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While all humans are capable of non-verbally representing numerical quantity using
so-called the approximate number system (ANS), there exist considerable individual
differences in its acuity. For example, in a non-symbolic number comparison task, some
people find it easy to discriminate brief presentations of 14 dots from 16 dots while
others do not. Quantifying individual ANS acuity from such a task has become an
essential practice in the field, as individual differences in such a primitive number sense is
thought to provide insights into individual differences in learned symbolic math abilities.
However, the dominant method of characterizing ANS acuity—computing the Weber
fraction (w)—only utilizes the accuracy data while ignoring response times (RT). Here,
we offer a novel approach of quantifying ANS acuity by using the diffusion model, which
accounts both accuracy and RT distributions. Specifically, the drift rate in the diffusion
model, which indexes the quality of the stimulus information, is used to capture the
precision of the internal quantity representation. Analysis of behavioral data shows that
w is contaminated by speed-accuracy tradeoff, making it problematic as a measure of
ANS acuity, while drift rate provides a measure more independent from speed-accuracy
criterion settings. Furthermore, drift rate is a better predictor of symbolic math ability
than w, suggesting a practical utility of the measure. These findings demonstrate critical
limitations of the use of w and suggest clear advantages of using drift rate as a measure
of primitive numerical competence.

Keywords: approximate number system, diffusion model, math ability, speed-accuracy tradeoff, Weber fraction

INTRODUCTION

The approximate number system (ANS) refers to a cognitive system that allows estimation of
numerosities (i.e., cardinality of a set of items) without the use of language (Gallistel and Gelman,
1992; Dehaene, 2011). It is typically formalized as distributions of activation on a mental number
line, where each numerosity is represented by a random variable with its mean and standard
deviation as functions of that numerosity. Individual ANS acuity—the degree of precision of the
internal quantity representation—is often conceptualized as the width of this distribution (see
Piazza et al., 2004; Pica et al., 2004).

Recent findings demonstrating a relationship between ANS acuity and math ability have
suggested a foundational role of this primitive cognitive system on later-learned math skills
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and thus have attracted scholarly and public interest in the
ANS (e.g., Halberda et al., 2008; but for meta-analyses reporting
negative findings, see Chen and Li, 2014; Fazio et al., 2014).
Most often, individual ANS acuity is estimated from a numerosity
comparison task. In this task, two arrays each containing a
large number of dots are briefly presented, and participants are
asked to quickly and accurately choose the array with more
dots. Trials differ in the ratios between the two numerosities.
In general smaller ratio trials (e.g., 11 vs. 10 dots) result in
more errors while greater ratio trials (e.g., 16 vs. 8 dots) result
in fewer errors. A typical practice for estimating individual
ANS acuity assumes a specific psychophysical formulation
(Piazza et al., 2004; Pica et al., 2004) and fits ratio-by-
ratio accuracy data to the model in order to estimate the
Weber fraction (w) as a measure of ANS acuity [but see
Inglis and Gilmore (2014) for championing the use of raw
accuracy].

This method of estimating ANS acuity, which dominates
the field, has one critical limitation. Namely, the response time
(RT) data are ignored. The few studies that have considered RT
data used it either separately from accuracy or in combination
with accuracy (e.g., inverse efficiency score; RT/accuracy) yet
lacking theoretical connections to the ANS (for review and
meta-analyses listing the dependent measures used in ANS
studies, see Chen and Li, 2014; Fazio et al., 2014; Dietrich
et al., 2015). Arguably, variability in accuracy and RT should
be explained by the same mechanism in a perceptual decision-
making task (for an argument in the context of numerical
tasks, see Ratcliff et al., 2015). Therefore, analyzing accuracy
in the absence of RT (or vice versa) may elicit a serious
problem in assessing individual ANS acuity. For example,
a participant might have a low w estimate because she
focused on making fast decisions even if she had high ANS
acuity.

Here, we introduce a novel approach of estimating individual
ANS acuity by combining a sequential sampling model and
an existing theoretical model of the ANS1. In particular,
we use the well-established diffusion model (Ratcliff, 1978)
to explain RT distributions of both correct and incorrect
trials in a numerosity comparison task in terms of the rate
of information accumulation (or “drift rate”), among many
other model parameters. The drift rate is determined by the
quality of the stimulus information, and thus it represents
the quality of internal quantity representation in the present
context. One advantage of the diffusion model is that it
provides separate estimates of speed-accuracy tradeoff and
evidence quality (e.g., Ratcliff and McKoon, 2008), while
measures that are solely based on accuracy, such as w, are
potentially influenced by participant-level variation in speed-
accuracy settings. In this paper, we test whether individual
differences in speed-accuracy tradeoff diminish the value
of w as a measure of ANS acuity and then demonstrate
the utility of using the drift rate as an estimate of ANS
acuity.

1While preparing this manuscript, we learned via a conference presentation that
Ratcliff and McKoon (2015) are pursuing a very similar approach.

MATERIALS AND METHODS

Participants and Procedure
A total of 121 participants initially participated from the
departmental research participation pool for course credit. Data
from one participant, who made very few responses throughout
the task, was immediately excluded. The resulting sample
(N = 120) included 97 females with a mean age of 20.3
(range: 18.2–25.6) years. During a 1-h session, participants first
performed an exact symbolic arithmetic task (see Section “Exact
Symbolic Arithmetic”) followed by a numerosity comparison task
(see Section “Numerosity Comparison”). The study procedure
was approved by the University of Massachusetts Institutional
Review Board. Participants gave written informed consent before
participating in the study.

Exact Symbolic Arithmetic
Participants solved two-operand addition and subtraction
problems on a computer, similar to the tasks used in previous
studies (Park and Brannon, 2013, 2014). During a 7-min block,
participants were instructed to solve as many problems as
possible using the number pad keys. The operands ranged from
11 to 195, and the correct answers ranged from 11 to 99. The
arithmetic problems were randomly chosen from a larger set of
problems, half of which contained either borrowing or carrying.
The performance of this task (henceforth referred to as “math
score” for simplicity) was quantified as the number of problems
each participant solved correctly within the 7-min span. Data
from five participants were not collected due to experimenter
error.

Numerosity Comparison
On each trial of this task, two dot arrays ranging in numerosity
from 9 to 21 were presented for 750 ms on each side of a
central fixation cross, after which only the fixation cross remained
on the screen. Participants were asked to judge which side
contained more dots as quickly and as accurately as possible
by a manual (left or right index fingers) button press. The
response was accepted from stimulus onset until 3 s after the
stimulus onset, which was followed by an intertrial interval of
1.5 s before the onset of the following trial. The ratios between
the two numerosities were 4:3, 7:6, 9:8, or 10:9. Dots within an
array were homogeneous in size. In order to discourage reliance
on a single other continuous variable when making numerical
judgments, in half of the trials total surface area of the two dot
arrays were equated, while individual surface area of each dot was
equated in the other half. Independently of this manipulation,
in half of the trials, density of the two dot arrays were equated,
while the areas of an invisible circle that encompasses the dot
array were equated in the other half. This means that the dot
array parameters were systematically sampled from a parameter
space represented by number (as one dimension) and two other
dimensions orthogonal to number, namely size and spacing of the
dot array. This design allows identical ranges of numerical and
non-numerical cues (for more details, see DeWind et al., 2015;
Park et al., 2015). Each block contained 64 trials, which took
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approximately 3.5 min. Each participant performed twelve blocks
of a total of 768 trials with no trial-by-trial feedback.

Weber Fraction Analysis
Models of the ANS assume that numerical quantity is represented
by a distribution of activation on a mental number line (Van
Oeffelen and Vos, 1982; Dehaene, 1992; Feigenson et al., 2004).
ANS acuity is most often quantified by a Weber fraction (w)
that quantifies the just noticeable difference as a fraction of
stimulus value, which is conceptually the width of the activation
distribution on the mental number line. Two specific forms have
been proposed to represent the ANS: the linear model with scalar
variability (e.g., Pica et al., 2004) and the logarithmic model with
fixed variability (e.g., Piazza et al., 2004). While it has been argued
that both models lead to similar predictions in participant’s
behavioral responses (Pica et al., 2004), this is true only when
accuracy is the only dependent variable. As explained below in
Section “Alternative ‘Linear-Scale with Scalar Variability’ Model”,
the linear model with scalar variability fails to match empirical
patterns when both the accuracy and RTmeasures are considered
together. Thus, in the current study, we use the logarithmic model
with fixed variability to estimate individual numerical w (Piazza
et al., 2004). In this model, the error rate in a comparison task
is modeled as the area under the tail of a Gaussian curve with
mean, log(nL)–log(nS), and standard deviation,

√
2w, as follows:

perror = 1
/
2 erfc((log(nL) − log(nS))/2w) (1)

where nL is the larger and nS is the smaller of the two
numbers, and erfc(x) is the complementary error function. Split-
half reliability coefficient after Spearman–Brown correction was
computed from w estimated separately from even and odd
runs.

Drift Diffusion Model Analysis
Conceptual Overview of the Present Model
The diffusion model assumes that decisions are made by
accumulating small samples of uncertain information until a
threshold level of support for one response alternative is reached
(Ratcliff, 1978). In the numerosity comparison task, the available
responses are “left” and “right” for which side has the higher
number of dots. Evidence accumulation begins at a starting
point z between two response boundaries. The distance between
response boundaries, a, represents response caution.

Evidence samples arrive from the stimulus and are variable
across time, which here represents dynamic variability in the
neural representation of quantity for each dot array. When the
momentary quantity representation is higher for the left array,
the accumulation process moves toward the “left” boundary, and
vice versa. Accumulation continues until a boundary is reached,
so wider boundaries produce slower responding (more evidence
samples are needed) and more accurate responding (moment-to-
moment variability in the accumulation process is less likely to
make it hit the wrong boundary).

The average rate of approach to a response boundary, or “drift
rate,” represents the quality of evidence driving the decision.
Here, drift rates were estimated simultaneously across four ratio

conditions while assuming that numerosity is represented in a
logarithmic scale. Specifically, the drift rate toward the correct
boundary for each ratio condition was based on log(nL) – log(nS)
multiplied by a scaling factor (henceforth referred to as drift
scale), vS, that could vary across participants (see Figure 1).
Thus, drift rates were higher for greater numerical ratios within
a participant, and participants with higher values of vS had
higher drift rates across all ratio conditions, that is, better ANS
acuity. The diffusion model assumes that drift rates follow a
Gaussian distribution across trials within a condition, and the
standard deviation of the distribution is measured by the η

parameter (Ratcliff and McKoon, 2008). We held η constant
across conditions, so our fits are consistent with a model in which
numerosity representations have fixed variability (see Section
“Alternative ‘Linear-Scale with Scalar Variability’ Model” for
an alternative model). We estimated model parameters using
the χ2 method described in Ratcliff and McKoon (2008). As
in the w estimation, the split-half reliability coefficient of the
drift scale was computed from the estimates from even and odd
runs.

Model Fitting Details
The data were collapsed based on the ratio of dots on each
side of the screen; for example, trials that had 12 dots on one
side and nine on the other were combined with trials that had
16 dots on one side and 12 on the other. We also combined
trials with the higher number on the left versus the right, with
the response switched for the latter. Thus, the data for each
participant included four conditions: ratios of 4:3, 7:6, 9:8, and
10:9. We found the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles of the
RT distribution for both correct and error responses in each
condition, and fit the model to the frequency of responses
in the six RT bins defined by these boundaries. Thus, each
condition contributed 12 response frequencies and 11 degrees
of freedom (one response frequency is constrained to sum to
the number of trials in the condition), resulting in 44 total
degrees of freedom in the data across the ratio conditions.
We estimated parameter values by minimizing a χ2 statistic
computed with the empirical frequencies in each RT bin and
the frequencies predicted by the model. When the total number
of responses was between 2 and 8, we collapsed the data into
two RT bins above and below the median RT. When the total
number of responses was below 2, we collapsed the data into
one bin representing the total frequency (i.e., RT data were not
fit). The model had seven free parameters (also see Ratcliff and
McKoon, 2008): the distance between the response boundaries
(a), the range of the distribution of starting points across trials
(sZ), the scaling factor on drift rate (vS, see Figure 1), the
standard deviation of across-trial variation in drift rates (η),
the mean duration of non-decision times (TER), the range of
the distribution of non-decision times across trials (sT), and
the proportion of trials delayed by contaminant processes (pO).
Table 1 illustrates the summary statistics of these parameter
estimates. These values are similar to previous applications of
the model (e.g., Ratcliff and McKoon, 2008). The average starting
point (z) was fixed at half of the boundary width for every
participant.
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FIGURE 1 | A schematic illustration of the diffusion model in the
context of a numerosity comparison task. Here, trials with the larger
number on the left and those with the larger number of the right are collapsed
to represent boundaries for “correct” and “error” responses on each side. nL

is the larger and nS is the smaller of the two numerosities. vL:S represents the
drift rate for each individual ratio condition.

RESULTS

Outlier Exclusion
In order to ensure that participants were attempting to perform
the task and not just guessing on a large number of trials,
participants with overall accuracy below 60% and/or more than
10% trials with reaction times less than 250 ms were excluded.
These standards excluded 10 participants, leaving the final sample
of N = 110. It should be noted that whether or not these 10
participants were excluded made no qualitative changes to the
overall findings. In addition, the entire analysis on the N = 110
data set was performed again after excluding individual trials with
RTs less than 250 ms (0.65% of the trials), but again the w and
drift rate estimates were virtually identical. We thus report our
analysis without individual trial exclusions.

Weber Fraction Analysis
Individual w values ranged from 0.081 to 0.41 with the median
of 0.16, as shown in Figure 2A. Split-half reliability was
0.902, indicating that these estimates were highly reliable. Log-
transformed w was almost perfectly correlated with accuracy
(r = –0.996, p < 0.001, Figure 2B), indicating that w is a re-
expression of accuracy, which is not surprising given how w is
derived (Eq. 1; see similar patterns in previous work, e.g., Inglis
and Gilmore, 2014).

Another behavioral pattern typically found in speeded
perceptual decision-making task was revealed: accuracy and
RT (reaction time) were significantly correlated (r = 0.391,
p < 0.001) demonstrating speed-accuracy tradeoff across
participants. As a corollary, RT was also highly correlated with
log(w) (r = –0.379, p < 0.001, Figure 2C). These correlation
patterns suggest that considering w exclusively to represent

TABLE 1 | Mean and standard deviation of the diffusion model parameter
estimates across participants.

a sZ vS η TER sT pO

Mean 0.093 0.023 1.163 0.167 0.414 0.219 0.004

Std 0.023 0.018 0.471 0.110 0.081 0.109 0.010

ANS acuity without taking RT into account may pose a serious
problem, because better performance in terms of w could mean
worse (slower) performance in terms of RT and vice versa.

Drift Diffusion Model Analysis
We first illustrate the typical model fit in Figure 3, which shows
the fit for the participant who was closest to the median χ2 value
across all participants. This participant had a χ2 value of 56.61,
and the values across all subjects had a median of 56.58 and
an inter-quartile range from 44.38 to 77.16. The model fit the
proportion of correct and error responses very closely, and it also
closely fit the RT distributions for correct responses, as shown by
the 0.1, 0.5, and 0.9 quantiles of each distribution. The error RT
distributions showed a poorer fit, but this is not surprising given
that the distributions are estimated from a small number of error
trials, especially in the higher accuracy conditions. Overall, the
model successfully matched the data.

The drift scale parameter (vS) had a mean of 1.16 and ranged
from 0.37 to 2.28 across individuals (Figure 4A) with a split-
half reliability of 0.889. A drift scale of 1.16 produces drift rates
of 0.33, 0.18, 0.14, and 0.12 for ratios of 4:3, 7:6, 9:8, and 10:9,
respectively (see the formula in Figure 1). There was a high, but
not a perfect, correlation between vS and accuracy (r = 0.586,
p < 0.001, Figure 4B), indicating that vS is not a mere re-
expression of accuracy. In addition, vS was not correlated with RT
(r = –0.054, p= 0.572, Figure 4C), which suggests that variability
in other parameters (e.g., boundary width and non-decision time)
primarily drove individual differences in RT.

Participants varied widely in terms of speed-accuracy tradeoff,
with boundary width estimates ranging from 0.06 to 0.18
(Figure 5A). That is, some participants were making very quick
decisions with little regard for accuracy (i.e., smaller boundary
width), whereas others were being very cautious to avoid errors
(i.e., greater boundary width). Thus, unsurprisingly, there was
a strong correlation between w (accuracy) and log-transformed
boundary width (r = –0.384, p < 0.001, Figure 5B). These
results indicate that w is considerably influenced by individual
adjustment of speed-accuracy tradeoffs. Boundary width (log-
transformed) also correlated significantly with RT (r = –0.613,
p < 0.001, Figure 5C).

Alternative “Linear-Scale with Scalar
Variability” Model
An alternative ANSmodel claims that the internal representation
of numerosity varies linearly with the actual number of items,
but the variance of this distribution increases for larger displays
(linear-scale with scalar variability). These models make virtually
identical predictions for accuracy (Pica et al., 2004); however,
they can be distinguished with RT data. In our data, RTs increase
as performance decreases across the ratio conditions, a pattern
that was well fit by the log model (see Figure 3). In contrast, if
the average drift rate remains constant and accuracy decreases
are produced by increasing the across-trial variability in drift
rates (η) as in the alternative model, RTs actually get faster
as performance decreases (Starns and Ratcliff, 2014). Our data
showed no evidence of such a speed up. For example, across
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FIGURE 2 | Individual w measures (A) and their relationship with other variables (B,C). Gray lines in scatterplots illustrate best linear fit.

FIGURE 3 | Model fit results of an average participant (specifically, the
participant whose fit criterion was closest to the median criterion
across all participants). (A) RT quantile fit results. The 0.1, 0.5, and 0.9
quantiles of each RT distribution are displayed (the model was also fit to the
0.3 and 0.7 quantiles, but they were omitted to reduce clutter). (B) Proportion
fit results.

our ratio and multiple conditions we can isolate two pairs of
conditions for which the absolute difference between the number
of items on each side remained the same but the total number
of items increased substantially: 12:9 dots vs. 21:18 dots and
14:12 dots vs. 20:18 dots. For both pairs, accuracy was lower

with a larger total number of items: 0.85 vs. 0.76 and 0.76 vs.
0.69, respectively. If this decrease was produced by increased
variability with the same average drift rate, then RTs should also
be faster as the total number of items increases. Instead, RTs (ms)
were slower in both cases: 526 vs. 538 and 541 vs. 546. Therefore,
only the log model, and not the variability-increase model, can
simultaneously accommodate the accuracy and RT data.

Correlation with Symbolic Arithmetic
Abilities
Correlation analyses revealed the association between math score
and vs (r = 0.284, p = 0.003) to be numerically greater than
the association between math score and log(w) (r = –0.170,
p = 0.083; Figure 6), demonstrating the superiority of the
drift rate in predicting math abilities. Steiger’s (1980) test of
the difference between two dependent correlations with one
variable in common did not reach significance (z = –1.323,
p = 0.189), but the superiority of the drift scale measure is
also demonstrated by the strong correlation between boundary
width and log(w) (Figure 5B). That is, whether a participant
chooses to set conservative or liberal speed-accuracy criteria is
independent of the quality of stimulus representation, and this
factor adds noise to log(w) estimates (whereas the drift scale
estimates come from a model that separately estimates evidence
quality and speed-accuracy tradeoffs). Furthermore, in a multiple
regression, vs was found to be a significant predictor of math
score even after controlling for log(w) that was entered as a
covariate (t102 = 2.39, p = 0.019) and even after controlling for
an inverse efficiency score (RT/accuracy; t102 = 2.98, p = 0.004).
Note that inverse efficiency score itself did not correlate with
math score (r = –0.042, p = 0.673), indicating that simply
combining RT and accuracy does not yield a valid measure. In
addition, the amount of variance in math ability explained by vs
was larger (R2 = 0.0804) than the amount of variance explained
by log(w) and RT together (R2 = 0.0562), again indicating that
the way diffusion model is capturing individual differences is
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FIGURE 4 | Individual drift scale (vS ) (A) and their relationship with other variables (B,C).

more powerful than simply considering accuracy and RT data
together. Drift scale having a better predictive power for math
score was not an artifact of having unusually many trials in the
task. As Figure 6 illustrates, even when subsets of data were
used to estimate the parameters, vs consistently showed greater
predictive power than w. Data from four to six 3.5-min blocks
(256–384 trials) already showed a noticeable discrepancy in the
predictive power. Note that greater predictive power of vs than
w consistently over the five data subsets (128, 256, 384, 512,
and 640 trials) was not due to an artifact of vs being a more
reliable estimate, as the reliabilities across the data subsets were
comparable between the two estimates (Table 2).

DISCUSSION

Estimating individual Weber fractions (w) has been the most
widely used method to quantify the ANS acuity. This approach
is firmly grounded in psychophysical theories and offers many
advantages, including the fact that the measurement unit is
independent from the actual stimulus parameters thus allowing
direct comparisons between the results of different studies.

Nevertheless, this approach only utilizes accuracy information
and ignores RT, which is a critical limitation from a standpoint
that there is a considerable amount of speed-accuracy tradeoff
during a perceptual decision-making task (see Ratcliff
et al., 2015). In fact, w and RT were highly correlated in
our dataset (see Figure 2). These results indicate that w
may not represent only the fidelity of stimulus encoding
and processing, as originally intended but it may also
be influenced by individual adjustment of speed-accuracy
tradeoffs.

One may argue that if there is small or no empirical
correlation between accuracy and RT, it is valid to interpret
that the two measures represent different mechanisms. For
example, Halberda et al. (2012) claimed that w and RT scores
were largely uncorrelated in their sample of over 10,000

participants and concluded that w and RT predict math scores
independently2. Price et al. (2012) also found a significant
correlation between a measure of w and RT in only one of the
three numerosity comparison task variations. However, it should
be noted that even if there is no apparent correlations between
w (accuracy) and RT in a dataset, this does not necessarily
mean that they are governed by independent mechanisms. For
instance, in the diffusion model individual adjustment in speed-
accuracy tradeoff is modeled as a single parameter (boundary
width). This factor produces a positive correlation between
accuracy and RT (more conservative speed-accuracy tradeoffs
produce slower RTs and higher accuracy). In addition to this
parameter, two other factors contribute to variability in RT and
accuracy across participants: differences in the speed of evidence
accumulation and differences in non-decision time. Speed of
evidence accumulation produces a negative correlation between
accuracy and RT (faster evidence accumulation produces faster
RTs and higher accuracy), while non-decision time produces no
relationship (non-decision time affects RT but not accuracy).
Thus, even if speed-accuracy tradeoff is governed by a single
mechanism (i.e., boundary width), a null correlation between
accuracy and RT can easily be produced when all three factors
are combined.

Taking this logic further, vs may provide a more valid measure
of ANS acuity than w by controlling speed-accuracy tradeoff
even when the empirical correlation between accuracy and RT
is small. We tested this idea by examining subsets of our own
data where all factors (i.e., quality of stimulus representation,
speed-accuracy tradeoff setting, non-decision time) balance out
to give no or small overall correlation between accuracy and
RT. Specifically, in each of 100,000 repetitions, we randomly
selected half of the subjects (N = 55) and recorded the correlation
between accuracy and RT. Nine hundred and forty-four of the

2But note the correlation between w and math scores (r = –0.19) and between
RT and math scores (r = –0.09) were not much stronger or even weaker than the
correlation between w and RT (r = –0.11).
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FIGURE 5 | Boundary width (A) and its relationship with w and RT (B,C).

FIGURE 6 | Absolute value of the correlation coefficients between drift
scale (vs) and math score and between Weber fraction (w) and math
score as a function of number of trials.

100,000 cases resulted in a non-significant correlation (p > 0.05).
In these 944 cases, we then computed the correlation between w
and math as well as between vs and math. In 877 of the 944 cases
(93%), the correlation between vs and math was greater than the
correlation between w and math, providing empirical support to
the idea that modeling out the effects of speed-accuracy tradeoff
may be beneficial in estimating ANS acuity even in the absence of
correlation between accuracy and RT.

It should be noted that there have been recent advancements
in improving the traditional way of estimating the ANS acuity
(i.e., w; e.g., DeWind et al., 2015; Odic et al., 2015); however,
these methods do not account for RT. In addition, previous

studies using a numerosity comparison task usedmean RT, an RT
difference under different numerical ratios, or a combination of
RT and accuracy in order to quantify individual performance (to
list a few, Holloway and Ansari, 2009; de Oliveira Ferreira et al.,
2012; Sasanguie et al., 2012); however, these approaches lack a
clear connection to the theoretical model of the ANS, making
it difficult to conceptualize what the dependent measures really
mean.

In this study, we used a theory-based sequential sampling
model in combination with the theoretical model of the ANS
to offer a new approach of estimating ANS acuity. To be
specific, a novel variant of the diffusion model (Ratcliff, 1978)
was developed to assess the quality of the internal quantity
representation by incorporating both the accuracy and RT
distributions. This approach allows researchers to factor out the
effects of speed-accuracy tradeoff settings (boundary width) from
the estimation of the quality of stimulus information (drift scale,
vS). Indeed, the results from our data showed a strong association
between boundary width and both accuracy and RT, suggesting
usingw (accuracy alone) as the ANS acuity may not be ideal given
that w is influenced by an individual tendency to stress accuracy
over speed. Moreover, there was very little, if any, correlation
between vS and RT (see Figure 4), suggesting that the measure
of internal quantity representation using the diffusion model is
much less influenced by speed-accuracy tradeoffs than w.

In addition to factoring out speed-accuracy tradeoff settings,
one other potential advantage of diffusion modeling is that
it reliably factors out non-decision time (i.e., encoding and
response output time) from the quality of internal quantity
representation. Therefore, it could more effectively estimate
ANS acuity in various subject groups (e.g., children or older

TABLE 2 | Split-half reliability of the two estimates (Spearman–Brown
corrected) across the data subsets.

Number of trials 128 256 384 512 640 768

w 0.48 0.66 0.75 0.87 0.88 0.90

vs 0.43 0.68 0.83 0.81 0.87 0.89
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adults) who potentially show a great amount of variability in
non-decision time. These investigations should be an important
agenda for future research.

On a theoretical note, our results suggest that RT modeling
can inform theoretical accounts of number estimation. If one
considers only accuracy data, then two underlying models make
identical predictions for the change in performance across ratios:
either number representations have a logarithmic relationship
to actual numerosities with a constant variance or a linear
relationship with increasing variance. However, these accounts
make opposite predictions for RT when they are translated into
diffusion model drift rates: the first model predicts slower RTs
for conditions with lower accuracy and the second predicts
faster RTs. We found that the logarithmic model closely fit both
accuracy data and RT distributions. In contrast, our data showed
no evidence of faster RTs for conditions with a higher total
number of items. We cannot strongly rule out the possibility that
drift variability changes across conditions, but this factor alone
cannot explain performance changes across the ratio conditions.
The important point is that the logarithmic model provides a
good fit to data, and this model has the added benefit of offering
an easily interpretable measure of overall ANS acuity (drift scale).

Approximate number system acuity is most often used to
investigate how individual differences in numerical quantity
representation explain other variables using correlational
analyses (e.g., see Section “Correlation with Symbolic Arithmetic
Abilities”). Thus, it is important to understand the relative
reliabilities of w and vS estimates. On the one hand, because
diffusion model includes many more parameters than the Weber
fraction estimation, one may reason that vS may be less reliable
than w. On the other hand, because diffusion model additionally
includes RT data, one may reason that vS may be more reliable
than w. As reported, split-half reliabilities of w and vS were
comparable between the two at least in our dataset from young
adult participants, suggesting that the drawback of having more
parameters to fit in the diffusion model is overcome by including
more data in the model. Note that comparable reliability scores
between the two estimates suggest that, under the situation
where a researcher attempts to correlate ANS acuity with another
variable, using vs instead of w might be a wiser choice given that
there is a potential advantage in validity without a sacrifice in
reliability. Based on our sample, regardless of whether w or vs will
be estimated, collecting 256 total trials or more is recommended
for reasonably reliable estimates, although it should be noted
that a reliability near 0.50 under 128 trials is not the worst case
scenario in typical cognitive measures (e.g., see Maloney et al.,
2010). Researchers interested in applying the diffusion model
to estimate ANS acuity as in our study are encouraged to take
advantage of diffusion model toolboxes that are readily available
(Vandekerckhove and Tuerlinckx, 2007; Wagenmakers et al.,
2008; Voss et al., 2015).

We have so far described the advantage of the diffusion model-
based approach to estimating ANS acuity from a perspective of
a perceptual decision-making process (i.e., factoring out speed-
accuracy tradeoff). One important remaining question is which
of the two measures (w or vs) is a more valid measure of ANS
acuity? This is not an easy question to ask, not just for w or vs but

for any estimate that claims to measure ANS acuity because ANS
is a hypothetical cognitive construct and there is no obvious way
to test its validity.

Here, we took the approach to exploit one of the most
influential, yet hotly debated, propositions in the ANS literature.
That is, ANS is proposed to be an important foundation for
symbolic mathematical abilities (Gallistel and Gelman, 1992;
Halberda et al., 2008; Dehaene, 2011). Supporting this idea,
studies have reported a correlation between ANS acuity (mostly
estimated in w or accuracy) and math scores (for meta-analyses
that also include negative findings, see Chen and Li, 2014; Fazio
et al., 2014). Thus, according to this proposition, if one of the two
measures discussed so far (w or vs) is a better estimate of ANS
acuity, exact symbolic arithmetic performance should be better
predicted by that measure than by the other. Our results show
that vs is a better predictor for symbolic arithmetic performance,
lending support to the idea that is a vs more validmeasure than w.

One limitation of the present approach (as well as the
traditional approach of estimating w) is that it does not account
for the effects of non-numerical cues in the stimuli. Because
the number of items in an array is necessarily confounded
with other cues such as the size of each item or the density
of the array, it is impossible to assess the effect of numerical
processing independent of all other non-numerical cues. Many
studies now show that participants’ performance in a numerosity
comparison task is influenced by such non-numerical cues
(for recent reviews, see Leibovich and Henik, 2013; Dietrich
et al., 2015). Thus, one needs to be cautious in interpreting
both vs and w as an index of numerical acuity. As we
have shown, w measures have an additional layer of process
contamination in that they are influenced by speed-accuracy
tradeoffs.

However, there are a few reasons to believe that participant’s
judgment in the present numerosity comparison task is based
more on numerical than other non-numerical cues. First,
DeWind et al. (2015) have recently developed an innovative
technique to statistically isolate the unique effects of numerical
and non-numerical cues during a numerosity comparison task.
Using stimulus parameters that are systematically constructed
to span comparable ranges of numerical and non-numerical
cues (as in our design), they found that numerosity was the
primary dimension driving the participants’ behavioral decision-
making process. Second, in a series of EEG experiments,
participants passively viewed dot arrays that were systematically
constructed to assess the role of numerical and non-numerical
cues using the same technique (Park et al., 2015). Even
though there was no emphasis on numerosity, participants’
visual evoked potentials were most sensitive to the modulation
of the numerosity dimension than to any other dimensions.
These results suggest that numerosity is the primary dimension
that is directly encoded in the visual system. Thus, it is
plausible that the quality of the stimulus representation in the
present diffusion model is based on the numerical quantity.
Nevertheless, an important next step would be to extend our
current diffusion model to incorporate the effects of non-
numerical cues (as in DeWind et al., 2015 and Park et al.,
2015).
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In summary, the ANS is thought to serve as an important
foundation for symbolic mathematical ability (Gallistel and
Gelman, 1992; Dehaene, 2011). Assessing ANS acuity has been
a critical first step for testing the link between primitive
number sense and math performance and for generating further
hypotheses about behavioral and educational implications of
ANS. While computing a numerical Weber fraction (w) has
been a dominant way of estimating the ANS acuity in the
field, the results from our data from young adult participants
demonstrate that individual w estimates are largely influenced
by speed-accuracy tradeoffs (Figures 2 and 5), questioning the
validity of the measure. Our approach of using a drift diffusion
model illustrates that drift rate captures the quality of the non-
symbolic numerical quantity information presumably with less
influence from task-specific variables that affect individual speed-
accuracy tradeoffs (also see Ratcliff et al., 2015). Our novel

drift scale measure thus may be a better measure of primitive
numerical competence than the widely used w, also indicated
by a greater predictive power for symbolic arithmetic ability
(Figure 6).
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