamber. Schematic diagram showing the experimental setup. O2�CO2 analyzer to measure the concentration of each gas (%) from the outflow; Differential

pressure transducer to measure pressure changes in the chamber; A line, arterial catheter inserted into tail artery; V line, venous catheter inserted into tail vein; Ta and Tb,

temperature probes to measure temperature inside the chamber (Ta) and the animal (Tb).

https://doi.org/10.1371/journal.pone.0262263.g001
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MAP. The zero signal to the transducer was set to correspond to the chest level of the animal.

The output was amplified (Model 2238; San-ei Instruments, Tokyo, Japan) and the signal was

displayed on a computer screen and recorded.

Data storage and analysis

The signals of ventilation, MAP, PR, temperatures, and in-and out-flowing gas concentrations (O2

and CO2) were monitored simultaneously and stored on a personal computer at a sampling fre-

quency of 1 kHz for subsequent data analysis (PowerLab 4/25 and LabChart 8.0; AD Instruments).

Arterial blood analysis (ABGs, electrolytes, glucose, hemoglobin, and

hematocrit)

By using the arterial catheter, a 0.2 mL blood sample was collected anaerobically and immedi-

ately transferred into a disposable cartridge (CG8+; Abbot Japan) designed for the automated

blood analyzer (i-STAT; Abbot Japan), Blood electrolytes (Na+, K+, Ca2+ [mmol�L−1]), blood

glucose (mg�dL−1), hemoglobin (g�dL−1), and hematocrit (%), as well as ABGs (PaO2 and

PaCO2 [mmHg]; pH), were measured by the automated blood analyzer. The values for ABGs

were corrected with respect to body temperature, as proposed by Severinghaus [16]. Any

blood remaining after the analysis was then returned to the animal, with a small amount of

normal saline added to it to minimize loss in blood mass. In all groups, at each recording, the

blood sampling was performed at the end (i.e. approximately 20 min after the administration

of normal saline or dexmedetomidine).

Protocols

The protocols used were based on those of our previous studies on newborn rats [10, 11]. Each

intravenous administration (of normal saline, dexmedetomidine, atipamezole, or efaroxan),

which was followed by flushing with normal saline (0.2 mL, corresponding to the liquid capac-

ity of the venous catheter), was performed gently over a period of 1 min.

Protocol 1: After recovery from anesthesia in the recording chamber, a set of rats (249−300 g,

n = 21) received normal saline for control recording and was then randomly divided into three

groups to receive normal saline (NS), dexmedetomidine (5 μg�kg−1) (DEXMD-5), or dexmedeto-

midine (50 μg�kg−1) (DEXMD-50) (n = 7 in each group) for experimental recording (Fig 2A).

Protocol 2: After recovery from anesthesia in the recording chamber, a set of rats (226−297 g,

n = 28) was randomly divided into four groups to receive 50 μg�kg−1 of dexmedetomidine fol-

lowed 5 min later by 0.5 mg�kg−1 of atipamezole or efaroxan (DEXMD-50+ATI-0.5 or DEXMD-

50+EFA-0.5; n = 8 in each group), or 1.0 mg�kg−1 of atipamezole or efaroxan (DEXMD-50+ATI-

1.0 or DEXMD-50+EFA-1.0) (n = 6 in each group) for experimental recording (Fig 2B). Basically,

0.5 mg�kg−1 of atipamezole [17] or efaroxan [18] was selected to prevent the effect of 50 μg�kg−1 of

dexmedetomidine in rats, in vivo or in vitro, and further examination at a higher dose (i.e. 1.0

mg�kg−1) [10, 11] was added for each drug in this study. In Protocol 2, control recording (i.e. nor-

mal saline administration) was skipped, because intravenous volume loading could be excessive

compared with that in Protocol 1. The summed data (n = 21) obtained at control recording in

Protocol 1 were used as the data for NS in Protocol 2.

Statistical analysis

Values are expressed as means and SD. The sample size for each cardiorespiratory index was

determined by power analysis (α = 0.05 and β = 0.20) based on our previous study on newborn

rats [11]; it was estimated that 6 to 7 animals per group were required.
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For Protocol 1, the significance of differences among the three groups (NS, DEXMD-5, and

DEXMD-50) was evaluated by one-way analysis of variance (ANOVA), and differences

between groups in ANOVA were evaluated by Turkey-Kramer test. For Protocol 2, the

summed data (n = 21) obtained at control recording in Protocol 1 were used as the data for the

NS. The significance of differences among the three groups (NS, DEXMD-50+ATI-0.5, and

DEXMD-50+EFA-0.5; or NS, DEXMD-50+ATI-1.0, and DEXMD-50+EFA-1.0) was evaluated

by one-way analysis of variance (ANOVA), and differences between groups in the ANOVA

were evaluated by Turkey-Kramer test. A p-value of less than 0.05 was considered significant.

Statistical analyses were performed by using BellCurve for Excel (Social Survey Research

Information Co., Ltd., Tokyo, Japan).

Results

Protocol 1

The absolute values obtained at control recording are summarized in Table 1. Normal saline

administration did not result in any difference among the groups, and we considered that all

animals (n = 7 + 7 + 7 = 21) were basically from the same population.

Table 2 summarizes the absolute values obtained at experimental recording. Compared

with the NS, the DEXMD-5 and DEXMD-50 had decreased cardiorespiratory frequencies, i.e.

fR and PR, (fR, p = 0.04 and< 0.01, respectively; PR, both p < 0.01), and increased VT (both

p = 0.049); V0E of DEXMD-5 was not significantly different (p = 0.87), whereas that of

DEXMD-50 was significantly decreased (p = 0.03). In the analysis of breathing pattern, TTOT

in DEXMD-5 was not significantly different (p = 0.34) owing to significant TI prolongation

(p< 0.01) without TE prolongation (p = 0.94), and TTOT in DEXMD-50 was significantly pro-

longed owing to significant TI prolongation with TE prolongation (each p< 0.01). VT/TI of

the DEXMD-5 and DEXMD-50 was not significantly different (p = 0.45 and 0.60, respec-

tively); TI/TTOT of DEXMD-5 was significantly higher (p = 0.02), whereas that of DEXMD-50

was not significantly different (p = 0.20) (Fig 3A). In the analysis of circulation, MAP did not

decrease in DEXMD-5 (p = 0.24), whereas it increased significantly in DEXMD-50 (p< 0.01).

PR was significantly decreased in both DEXMD-5 and DEXMD-50 (both p< 0.01). Analysis

of ABGs revealed that, although PaO2 decreased in both DEXND-5 and DEXMD-50 (p = 0.04

and p< 0.01, respectively), PaCO2 increased (p< 0.01) and pH decreased (p = 0.01) only in

DEXMD-50. Arterial blood glucose increased in both DEXMD-5 and DEXMD-50 (both

p< 0.01), and hemoglobin increased in DEXMD-50 (p = 0.04). In both DEXMD-5 and

DEXMD-50, no significant change was observed in electrolytes, hematocrit, or body

temperature.

Differences between DEXMD-5 and DEXMD-50 were significant in fR, V0E, TE, TI/TTOT,

MAP, and arterial PaCO2, pH, hemoglobin and glucose.

Protocol 2

The absolute values obtained in the DEXMD-50+ATI-0.5 or DEXMD-0.5+EFA-0.5 are sum-

marized in Table 3, and the absolute values obtained in the DEXMD-50+ATI-1.0 and

Fig 2. Protocols. (a) Protocol 1: Three groups of animals were prepared: NS, DEXMD-5, and DEXMD-50 (n = 7 in each group). All groups received only normal

saline for control recording. At the experimental recording, animals received normal saline (NS) or dexmedetomidine (5 or 50 μg�kg−1) (DEXMD-5 and -50).

Recordings were performed at 15 and 20 min after intravenous administration of normal saline or dexmedetomidine. (b) Protocol 2: Four groups of animals were

prepared: DEXMD-50+ATI-0.5, DEXMD50+EFA-0.5, DEXMD-50+ATI-1.0, and DEXMD-50+EFA-1.0. They were respectively administered dexmedetomidine

(50 μg�kg−1) followed 5 min later by 0.5 mg�kg−1 atipamezole (n = 8), 0.5 mg�kg−1 efaroxan (n = 8), 1.0 mg�kg−1 atipamezole (n = 6), or 1.0 mg�kg−1 efaroxan (n = 6),

respectively. Recordings were performed at 15 and 20 min after intravenous administration of dexmedetomidine.

https://doi.org/10.1371/journal.pone.0262263.g002
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DEXMD+EFA-1.0 are summarized in Table 4. In both tables, the summed data obtained at

control recording in Protocol 1 (n = 21) were used as the data for the NS.

As shown in Table 3, most of the results in the DEXMD-50+ATI-0.5 and DEXMD-50

+EFA-0.5 were not significantly different from those in the NS, with the exception of TI

(p = 0.03, only in DEXMD-50+EFA-0.5), PR (both p< 0.01), and arterial blood glucose (both

p< 0.01) (Table 3, Fig 3B and 3C). No significant difference was observed between any

parameter in the DEXMD-50+ATI-0.5 and the DEXMD-50+EFA-0.5.

As shown in Table 4, in DEXMD-50+ATI-1.0 and DEXMD-50+EFA-1.0, fR (both

p< 0.01) and VT/TI (p = 0.02 and 0.03, respectively) were higher than in the NS owing to sig-

nificantly shortened TTOT (both, p = 0.01) and TI (both p< 0.01), respectively (Fig 3D and

3E). In the analysis of circulation, MAP increased (both p< 0.01), whereas PR decreased

(both p< 0.01), compared with those in the NS (Table 4). In addition, arterial blood glucose

increased compared with that in the NS (p = 0.04 and< 0.01, respectively). No significant dif-

ference was observed between any parameter in the DEXMD-50+ATI-1.0 and the DEXMD-50

+EFA-1.0.

Fig 3 graphically shows the respiratory pattern of NS, DEXMD-5, and DEXMD-50 (Proto-

col 1) (Fig 3A) and those of the DEXMD-50+ATI-0.5, DEXMD-50+EFA-0.5, DEXMD-50

+ATI-1.0, or DEXMD-50+EFA-1.0 (Protocol 2) (Fig 3B–3E). In Protocol 1, DEXMD-5 and

Table 1. Absolute values at control recording (Protocol 1).

NS (n = 7) DEXMD-5 (n = 7) DEXMD-50 (n = 7)

mean SD mean SD mean SD

Respiratory indices

fR (breathsmin−1) 125 8 118 9 124 20

VT (mLkg−1) 6.00 1.03 6.50 0.93 5.95 1.06

V0E (mLmin−1kg−1) 749 121 744 93 732 124

TTOT (s) 0.48 0.03 0.49 0.08 0.49 0.06

TI (s) 0.19 0.01 0.20 0.02 0.19 0.02

TE (s) 0.29 0.03 0.33 0.04 0.31 0.03

VT/TI (mLs−1kg−1) 31.2 5.5 33.6 5.5 31.1 5.7

TI/TTOT 0.41 0.03 0.38 0.03 0.40 0.02

Circulatory indices

PR (beatsmin−1) 378 28 391 35 376 31

MAP (mmHg) 135 7 140 19 140 16

Arterial blood data

PaO2 (mmHg) 95 4 91 4 92 3

PaCO2 (mmHg) 38.2 4.4 40.1 2.9 41.3 3.4

pH 7.40 0.02 7.43 0.03 7.42 0.01

Ca2+ (mmolL−1) 1.27 0.09 1.33 0.07 1.35 0.08

Na+ (mmolL−1) 147 4 144 3 143 2

K+ (mmolL−1) 3.21 0.4 3.45 0.33 3.50 0.11

Hemoglobin (gdL−1) 11.4 1.8 11.5 0.9 12.7 1.2

Hematocrit (%) 33 5 34 3 37 3

Glucose (mgdL−1) 134 24 153 19 144 14

Body temperature (˚C) 38.1 0.3 38.0 0.4 38.3 0.4

Values were obtained 15 and 20 min after a single dose administration of normal saline (vehicle, control) in three animal groups: NS, DEXMD-5, and DEXMD-50. At

the control recording, all groups received only normal saline. There was no significant difference among the three groups at control recording. Hence, we considered the

animals (in total, 7 + 7 + 7 = 21) to have been randomly selected from a single population.

https://doi.org/10.1371/journal.pone.0262263.t001
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DEXMD-50 prolonged TI (both p< 0.01) compared with NS and increased VT (both

p = 0.049), and these significant changes resulted in there being no change in VT/TI (p = 0.45

and p = 0.60, respectively), which is the slope at inspiration and an index of respiratory drive.

In Protocol 2, in the DEXMD-50+ATI-0.5 (Fig 3B) or DEXMD-50+EFA-0.5 (Fig 3C), VT/TI

remained comparable to that of the NS (n = 21) (p = 0.77 and p = 0.79, respectively), without

changes in VT (p = 0.93 and p = 0.49, respectively) and TI/TTOT (p = 0.43 and p = 0.29, respec-

tively). In the DEXMD-50+ATI-1.0 (Fig 3D) and DEXMD-50+EFA-1.0 (Fig 3E), VT/TI signif-

icantly increased (p = 0.02 and p = 0.03, respectively) without changes in VT (p = 0.20 and

0.45, respectively) and TI/TTOT (p = 0.95 and p = 0.99, respectively).

Discussion

In previous studies, we examined the cardiorespiratory effects of an intraperitoneal injection

of dexmedetomidine (50 μg�kg−1) on spontaneously breathing newborn rats [10, 11]. We

found that the cardiorespiratory suppression that occurred following administration of dex-

medetomidine was reversed by the addition of atipamezole (a selective α2-adrenoceptor antag-

onist) [10]. Similar dexmedetomidine-mediated changes in respiration-related activities have

Table 2. Effect of dexmedetomidine (5 μg�kg−1 or 50 μg�kg−1) at experimental recording (Protocol 1).

NS (n = 7) DEXMD-5 (n = 7) DEXMD-50 (n = 7)

mean SD mean SD p values (vs. NS) mean SD p values (vs. NS) p values (DEXMD-5 vs. DEXMD-50)

Respiratory indices

fR (breathsmin−1) 126 9 102 16 �0.04 78 23 �< 0.01 †0.04

VT (mLkg−1) 5.94 0.88 7.92 1.59 �0.049 8.00 2.36 �0.049 0.99

V0E (mLmin−1kg−1) 750 123 777 106 0.87 587 86 �0.03 †0.01

TTOT (s) 0.48 0.03 0.60 0.08 0.34 0.82 0.27 �< 0.01 0.06

TI (s) 0.19 0.03 0.29 0.04 �< 0.01 0.27 0.05 �< 0.01 0.76

TE (s) 0.29 0.01 0.31 0.08 0.94 0.55 0.23 �< 0.01 †0.02

VT/TI (mLs−1kg−1) 33.4 9.0 28.3 7.2 0.45 29.3 7.0 0.60 0.96

TI/TTOT 0.40 0.03 0.50 0.07 �0.02 0.35 0.07 0.20 †< 0.01

Circulatory indices

PR (beatsmin−1) 384 42 324 25 �< 0.01 286 14 �< 0.01 0.06

MAP (mmHg) 137 13 121 21 0.24 182 14 �< 0.01 †< 0.01

Arterial blood data

PaO2 (mmHg) 91.6 5.5 83.0 6.0 �0.04 78.9 7.4 �< 0.01 0.55

PaCO2 (mmHg) 39.1 3.8 38.8 3.0 0.99 47.1 4.4 �< 0.01 †0.04

pH 7.40 0.02 7.42 0.02 0.46 7.37 0.03 �0.01 †< 0.01

Ca2+ (mmolL−1) 1.29 0.12 1.35 0.03 0.30 1.37 0.06 0.12 0.89

Na+ (mmolL−1) 146 3 143 2.5 0.054 147 2 0.09 0.96

K+ (mmolL−1) 3.14 0.41 3.43 0.24 0.39 3.37 0.11 0.34 0.99

Hemoglobin (gdL−1) 11.8 1.4 11.6 1.2 0.92 13.7 1.6 �0.04 †0.02

Hematocrit (%) 35 4 34 3 0.95 40 5 0.17 0.11

Glucose (mgdL−1) 143 14 249 26 �< 0.01 329 29 �< 0.01 †< 0.01

Body temperature (˚C) 38.1 0.5 37.8 0.8 0.78 37.8 0.9 0.99 0.75

�Significant difference (p < 0.05) between NS and DEXMD-5 or DEXMD-50.
†Significant difference (p < 0.05) between DEXMD-5 and DEXMD-50.

NS, DEXMD-5, and DEXMD-50 (n = 7 in each group) received normal saline, dexmedetomidine 5 μg�kg−1, and dexmedetomidine 50 μg�kg−1, respectively, at

experimental recording.

https://doi.org/10.1371/journal.pone.0262263.t002
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been seen in a newborn rat in vitro brainstem-spinal cord preparation [19], suggesting that dex-

medetomidine affects the generation of respiratory rhythm at the level of the brainstem and spinal

cord. Furthermore, from a comparison of the results of dexmedetomidine plus atipamezole with

those of dexmedetomidine plus efaroxan (the latter being an α2-adrenoceptor/I1 receptor antago-

nist), we hypothesized that I1 receptor stimulation due to dexmedetomidine was a factor involved

in maintaining VT/TI (an index of respiratory drive) in newborn rats [11]. Although the stimula-

tory effect of dexmedetomidine on the I1 receptor is unlikely to be greater than its effect on the

α2-adrenoceptor [20], our hypothesis seems consistent with clinical observations that suggest that

dexmedetomidine does not severely suppress ventilation [1, 2, 4].

However, it is unknown whether this hypothesis on dexmedetomidine and I1 receptor acti-

vation can be applied to adult rats, in which, for example, the respiratory mechanics, breathing

Fig 3. Respiratory pattern. Protocol 1: (a) Respiratory pattern in NS, DEXMD-5, and DEXMD-50, in which the rats were, respectively, given

normal saline, dexmedetomidine (5 μg�kg−1), and dexmedetomidine (50 μg�kg−1), at experimental recording (n = 7 in each group). Protocol 2: (b−e)

Respiratory patterns in DEXMD-50+ATI-0.5 (n = 8), DEXMD-50+EFA-0.5 (n = 8), DEXMD-50+ATI-1.0 (n = 6), or DEXMD-50+EFA-1.0 (n = 6),

in which the rats were, respectively given dexmedetomidine (50 μg�kg−1), followed 5 min later by (b) atipamezole (0.5 mg�kg−1), or (c) efaroxan (0.5

mg�kg−1), or (d) atipamezole (1.0 mg�kg−1), or (e) efaroxan (1.0 mg�kg−1). In Protocol 2, data for the NS are the summed data (n = 21) obtained at

control recording in Protocol 1.

https://doi.org/10.1371/journal.pone.0262263.g003

Table 3. Effect of atipamezole or efaroxan (0.5 mgkg−1) (Protocol 2).

NS (n = 21) DEXMD-50+ATI-0.5 (n = 8) DEXMD-50+EFA-0.5 (n = 8)

mean SD mean SD p values (vs. NS) mean SD p values (vs. NS) p values (ATI-0.5 vs. EFA-0.5)

Respiratory indices

fR (breathsmin−1) 123 13 127 14 0.73 115 31 0.42 0.22

VT (mLkg−1) 6.15 0.99 6.00 1.15 0.93 6.63 0.93 0.49 0.43

V0E (mLmin−1kg−1) 742 108 728 179 0.96 746 86 0.99 0.95

TTOT (s) 0.49 0.06 0.50 0.04 0.94 0.54 0.10 0.22 0.48

TI (s) 0.19 0.02 0.20 0.03 0.67 0.23 0.05 �0.03 0.27

TE (s) 0.31 0.04 0.29 0.04 0.74 0.28 0.10 0.97 0.70

VT/TI (mLs−1kg−1) 32.0 5.4 30.3 7.9 0.77 30.4 4.8 0.79 0.99

TI/TTOT 0.40 0.03 0.42 0.05 0.43 0.42 0.05 0.29 0.97

Circulatory indices

PR (beatsmin−1) 384 31 309 15 �< 0.01 316 17 �< 0.01 0.80

MAP (mmHg) 138 14 143 20 0.44 131 15 0.25 0.36

Arterial blood data

PaO2 (mmHg) 92.9 3.8 95.0 5.5 0.55 92.5 6.7 0.98 0.57

PaCO2 (mmHg) 37.8 9.6 39.4 8.5 0.89 35.6 6.8 0.83 0.67

pH 7.41 0.02 7.41 0.02 0.81 7.42 0.03 0.58 0.39

Ca2+ (mmolL−1) 1.32 0.08 1.34 0.14 0.88 1.28 0.13 0.63 0.50

Na+ (mmolL−1) 145 3 143 4 0.67 146 4 0.64 0.32

K+ (mmolL−1) 3.4 0.3 3.4 0.6 0.99 3.2 0.5 0.53 0.60

Hemoglobin (gdL−1) 11.9 1.4 12.3 2.0 0.80 10.9 1.8 0.35 0.22

Hematocrit (%) 35 4 36 6 0.75 32 5 0.38 0.21

Glucose (mgdL−1) 143 21 201 31 �< 0.01 192 35 �< 0.01 0.80

Body temperature (˚C) 38.1 0.4 38.1 0.5 0.78 38.1 0.4 0.77 0.99

�Significant difference (p < 0.05) between the NS and the DEXMD-50+ATI-0.5 or DEXMD-50+EFA-0.5.

No significant difference in any parameter was observed between DEXMD-50+ATI-0.5 and DEXMD-50+EFA-0.5.

Data for the NS are the summed data (n = 21) obtained at control recording in Protocol 1. Rats in the DEXMD-50+ATI-0.5 or DEXMD-50+EFA-0.5 (n = 8 in each

group) were given dexmedetomidine (50 μg�kg−1) followed 5 min later by 0.5 mg�kg−1 atipamezole or efaroxan.

https://doi.org/10.1371/journal.pone.0262263.t003

PLOS ONE Cardiorespiratory effect of dexmedetomidine

PLOS ONE | https://doi.org/10.1371/journal.pone.0262263 January 14, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0262263.g003
https://doi.org/10.1371/journal.pone.0262263.t003
https://doi.org/10.1371/journal.pone.0262263


patterns, and lung volumes per bodyweight differ from those in newborn rats [21, 22] and may

influence the values of VT/TI [23]. Hence, to add information related to maturity, we examined

spontaneously breathing adult rats in this study by following essentially the same protocol as

that which we applied to newborn rats [10, 11]. The difference was that two different doses (5

and 50 μg�kg−1) were prepared (Protocol 1) in consideration of possible age-related differences

in drug sensitivity [24] and in pharmacokinetics and pharmacodynamics [2], as well as of the

possible effect of dexmedetomidine on MAP [25], which is unmeasurable in newborn rats [10,

11].

Compared with the mean values of NS (= 100%) (Table 2), administration of 5 μg�kg−1 of

dexmedetomidine decreased fR to approximately 81% and PR to approximately 84% (p = 0.04

and p< 0.01, respectively), and 50 μg�kg−1 of dexmedetomidine decreased fR to 62% and PR

to 74% (both p< 0.01). VT was increased to 133% and 135% by administration of 5 and

50 μg�kg−1 dexmedetomidine, respectively (p = 0.049), but V0E (the product of fR and VT) was

decreased (to 78%; p = 0.03) only by 50 μg�kg−1 dexmedetomidine. In taking this information

together with the results obtained in previous studies of newborn rats given 50 μg�kg−1 of dex-

medetomidine [10, 11], we found that administration of 50 μg�kg−1 of dexmedetomidine con-

sistently resulted in more severe suppression of fR relative to heart rate and increased VT,

Table 4. Effect of atipamezole or efaroxan (1 mgkg−1) (Protocol 2).

NS (n = 21) DEXMD-50+ATI-1.0 (n = 6) DEXMD-50+EFA-1.0 (n = 6)

mean SD mean SD p values (vs. NS) mean SD p values (vs. NS) p values (ATI-1.0 vs. EFA-1.0)

Respiratory indices

fR (breathsmin−1) 123 13 160 41 �< 0.01 154 22 �< 0.01 0.85

VT (mLkg−1) 6.15 0.99 5.41 0.50 0.20 5.64 0.80 0.45 0.90

V0E (mLmin−1kg−1) 742 108 850 257 0.29 861 160 0.22 0.99

TTOT (s) 0.49 0.06 0.41 0.08 �0.01 0.40 0.05 �0.01 0.96

TI (s) 0.19 0.02 0.14 0.01 �< 0.01 0.15 0.02 �< 0.01 0.76

TE (s) 0.31 0.04 0.27 0.08 0.24 0.25 0.04 �0.04 0.73

VT/TI (mLs−1kg−1) 32.0 5.4 39.1 4.3 �0.02 38.6 6.5 �0.03 0.98

TI/TTOT 0.40 0.03 0.37 0.08 0.95 0.38 0.05 0.99 0.95

Circulatory indices

PR (beatsmin−1) 384 31 321 14 �< 0.01 317 37 �< 0.01 0.98

MAP (mmHg) 138 14 154 6 �< 0.01 156 14 �< 0.01 0.96

Arterial blood data

PaO2 (mmHg) 92.9 3.8 96.7 9.0 0.29 94.3 5.6 0.82 0.74

PaCO2 (mmHg) 37.8 9.6 33.8 3.9 0.56 37.2 6.1 0.98 0.76

pH 7.41 0.02 7.40 0.01 0.17 7.42 0.01 0.94 0.20

Ca2+ (mmolL−1) 1.32 0.08 1.25 0.05 0.19 1.29 0.11 0.78 0.66

Na+ (mmolL−1) 145 3 147 5 0.49 145 2 0.98 0.72

K+ (mmolL−1) 3.4 0.3 3.1 0.3 0.14 3.2 0.3 0.48 0.81

Hemoglobin (gdL−1) 11.9 1.4 10.8 1.0 0.20 11.7 1.4 0.93 0.51

Hematocrit (%) 35 4 32 3 0.24 34 4 0.96 0.51

Glucose (mgdL−1) 143 21 164 19 �0.04 193 30 �< 0.01 0.06

Body temperature (˚C) 38.1 0.4 37.9 0.4 0.87 38.2 0.5 0.82 0.99

�Significant difference (p < 0.05) between the NS and the DEXMD-50+ATI-1.0 or the DEXMD-50+EFA-1.0.

No significant difference in any parameter was observed between DEXMD-50+ATI-1.0 and DEXMD-50+EFA-1.0.

Data for the NS are the summed data (n = 21) obtained at control recording in Protocol 1. Rats in the DEXMD-50+ATI-1.0 and DEXMD-50+EFA-1.0 (n = 6 in each

group) were given dexmedetomidine (50 μg�kg−1), followed 5 min later by 1.0 mg�kg−1 atipamezole or efaroxan.

https://doi.org/10.1371/journal.pone.0262263.t004
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irrespective of whether the animal was mature or newborn. In addition, rats administered 5 or

50 μg�kg−1 dexmedetomidine showed hypoxemia (i.e. decrease in PaO2) (p = 0.04 and

p< 0.01, respectively), hyperglycemia (i.e. increase in blood glucose) (both p< 0.01), and

increase in hemoglobin (p = 0.92 and p = 0.04). In rats given 50 μg�kg−1 of dexmedetomidine,

the significantly decreased V0E (p = 0.03) was consistent with the results of ABGs, which indi-

cated hypoventilation (i.e. increase in PaCO2) (p< 0.01) and acidemia (i.e. decrease in pH)

(p = 0.01). MAP was not changed significantly by 5 μg�kg−1 of dexmedetomidine (p = 0.24)

but was increased to 133% by 50 μg�kg−1 dexmedetomidine (p< 0.01). In adult male human

volunteers, incrementally administered dexmedetomidine gradually increases MAP (+ 12%

from baseline) after transient hypotension (−13%), and the increased MAP coincides with a

drop in heart rate and stroke volume (and hence cardiac output), increases in pulmonary and

systemic vascular resistance, and a slight increase in PaCO2 [25]. Hence, in our rats, it is possi-

ble that the increased PaCO2 (Table 2) was induced by suppression of both ventilation and

cardiac output upon administration of 50 μg�kg−1 of dexmedetomidine. The results of Protocol

1 (Tables 1 and 2), suggest that the effects of 50 μg�kg−1 dexmedetomidine are not merely sup-

pressive (e.g. on the V0E and PR), but also stimulatory (e.g. on the VT, MAP, hemoglobin, and

glucose), in spontaneously breathing adult rats.

In Protocol 2, the summed data (n = 21) obtained at control recording in Protocol 1 were

used as the data for the NS. All animals were administered 50 μg�kg−1 of dexmedetomidine

(Fig 2B). Compared with the mean values of NS (n = 21), administration of 0.5 mg�kg−1 atipa-

mezole or efaroxan in addition to 50 μg�kg−1 of dexmedetomidine prevented changes in most

of the cardiorespiratory indices affected by administration of 50 μg�kg−1 dexmedetomidine

alone (Table 3). In earlier studies, almost complete prevention of the dexmedetomidine-

related physiological changes was obtained when dexmedetomidine and atipamezole were

used in a ratio of 1 to 10 (i.e. 100 μg�kg−1 dexmedetomidine and 1.0 mg�kg−1 atipamezole) in

fentanyl/nitrous oxide-anesthetized adult rats [17], or when dexmedetomidine and efaroxan

were used in a ratio of 1 to 10 (i.e. 10−6 M dexmedetomidine and 10−5 M efaroxan) in adult rat

hippocampal slices [18]. Similarly, we found no significant difference in any parameter, except

PR and glucose (both p< 0.01) in rats administered 0.5 mg�kg−1 atipamezole in addition to

50 μg�kg−1 dexmedetomidine, and TI, PR, and blood glucose (p = 0.03, p< 0.01, p< 0.01,

respectively) in rats administered 0.5 mg�kg−1 efaroxan in addition to 50 μg�kg−1 dexmedeto-

midine. Moreover, in this experiment, no significant difference in any parameter, including

VT/TI (Fig 3B−3E), was observed between rats given 0.5 mg�kg−1 of atipamezole and efaroxan

(Table 3) or 1.0 mg�kg−1 of atipamezole and efaroxan (Table 4) in addition to 50 μg�kg−1

dexmedetomidine.

Dexmedetomidine activates both α2-adrenoceptors and I1 receptors, and, in theory, supple-

mental administration of atipamezole (a selective α2-adrenoceptor antagonist) would block

only α2-adrenoceptor activation, whereas supplemental administration of efaroxan (an α2-

adrenoceptor/I1 receptor antagonist) would block the activation of both α2-adrenoceptors and

I1 receptors. Hence, the similarity in the effects of supplemental atipamezole and efaroxan

administration suggests that dexmedetomidine-related cardiorespiratory changes in spontane-

ously breathing adult rats occur predominantly through α2-adrenoceptor activation, not I1

receptor activation.

In our previous study on spontaneously breathing newborn rats, VT/TI was not affected by

dexmedetomidine (50 μg�kg−1) alone or by dexmedetomidine (50 μg�kg−1) plus 1, 5, or 10

mg�kg−1 of atipamezole, but it was significantly decreased by dexmedetomidine (50 μg�kg−1)

plus 1, 5, or 10 mg�kg−1 of efaroxan; therefore, we concluded that it is I1 receptor activation

that maintains VT/TI, (i.e. an index of respiratory drive) in newborn rats [11]. In contrast, in

the present study, the distinct effect of I1 receptor activation on VT/TI was not apparent in
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spontaneously breathing adult rats (Fig 3B−3E). Together, these results on adult and newborn

rats suggest that the functional roles of α2-adrenoceptors and I1 receptors on the cardiorespira-

tory system differ between immature and mature animals.

As limitations of the study, we cannot exclude the possible influences of isoflurane anesthe-

sia and flurbiprofen axetil, which we administered for surgical preparation before the record-

ings. In addition, we did not directly measure the flow signals but instead used a barometric

method to measure the fluctuations caused in chamber pressure by respiratory movement.

Therefore, for example, VT can be overestimated in cases where the respiratory flow resistance

is high [26]. However, this seems unlikely, because an earlier study on adult rats under

mechanical ventilation reported that dexmedetomidine (250 μg�kg−1 intraperitoneal injection

followed by intravenous infusion of 0.5 μg�kg−1) did not significantly change respiratory

mechanical parameters in comparison with those measured in animals that received diazepam

(5 mg) and pentobarbital (20 mg�kg−1), intraperitoneally [7]. Ventilation is under the influence

of circadian rhythm [27] and VT/TI is reported to increase with age. In human infants, “on-

switching” and “off-switching” of inspiratory activity may depend on the sleep state [28], and

the lengths of time spent in different sleep states (i.e. rapid-eye-movement (REM) sleep (or

active sleep) [29] and quiet sleep) change with postnatal development [30]. REM sleep can be

suppressed by clonidine [31], which is another clinically used α2-adrenoceptor/I1 receptor ago-

nist [1, 6]. In this study, although we restricted our measurements to the afternoon (approxi-

mately 14:00−16:00), it was not clear how dexmedetomidine administration affected sleep

state of the spontaneously breathing animal during the measurements.

We observed significantly increased hemoglobin after administration of 50 μg�kg−1 dexme-

detomidine (Table 2) and the effect was prevented by atipamezole or efaroxan (Tables 3 and

4); this might have due to dexmedetomidine-related diuretic [32] and hyperglycemic effects

[33]. The hemoconcentration increases viscosity [34] and may obstruct circulatory O2 and

CO2 transport and secondarily stimulate sympathetic outflow. However, unlike the effect on

MAP, blockade of the α2-adrenoceptor or the α2-adrenoceptor/I1 receptor by atipamezole and

efaroxan could not completely prevent the dexmedetomidine-related decrease in PR (Tables 3

and 4), and the results were similar to those observed previously in newborn rats [10, 11]. It is

possible that PR is influenced by a reflex bradycardia, either with possible enhancement of the

reflex bradycardia through the α2-adrenoceptor (i.e. by administration of dexmedetomidine

alone) or without this enhancement (i.e. by administration of dexmedetomidine plus atipame-

zole or efaroxan) [35]. Further investigation of the mechanisms underlying the persistent drop

in the PR is warranted. In other words, from a practical point of view, the results suggest that

fR is a better indicator than heart rate or PR for monitoring the cardiorespiratory effects of dex-

medetomidine or its antagonists (e.g. atipamezole or efaroxan).

Conclusions

The results of this study suggest that not all cardiorespiratory indices are suppressed by dexme-

detomidine in spontaneously breathing adult rats: some (VT and MAP) are stimulated to

increase. The similarity in the effects of supplemental administration of atipamezole and efar-

oxan suggests that dexmedetomidine-related decrease in V0E and increase in MAP are

observed simultaneously and occur predominantly through activation of α2-adrenoceptors,

but not I1 receptors, in the spontaneously breathing adult rats.
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