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Abstract

Background: Surprisal analysis is a thermodynamic-like molecular level approach that identifies biological
constraints that prevents the entropy from reaching its maximum. To examine the significance of altered gene
expression levels in tumorigenesis we apply surprisal analysis to the WI-38 model through its precancerous states.
The constraints identified by the analysis are transcription patterns underlying the process of transformation. Each
pattern highlights the role of a group of genes that act coherently to define a transformed phenotype.

Results: We identify a major transcription pattern that represents a contraction of signaling networks accompanied
by induction of cellular proliferation and protein metabolism, which is essential for full transformation. In addition,
a more minor, “tumor signature” transcription pattern completes the transformation process. The variation with
time of the importance of each transcription pattern is determined. Midway through the transformation, at the
stage when cells switch from slow to fast growth rate, the major transcription pattern undergoes a total inversion
of its weight while the more minor pattern does not contribute before that stage.

Conclusions: A similar network reorganization occurs in two very different cellular transformation models: WI-38
and the cervical cancer HF1 models. Our results suggest that despite differences in a list of transcripts expressed in
different cancer models the rationale of the network reorganization remains essentially the same.

Background
Deciphering regulatory events that drive malignant
transformation represents a major challenge for systems
biology. Here, we analyzed the genome-wide transcrip-
tion profiling of an in vitro cellular system, in which
cells were induced to transform to a cancerous pheno-
type, through intermediate states. Cells evolving towards
a malignant state exhibit changes in gene expression
that do away with pathways that interfere with prolifera-
tion [1]. Cancer cells also appear to be less subject to
some of the restrictions and controls characteristic of
multicellular organisms [1]. For different cancers many

oncogenes and tumor suppressors have been identified
[2], but determining a list of genes that characterize
cancers has not been fully successful [3].
In this study we are using a physically motivated

method of gene expression analysis based on the propo-
sition that the process of gene expression is subject to
the same quantitative laws as inanimate nonequilibrium
systems in physics and chemistry. This allows us to
apply a thermodynamic-like approach where entropy is
a physical quantity and not only a statistical measure of
dispersion. Our purpose is similar to earlier studies of
groupings of genes [4,5] including the validation [6] of
the predicted [4,5] mechanism of regulation. The papers
of Janes et al [7-9] are close to our aims as the imple-
mentation of co-clustering methods to detect similar
expression patterns, e.g., [10]. The maximal entropy
method has been used to identify association of genes
[11,12]. We too assume that the entropy depends on the
distribution of species. The essential difference is that in
our case entropy is not just the mixing entropy. This is
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because the value of the thermodynamic entropy
depends on the distribution of species and on the inter-
nal structure of each. The result is that at the maximum
of the entropy our distribution is not uniform. Our
work differs from Boolean based approaches [13] where
a gene is either expressed or not. Probabilistic networks
[14-18] are closer in that they determine a kinetic order
in time. Time series data is often analyzed using princi-
pal component analysis or partial least squares regres-
sion, e.g., Janes et al [7-9]. Implementing surprisal
analysis of a high throughput data set is conveniently
carried out by diagonalizing a covariance matrix. But it
is the covariance matrix of the logarithm of the expres-
sion levels and this means that the levels need not be
mean centered prior to the diagonalization.
The information-theoretic analysis that we use is

called surprisal analysis [19] to emphasize that at maxi-
mal entropy genes are not necessarily equally expressed.
In each stage of development, the transient gene expres-
sion patterns and their associated biological phenotypes
are identified as constraints that prevent the entropy
from achieving the maximal possible value. The theory
is thermodynamics-like because it also invokes the time-
invariant distribution of expression levels. We show how
to determine this distribution from the data and find
that it is not necessarily uniform. This is to be expected
because this steady distribution reflects the free energy
of the mRNA molecules.
The biggest extent of deviation from the maximal

entropy defines the major transcription pattern that
occurs during the process of transformation. We also
define minor transcription patterns that participate in
the establishment of cancer. The major pattern is
important throughout while more minor patterns typi-
cally contribute significantly only early or only later on.
We will specifically emphasize the stages during the cel-
lular transformation when the role of an expression pat-
tern undergoes an ‘inversion’ in its significance. By
‘inversion’ we refer to a time course where genes that
were highly expressed at the stage before, undergo a
change to being under expressed in the stage after and
vice versa. A model [20,21] where different processes
are initiated, some that eventually lead to malignancy
and some that do not, is analyzed in detail to illustrate
these ideas. Several of the processes initiated in the
model system share a common earlier stage. At later
stages the formalism is able to point out the differences
that evolve from those initially common patterns.
The technical mathematical details are spelled out in

the Additional file 1 online. In practical terms the
results of the analysis is a ranking of the gene expres-
sion patterns according to the importance of their con-
tribution at each stage. In the Additional file 1 the
notion of the ‘importance’ of a pattern is defined and

quantified. Using the ‘importance’ we show below that a
rather small number of expression patterns suffice to
quantitatively reproduce the expression levels of all indi-
vidual genes. One or two of the most important patterns
already provide a close characterization of the expres-
sion levels.
We analyze the changes in the gene expression levels

during the process of carcinogenesis in the thoroughly
studied cellular model WI-38, developed by one of us
[10,20,21]. The cancer model system follows the pro-
gression from the normal phenotype all the way to the
onset of cancer [20,21]. The WI-38 cellular system
includes parental WI-38 fibroblasts in the young, senes-
cent stages as well as the hTERT immortalized cells at
the different stages [20,21]. At a certain stage (Figure 1),
p53 was inactivated by the expression of a dominant-
negative peptide GSE56 [20,21], and the expression of
oncogenic H-Ras was induced by infection at the indi-
cated time points as shown in Figure 1[20,21]. The
genetic alterations were applied at different points as
shown in Figure 1 where the time points are labeled
T = 1,2,..,12. It is important to note that different trajec-
tories of the transformation process go through different
time points. For example, we will compare the three tra-
jectories 1-5-7-8-9, 1-5-7-8-11 and 1-5-7-8-10-12, which
share a common process up to and including point 8.
These are all continuous processes where each time
point follows the preceding one and we will refer to
such a sequence of stages as a trajectory. An opposite
example is the trajectory 1-5-6-7 that cannot be consid-
ered as continuous since time point 7 does not experi-
mentally follow point 6.
The novelty and a power of our approach lies in our

ability to identify the major and minor gene expression
patterns in each stage (= time point) during the trans-
formation. Moreover this analysis identifies the neces-
sary and sufficient transcription patterns that define the
cellular transformation. Additionally our analysis identi-
fies new networks that participate and contribute signifi-
cantly to the establishment of the different phenotypes
during the transformation. The patterns identified by
the present study are further examined by comparison
to the results of the original analysis of the WI-38 sys-
tem [10,20,21], see also Additional file 1. Furthermore,
our analysis considers different trajectories that have dif-
ferent outcomes, depending on which perturbations
were applied. For example, trajectory 1-5-7-8-11 has a
different outcome from trajectory 1-5-7-8-9 as can be
seen in Figure 1.
The model developed in the Rotter lab uses fibroblasts

while in an earlier recent study [22,23] we used HPV-16
immortalized keratinocytes. Moreover, the Rotter model
(Figure 1) differs markedly in the route of transforma-
tion. Even so, we find a convergence of the dominant
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expression patterns and we identify a similar rationale
behind the process of carcinogenesis. This recognition
of a common rationale is a key result of our work. We
suggest that the underlying principle of transcription
network reorganization is common to the different can-
cer cell models.
The presentation of the results follows two lines. One

is the discussion of the information theoretic based tool,
which utilizes gene expression levels to identify tran-
scription patterns and to determine their contribution
to the cancer transformation process at each stage. The
complementary development is the biological interpreta-
tion of the calculated patterns and their weights.

Results
Theoretical Section: The information theoretic analysis
This section summarizes the essence of the information
theory based method used for the analysis of mRNA
array as described in detail in the Additional file 1 sec-
tion “Surprisal analysis”. For additional discussion of the

motivation, see [23]. References 24-28 provide more
background. Here we just emphasize that in general our
approach, known as surprisal analysis, [19] is a method
of analysis of systems in both equilibrium and not equi-
librium that are subject to constraints. Surprisal analysis
is an analysis of the logarithm of the expression level of
each gene as in equation (1) below. This analysis deter-
mines the transcription patterns of the transformation
process and the weights of these independent patterns
at each stage (= time point) of the transformation.
A transcription pattern is a set of transcripts that act
coherently. We index the patterns by the Greek letter a,
a = 1,2,.. label the different independent patterns. For
each pattern we determine its importance. la(tT) is the
value (= the importance) of the contribution of the pat-
tern a at time point T. We shall show that at any stage
there are very few important patterns. The validation of
this statement as well as the determination of the tran-
scription patterns is quantitative. The information theo-
retic thermodynamic-like approach derives the
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Figure 1 Schematic representation of the WI-38 cell model (adapted from [21]). Schematic representation of the physiological state (young,
senescent, immortal, tumorigenic) and introduced modifications (hTERT, H-RAS, p53 inactivation) of the WI-38 cells along the process of
malignant transformation. The stages chosen for the theoretical analyses can be arranged as several continuous trajectories where each sample
follows the preceding one. A common route for many trajectories, the ones we highlight in the text, is represented by the blue color. The first
branching occurs at the point 6 (pale blue) and generates the trajectory 156. The second branching occurs at the point 8 and generates 3
trajectories: 1-5-7-8-10-12 (red), 1-5-7-8-11 (yellow) and 1-5-7-8-9 (purple). There is an additional independent trajectory 1-3-4 (black). PDLs are the
number of doublings since the cells primary isolation in vitro.
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logarithm of the expression level of each gene. For gene
i at the time point T we obtain equation (1) for the
expression level of gene i at the time point T where Gia

is the weight of that gene in the pattern a

ln Xi(tT)︸ ︷︷ ︸
measured

expression level of gene i

= ln Xo
i︸︷︷︸

expression level of gene i
at a steady state

−
∑

α=1
Giαλα(tT)

︸ ︷︷ ︸
deviation due to phenotypes
of the transformation process

(1)

The first term on the right side of the equation is the
time-invariant part of the gene expression level for the
particular transformation process. Typically this term
makes a non-negligible contribution. According to the
theory, this term is the gene expression level at maximal
entropy. The time varying transcription patterns are
represented by the terms in the sum. It is these terms
that reduce the magnitude of the entropy. In the infor-
mation theory approach la(tT) is the extent of reduction
of the entropy due to the particular gene transcription
pattern a. Due to the presence of the constraints, repre-
sented in equation (1) by the action of expressed genes,
the system does not reach a steady state.
We have an accurate representation of the transforma-

tion process when the measured left hand side in equa-
tion (1) is close in value to the theoretical representation
on the right hand side of equation (1). By making a least
squares match between the two sides of equation (1) we
obtain the numbers Gia and la(t) with the necessary
mathematical details provided in the Additional file 1
with background material provided in [24-28]. As already
mentioned, only very few terms in the sum in equation
(1) are required to achieve this. The mathematical techni-
que we use insures that the patterns are orthogonal and
independent. We do not seek a perfect fit because experi-
mental data is invariably accompanied by some noise.

Theoretical Section: Implementation of Surprisal analysis
By the end of the thermodynamic-like analysis we
associate the deviations from steady state with a set of
transcription patterns. Note that in our approach, each
pattern is permanent and not varying in time. The list
of coefficients Gia is determined by our analysis for each
value of a, see Additional file 1 and [23] for details. The
weights Gia are not a function of time. Only the weight
la(tT) of the transcription pattern varies with time. This
is the background necessary for the analysis to be imple-
mented below. We next proceed to make some addi-
tional points about the theory.
A technical point is that the theory expresses the

weight of a pattern, that is its importance, as a product
of two factors, la(tT) = ωaPaT, see the Additional file 1
of this paper as well as [23]. Here ωa is the time inde-
pendent weight of transcription pattern a while PaT is
the fractional weight of the contribution of pattern a at
time T. (The fractional weights sums up to unity as

∑
T P2

αT = 1 ). We are interested both in those transcrip-
tion patterns with a large value of the absolute weight
ωa and in those patterns whose fractional weight
changes significantly in the course of time. The factori-
zation of la(tT) is not just a technical matter because it
shows that a transcription pattern can have a lower
absolute weight ωa yet its time-dependent weight can
change significantly at some stage of the transformation.
The time invariant part is computed as that part of Xi

(tT) that is not dependent on time. For notational rea-
sons it is convenient to introduce a ‘zeroth’ pattern by
writing the steady state term as ln Xo

i = −Gi0λ0 . Unlike
the other l’s, from its definition l0 does not depend on
time. In our computation we allow l0 to vary and use
its theoretical constancy as a check and a numerical
validation of the results. In the experiments of Rotter
et al, [20,21] there are several distinct trajectories that
differ by which mutation was induced in the system at
the last point in time. Because different trajectories can
terminate at distinct biological fates, each such trajec-
tory can possess its own time-invariant pattern.
In the Additional file 1 we provide full details on how

the numerical values of the weights la(tT) and of the
transcription patters Gia are determined from the mea-
sured values of the expression levels Xi(tT) of different
genes, where i is an index of a gene, at different times
tT. It follows from that technical discussion that there is
an upper value for the number of different transcription
patterns that can be identified from the data.
The result (1) was first derived in the context of selec-

tivity of energy requirements and specificity of energy
disposal of chemical reactions [25,28]. Using this expres-
sion to fit the observed data is often known as surprisal
analysis. The term surprisal refers to the information
provided by the deviation of the expression level from
the time independent part.
The transcription patterns and constraints are identi-

fied by fitting equation (1) to the observed expression
levels at different times along a particular trajectory. Say
that there are A time points in that trajectory. When we
use all A transcription patterns then the information
theoretic expression (1) with a = 1,2,.., A-1 is an exact
representation of the data, so at any time point the A,
l’s, l0,l1,...,lA-1 fully suffice to recover the data, noise
and all. The surprising result is that, as we shall see, in
practice one major transcription pattern often accounts
for the measured expression levels, (see Figure 2). What
it means is that transcription patterns can be ranked in
terms of their importance. The details of the fitting pro-
cedure are described in the Additional file 1.
The functional form (1) is derived by imposing con-

straints that prevent the entropy of the distributions of
gene expressions from being fully maximal. The details
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are provided in [23] and in reviews of the formalism
[24-27]. Technically the constraints are imposed using
the method of Lagrange’s undetermined multipliers [29].
A multiplier la(tT) is associated with each constraint a
at each time point T. The value of the multiplier is
determined by the value of the constraint at that time
T. We here determine the value by fitting equation (1)
to the data and we interpret la(tT), the value of the
multiplier a at time T, as the contribution of transcrip-
tion pattern a at that time. We make the least square fit
of the experimentally measured right hand side to the
theory derived left hand side of equation (1) using the
matrix technique of SVD. This provides a set conjugate
eigenvectors that define both the weights Gia of gene i
in pattern a and the weight la(T) of the pattern a at
the time T. The distinct eigenvectors are orthogonal and
this insures the independence of the patterns.
This interpretation la(T) is directly seen when we

compute the change in gene expression between two
time points T and T’

ln
(
Xi(tT′ )

) − ln
(
Xi(tT)

)
=

∑
α=1

Giα
[
λα(tT) − λα(tT′ )

]

=
∑

α=1
Giαωα (PαT − PαT′)

(2)

Equation (2) plays a key role in the quantitative eva-
luation of the biological implications of the results of
surprisal analysis as reported below. Specifically, equa-
tion (2) highlights the quantitative aspects of changes in
the levels of gene expressions. Changes in expression
patterns primarily require that the fractional weight PaT
changes significantly but it helps that the absolute
weight ωa is large. Also worth noting is that the changes
in the fractional weights and in the absolute weight
appear in the exponents of the levels of gene expres-
sions. Particularly when the fractional weights change
sign, see Figure 3 below, the levels of gene expressions
can change by orders of magnitude. This is part of what
we mean by an ‘inversion’ of the level of gene expres-
sions. An example of an inversion is shown in Figure 4
below.
The Additional file 1 shows how to use equation (2)

to compute the entropy of the gene transcription system
at different points in time. Entropy is a state function
meaning that it depends only on the current gene
expression levels and not on how we arrived at these
values. The equations given in the Additional file 1 pro-
vide an explicit illustration of this important property.

Figure 2 A scatter plot of the computed gene expression
levels vs. the measured values. A scatter plot of the computed
gene expression levels, lnXi(tT), equation (1), for 5582 transcripts at
time 7 of the trajectory 15781012 vs. the measured values. Dots (red
online) computed by equation (1), using only the most dominant
transcription pattern, a = 1. Squares (blue online) computed by
equation (1), using the two leading transcription patterns, a = 1,2.
Straight line: a perfect correlation using all the five transcription
patterns. For this trajectory and a few others the expression levels at
late times are best accounted for using patterns 1 and 3 because
the second pattern is far less important, see Figure 3. For certain
trajectories at early times, pattern 4 is important.

Figure 3 The temporal changes in the three most important
transcription patterns. The weights of the three most important
transcription patterns for the trajectory that goes through the time
points 1,5,7,8,10 and 12 see Figure 1. Digital values for all
transcription patterns and all trajectories are given in the Additional
file 1 Table S1. The representation la(tT) = ωaPaT and the plots of
the PaT’s vs. T, Additional file 1 Figure S3 and S4, show that, for
example, pattern 3 does not contribute meaningfully at the earlier
times. The small value at early times is because, as the numerical
value of the label aμμμincreases, the eigenvectors, see Additional
file 1PaT are more sensitive to noise.
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Theoretical Section: Application of Surprisal analysis
In this study we examined the WI-38/hTERT cell sys-
tem, which was guided to develop into a fully trans-
formed cell, beginning with the normal WI-38
immortalized non-transformed fibroblasts. Cells under-
went molecular manipulation such as hTERT insertion,
many doublings, depression of p53 function and the
insertion of oncogenic H-ras as depicted in Figure 1.
The model system was studied using the Human Gen-

ome Focus Array (Affymetrix, Santa Clara, CA) with
8500 verified human genes [10,21]. The data is the gene
expression level for each transcript, Xi(tT), at time t = T
for a series of 12 time points as shown in Figure 1. The
previous analysis [10,21] of the data identified many
transformation hallmarks. In particular down-regulation
of the transcripts involved in cell development and dif-
ferentiation at the early stages of transformation, induc-
tion of protein biosynthetic pathways, alteration in
embryonic antigen expression and in apoptotic tran-
scripts at the latter stages of transformation. In addition,
a “tumor-forming” genetic signature reflected in high
gene expression levels for cytokines and chemokines
was identified. The major findings of this previous study

were used to validate the information- theoretical
approach used in the current analysis as discussed in
detail in the Additional file 1. In order to examine
which biological processes were most affected by the
transformation, we used the EASE software [30] to
group those transcripts that passed the t-test analysis
and that changed by at least exp(+ 0.5) for each tran-
scription pattern a between two time points. Biological
categories that were significantly over-represented, as
defined by EASE score < 0.05 are shown in the Addi-
tional file 1, Tables S2 to S19.
Since this system did not develop continuously from

one point to the next we divided it into several trajec-
tories representing the various possible processes. The
expression levels were measured in duplicates for each
time point in the trajectory (Figure 1). The data that we
analyzed was the mean of the duplicates and included
5582 genes that had a ‘present call’ (according to Affy-
metrix calling procedure) in the two duplicates of at
least one sample [10,21]. We also performed the analysis
using only those genes that were further filtered by the
requirement that the variation between the duplicates is
quite small (below 0.05 as judged by a paired t-test).

Information-theoretic results of Surprisal Analysis of gene
expression
Using the data reported by Milyavsky et al. [21], we
implemented surprisal analysis and present some results
of the analysis in Figure 3. la(tT) represents the impor-
tance of the contribution, of gene expression pattern a
at the time T. The trajectory 1-5-7-8-10-12 (Figure 1),
includes 6 time points and therefore a maximum six
values of la(tT) can be calculated where a = 0,1,...,5.
The a = 0 term is the time invariant gene expression
pattern term and the five other are the varying patterns
and we rank them in order of decreasing weight.
Thereby, consecutive terms in the sum of terms in
equation 1 make decreasing contribution. Figure 3
shows three curves that are the values of la(tT) for the
3 constraints (or gene expression patterns) contributing
most to the process of transformation, as a function of
time.
The dominant transcription pattern a = 1 shown in

Figure 3 undergoes a large change in value, accompa-
nied by a change of the sign of its weight, between time
points 7 and 8. The second pattern increases signifi-
cantly between time points 5 and 7 and then drops to
zero at point 8 and stays zero thereafter. The third pat-
tern contributes only at the last three time points and
the sign of its value changes between points 8 and 12.
As seen in Figure 3 a weight of ‘zero’ is not exactly
zero. This point is best discussed using the representa-
tion la(tT) = ωaPaT. A weight of near zero at some
values of time means that while the absolute weight ωa

Figure 4 An inversion in the expression level genes at two
consecutive time points. An inversion in the expression level of
one hundred genes at two consecutive points in time along the
trajectory 1-5-7-8-10-12. Only a hundred values are shown for clarity
but the same pattern recurs for all values of the gene index i. The
change in the expression level, equation (2), is a sum over all
patterns. The plot shows only the dominant, see Figure 3, term a =
1, between points 7, red online, and 8, blue online. Note the ln of
the gene level changes by a factor of more than 5, exp(5) = 150. So
the inversion is fairly extreme being by more than two orders of
magnitude. As seen in Figure 3 there is a big change in the sign of
la = 1(tT) between T = 7 and 8.
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is not necessarily small, the fractional weight PaT is
small at those time points. (For each pattern a the frac-
tional weights are normalized to one as

∑
T P2

αT = 1 ).
The weights for patterns a = 1 and 2 corresponding to
Figure 3 are shown in the Additional file 1 Figures S3,
S4 and S5. Some patterns do not have a large weight.
The theory states that a gene expression pattern does
not contribute, meaning la(tT) ≈ 0, at such time points
that its presence does not lower the entropy. From the
point of view of the expression levels of genes, a pattern
with a very low weight does not contribute to the gene
expression levels at that time, see equation (1) and Fig-
ure 5 below. In this case patterns with higher weight
will contribute to the measured expression network.
As shown in the Additional file 1 Table S1 the ‘zeroth’

multiplier l0(tT) does not depend on the time tT of
measurement. This value should be constant, since l0
(tT) is the measure of the contribution of the time invar-
iant gene expression pattern of the steady state, a = 0.
The nearly exact constancy of the fitted value of l0(tT),
at different times, is a validation of the concept of a
time-invariant contribution, see equation (1). a = 0 is
the pattern at the maximum of the entropy without
time dependent constraints. It is the expression pattern
at the limit of steady state. As expected from basic con-
siderations, not all trajectories lead to the same cell fate.
Therefore, different trajectories have different secular
fates and can therefore differ in their l0 values.
We rank the varying transcription patterns by their

importance with a = 1 being the dominant one where
importance is by the size of the absolute weight ωa. The
smaller the value of ωa, the more likely it is that the fit
is not to the real data but to the noise. So at a given
point in time we have more confidence in the biological
significance in those transcription patterns with larger
weights. Even so, we will see that the fourth transcrip-
tion pattern is very important at early times. Digital
results for the weights la(tT)’s in different trajectories
are given in the Additional file 1 Table S1.
The steady state term l0G0i plus the other five time-

varying transcription patterns exactly reproduce the
measured levels of all gene expression. If we use fewer
patterns in the expansion (1) we get a quite acceptable
approximation when the dominant constraints are used.
To highlight this point we show in Figure 2 a scatter
plot of the measured levels vs. the prediction using just
one or just two transcription patterns, a = 1,2. Also
shown in Figure 2 is a solid line of unit slope. This is
the prediction using all five transcription patterns.
The analysis of individual expression patterns shows

that they can undergo an ‘inversion’ in their importance.
Inversion means that genes that at the previously mea-
sured point had high expression levels now go down
while genes that had a low level go up in their level at

the present time point. Examined at the level of a parti-
cular pattern the change is an outright inversion. By this
we mean that the logarithm of the expression level
changes sign or equivalently that the exponent of the
expression level changes sign as shown graphically in
Figure 4. This inversion transformation that occurs
when a constraint undergoes a qualitative change in its
weight is somewhat reminiscent of the process known
in physics and chemistry as a phase transition.
The results of analysis of different trajectories are

shown in Figure 5. The plot is such to emphasize the
similarity between different trajectories. So the abscissa
is not the time as a running number, see Figure 1 but
sequential events. Therefore the last point of trajectories
1-5-7-8-9, 1-5-7-8-10 and 1-5-7-8-11 is shown at the
same point because the time points 9, 10 and 11 are all
following time point 8.

Biological results: Identification of transcripts participating
in the first, major, transcription pattern (a = 1)
With minor variations we find the same major tran-
scription pattern for many trajectories, see for example
Figure 5. We begin by analyzing the main features of
the transcription pattern a= 1 for trajectory 1-5-7-8-10-
12. Among the over-represented categories with induced
expression we find transcripts participating mostly in
protein biosynthesis and the metabolism of DNA and
RNA (rRNA, tRNA, mRNA). Note that these transcripts
are limited to the induced and do not appear in the
over-represented reduced categories (Additional file 1
Table S2, b). Using KEGG we identified in the first tran-
scription pattern a group of induced spliceosome tran-
scripts that was not reported earlier.
In addition to the identification of the processes that

contribute significantly to the onset of carcinogenesis,
this study aims at unraveling the rationale that drives
this process. Therefore we seek an explanation for the
increased activity of the high energy demanding
processes - division and protein metabolism - in the late
stages of transformation despite the unchanged energy
metabolism (glycolysis and oxidative phosphorylation),
as judged from mRNA levels. In transcription pattern
a = 1, the information-theoretic approach points to a
big group of reduced transcripts, participating in signal
transduction category (110 genes with reduced expres-
sion out of the overall 404 genes with reduced expres-
sion; Additional file 1 Table S2, a). TGFb-Smad4,
JAK-STAT pathways are among the over-represented
biological categories with reduced gene expression, and
do not appear in the over-represented induced cate-
gories (Additional file 1 Table S2). Using KEGG,
28 gene products that function in the MAPK pathway
were identified. Of these the expression of 18 gene pro-
ducts is reduced, compared with 10 that are induced.
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The same phenomenon of the signaling network con-
traction in general and specifically a reduction of the
TGFb-Smad4, JAK-STAT and MAPK pathways was
observed previously in the in vitro model, based on the
initiating event in cervical cancer [22]. We suggest that
the contraction of signaling networks may reduce the
energy requirements for cell maintenance, thereby
diverting cellular resources towards rapid cell cycle pro-
gression and increased metabolism [22,31]. The major
transcription pattern of the trajectory 1-5-7-8-10-12

exhibits a similar picture of energy recycling where the
energy is not invested in the signaling network but can
be redirected towards cellular proliferation and protein
metabolism as we discussed previously in the HPV16
model system [22,31].
Interestingly, the major transcription pattern a = 1 in

the trajectory 1-5-7-8-11 possesses the same disregu-
lated transcription patterns as in 1-5-7-8-10-12 except
for the cell death category, which is reduced significantly
at point 11 (Table S3). Thus, the major transcription
pattern, that has the biggest impact on the process of
transformation of these two trajectories shows similar
changes at gene expression levels. Reduction in signal
transduction in the trajectories 1-5-7-8-11 and 1-5-7-8-
10-12 is highly correlated with the enhanced rate of
proliferation of the late stages that was measured experi-
mentally [10] and is in line with our observations [31] in
the HPV16 model system of the correlation between
reduced signaling and enhanced rate of division.
Analysis of the trajectory 1-5-7-8-9 reveals that the

major changes in the transcription patterns of the cells
in this route of transformation are different from the
previous two trajectories, 1-5-7-8-11 and 1-5-7-8-10-12.
The long evolution of hTERT immortalized cells with-
out opening the system (for H-RAS induction or p53
inactivation) leads to similar main changes, like reduc-
tion in development processes, induction of tRNA and
rRNA metabolism and protein biosynthesis. However,
the voraciously energy consuming category of signal
transduction (Additional file 1 Table S4) is not among
the over-represented reduced biological categories and
DNA and protein metabolism does not appear among
the induced categories.

The changes in the major gene transcription pattern
precedes the genetic alterations induced by p53
inactivation and H-RAS expression
Our purpose here is to characterize the major transcrip-
tion pattern, a = 1, before the application of alterations
and to check how far this transcription pattern is
affected by the subsequent changes. This analysis
enables us to recognize the cellular context that consti-
tutes a necessary condition for tumor initiation. To do
so we compared the l1(t)values of the 5 continuous
routes: 1-5-7-8, 1-5-7-8-9, 1-5-7-8-10, 1-5-7-8-11 and
1-5-7-8-10-12 that branch out at point 8. The major
transcription pattern of the 1-5-7-8, 1-5-7-8-10 and 1-5-
7-8-11 routes included the reduced signal transduction
category and induced protein metabolism. Reduction in
signal transduction and induction of protein metabolism
are found to be H-RAS/p53 independent, but play
important role in cellular transformation. Since these
alterations appear in the 1-5-7-8, 1-5-7-8-10, 1-5-7-8-11
and 1-5-7-8-10-12 trajectories we suggest that point 8

Figure 5 The temporal changes in the importance of the first
and the second expression patterns in different trajectories.
The weights of the first and the second expression patterns for
different trajectories that all have the same early path up to and
including time point 8. Digital data for all trajectories and all
transcription patterns are given in Additional file 1 Table S1 of the.
Note the inversion following point 8 in the first pattern and the
inversion following point 5 in the second pattern.
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exhibits the appropriate cellular context for future onco-
genic transformations. The trajectory ending at time
point 9 represents a different route, where numerous
cell divisions, which occurred between points 8 and 9,
caused many additional alterations that not necessarily
would lead to a cancerous phenotype.
The cell proliferation category in trajectory 1-5-7-8-10

is among the over-represented down regulated groups
(Additional file 1 Table S5) of transcripts as opposed to
trajectory 1-5-7-8-11, in which this category appears
among the induced expression groups. This difference
between the two trajectories might be explained by H-
RAS induction that can inhibit cell proliferation through
different mechanisms including induction of p21
through p53 [32]. The second difference between the
two trajectories is the reduced expression of the
transcripts participating in cell death in the trajectory 1-
5-7-8-11, which might be caused by p53 inhibition. Inter-
estingly the a = 1 transcription pattern of the trajectory
1-5-7-8 and of 1-5-7-8-10-12 have the largest number of
the overlapping categories (see Tables S2 an S6).
The analysis of the trajectory 1-5-7-8-10, using the

KEGG software reveals that MAPK pathway was reduced
during this route (15 transcripts were reduced in com-
parison with 8 induced (Additional file 1 Table S5)). The
analysis of the trajectory 1-5-7-8 showed the similar
results (Additional file 1 Table S6). This pathway was
also reduced independently from the RAS/p53 induced
mutations. Moreover we suggest that this reduction
might contribute significantly to the RAS transformation,
since among the reduced transcripts we identified ASK1,
the regulator of p38 pathway that provides negative feed-
back for RAS proliferative signaling [33].

Identification of transcripts participating in the second
transcription pattern (a = 2)
The second transcription pattern, a = 2, contributes at
the 1, 5 and 7 time points. This minor transcription pat-
tern switches its role between the two earlier time
points and the point 7 as indicated by the change in
sign between the 1,5 and 7 time points (See Figure 3).
As shown in the Additional file 1 Table S7, in trajectory
1-5-7-8-10-12, the reduced transcripts participate mainly
in the processes of cell cycle and proliferation or devel-
opment. This finding is consistent with the bioinfor-
matic analysis and experimental observation showing
reduction in the expression level of the transcripts parti-
cipating in cell proliferation in comparison with the
point 5 and slow growth rate in comparison with the
late stages of transformation [10]. Among the overrepre-
sented induced categories we found transcripts partici-
pating in the cell communication, cell adhesion, lipid
metabolism and enzyme linked receptor protein signal-
ing pathway. The AMPK transcript was among the

transcripts involved in the lipid metabolism category.
AMPK is an energy sensor and its expression and activ-
ity is regulated by the cellular AMP/ATP ratio [34]. The
induction of the AMPK in the point 7 might point to
the stressful conditions of the cells at the point 7 and be
correlated with reduced cell proliferation signature.
The analysis of the trajectories 1-5-7-8-9 and 1-5-7-8-

11 reveals that the transcription pattern a = 2 contains
similar altered transcription patterns, namely reduced
expression of the transcripts involved in cell cycle and
induced expression of the transcripts participating in
lipid metabolism, including AMPK transcript (Addi-
tional file 1 Table S8 an S9). The analysis of the major
transcription pattern (a = 1) of the trajectory 1-5-7
reveals similar results.

Third transcription pattern (a = 3) features the transcripts
that participate in the “tumor-forming” signature
The third transcription pattern, a = 3, identifies the parti-
cular changes that occurred between point 8 and the last
point of the trajectories 1-5-7-8-9, 1-5-7-8-11 and 1-5-7-
8-10-12. This transcription pattern onsets between point
8 and points 9, 10 and 12 (cf. Figure 3 and Figure 6).
When it is on, the other transcription patterns are, by
comparison, of lesser importance, cf. Figure 7.
As shown in the Additional file 1 Table S10, for trajec-

tory 1-5-7-8-10-12, the reduced transcripts participating
in the signal transduction and cell communication cate-
gories significantly contribute to the transition from
point 8 to the cancerous point 12 of the trajectory 1-5-7-
8-10-12. An additional reduction in these categories, that
already occurred in the switch from point 7 to point 8 in
the major transcription pattern a = 1, differentiates point
8 from point 12 (Additional file 1 Table S10). The switch
between points 8 and 12 is also accompanied by an addi-
tional induction of the cell proliferation category.
New induced categories belonging to the cell cycle

appear at point 12 as compared to point 8 (Additional file
1 Table S10). This induction might be explained by the
induction of the chemokine signaling, as identified by
the KEGG software. The induction in the expression of
the chemokines and cytokines is highly correlated with the
“tumor-forming” genetic signature according to Milyavs-
kyet al. [21]. Moreover 12 of the 14 secreted molecules
that comprised this “tumor-forming” genetic signature
[21] also appear in this study as significantly contributing
to the switch from point 8 to the cancerous stage.
The analysis of the third transcription pattern in the

trajectory 1-5-7-8-10 reveals similar results. 10 of the 14
secreted molecules that comprised the “tumor-forming”
genetic signature [21], contribute significantly to the
switch from point 8 to point 10. In our analysis we
observed almost 4-fold induction in the value of contri-
bution of the CXCL1chemokine transcript to the third
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6.WI-38/T slow/G 
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signal transduction & development
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Induced protein, 
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Figure 6 Identification of the major and minor transcription patterns participating in the cellular transformation. Microarray analysis
using to the information-theoretic approach reveals gene expression patterns underlying the transition between particular stages in the in vitro
transformation model. Selected gene expression networks in each transcription pattern (a) are shown in the white boxes. The time points are
colored according to their trajectories as also shown in Figure 1: blue, the common route before the branching; pale blue, the split generating
the trajectory 1-5-6; purple, the split generating the trajectory 1-5-7-8-9; red, the split generating the trajectory 1-5-7-8-10-12, yellow the split
generating the trajectory 1-5-7-8-10-11. We suggest that the main transcription pattern a = 1 in the trajectory 1-5-7-8-10-12 is the necessary
condition in the transition from normal tissue all the way to cancer. The third transcription pattern a = 3 in the trajectory 1-5-7-8-10-12
completes the necessary expression networks of the transcription pattern a = 1 and insures the sufficient conditions for the tumor formation.
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transcription pattern at point 12 as compared to point
10. This result strongly correlates with the observed
experimental synergism between H-RAS induction and
inactivation of p53 on the expression of CXCL1 [21].
We suggest that the third transcription pattern, as

identified in our study, determines the “fine tuning”
changes that specify the transition from point 8 through
point 10, to the cancerous stage. It might be considered
as the necessary stimulus that must happen together
with the transformations identified in the major tran-
scription pattern to bring the pre-malignant cell to the
fully transformed stage.
The analysis of the trajectory 1-5-7-8-9 identifies over-

represented reduced categories in the third transcription
pattern, which includes DNA metabolism and mitotic
cell cycle categories (Additional file 1 Table S11). This
result correlates with the reduced proliferation cluster in

time point 9 as compared to point 8 [10]. The switch
from point 8 to 9 is characterized by induced intracellular
signaling cascade and death categories (Additional file 1
Table S11). This finding supports our previous hypoth-
esis, that point 9 represents a different route that prob-
ably would not lead to a cancerous transcription pattern.
The third transcription pattern of the trajectory 1-5-7-

8-11 inverts between points 8 and 11. This switch is
accompanied by the reduction of categories, like cell
adhesion and cell communication and induction of the
similar categories that included cell proliferation and
mitotic cell cycle (Additional file 1 Table S12).

Minor transcription patterns
Quantitative results for the weights of all the different
transcription patterns in all the trajectories that were
analyzed are given in tabular form in the Additional file
1 (Tables S13, S14 and S15).

Transcripts of the “tumor-forming” signature were
induced in early stages of transformation
To follow the changes in the contribution of the tran-
scripts to the “tumor-forming” signature in the course
of transformation, we compared three trajectories that
underwent p53 inactivation in their last points: 1-3-4, 1-
5-6 and 1-5-7-8-11. The transcription pattern 2 of the
trajectory 1-3-4 switched its sign at the point 3. This
transcription pattern identifies the changes that
occurred after p53 inactivation. 4 of the 14 secreted
molecules that comprise “tumor-forming” genetic signa-
ture according to Milyavsky et al. [21], appear as signifi-
cantly positively contributing to the “tumor-forming”
signature. EASE analysis reveals induction in the cell
proliferation and immune response as expected after
p53 inactivation (Additional file 1 Table S19, [35]).
The analysis of the most contributing transcripts to

the first transcription pattern of the trajectory 1-5-6,
that switched its sign at the point 5 identifies the lar-
gest induced overrepresented immune category (71
transcripts out of the 297 are contributing to the
major transcription pattern, see Additional file 1 Table
S16.) and also induction in the NF�B pathway follow-
ing the p53 inactivation (Additional file 1 Table S16).
10 of the 14 secreted molecules that comprise “tumor-
forming” genetic signature according to Milyavsky et
al. [21], appear already at point 6 as significantly posi-
tively contributing to the “tumor-forming” signature.
Moreover KEGG analysis reveals the biggest group of
the induced transcripts participating in the cytokine-
cytokine receptor interaction (19 induced as compared
to the 5 reduced), including cytokines and chemokines
participating in cancer development [36]. 6 of the 19
induced transcripts are known to be regulated by
NF�B [36].

Figure 7 Change in the expression levels of all genes between
time points 8 and 12 in trajectory 1-5-7-8-10-12. Change in the
expression levels of all genes between time points 8 and 12 in
trajectory 1-5-7-8-10-12 due to the third transcription pattern,
ordered by their increasing values. Computed as the a = 3 term in
equation (2). Note that while many gene levels do not change,
some go up in level while others are reduced. As seen in equation
(2), the direction of the change is determined by two factors: a
pattern-wide factor that is the difference in the weight of the
pattern between the two time points and the (time independent)
sign of the weight Gia of gene i in pattern a. Also shown in the
figure, red and brown, are the contributions of the other
transcription patterns. These are the terms of other values of a in
equation (2). These are, in comparison, smaller since the main
transcription pattern that contributes to the change in expression
level between point 8 and point 12 is transcription pattern 3.
Transcription pattern 3 is most contributory to this change because
while overall the transcription patterns 1 and 2 are more heavily
weighted, they do not change between point 8 and 12. See Figure
3 and the Additional file 1 Figures S2, S3, S4 and S5.
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Remarkably, the third transcription pattern of the tra-
jectory 1-5-7-8-11, that identifies the most contributing
transcripts in the switch from point 8 to point 11,
reveals contraction of the immune response category
and NF�B network as compared to the point 6 of the
trajectory 156 (see Additional file 1 Table S12 and S16).
KEGG analysis identifies only 3 induced transcripts par-
ticipating in the cytokine-cytokine receptor interaction
pathway. Only 4 of the 14 secreted molecules that com-
prise “tumor-forming” genetic signature according to
Milyavsky et al. [21] appear at point 11 as significantly
positively contributing to the “tumor-forming” signature.
The general contraction of the signaling pathway cate-

gory, as identified by the major transcription pattern,
that includes reduction in the one of the NF�B regula-
tors - MAPK pathway, may explain a drop of the NF�B
network activity after p53 inactivation at point 11. The
contraction of the signaling network is one of the
dominant processes that contribute to the process of
transformation in the trajectories 1-5-7-8-11 and 1-5-7-
8-10-12. NF�B down regulation might be a by-product
of the overall contraction in signaling. We suggest that
RAS induction at point 12, on the one hand, rescues the
reduction of the NF�B pathway and renews the induced
expression of chemokines and the cytokines, that contri-
bute to cell proliferation and comprise the “tumor-
forming” genetic signature according to Milyavsky et al.
On the other hand, H-RAS activation did not change
the major transcription pattern that includes reduced
signal transduction. Moreover, as we indicated earlier,
the reduction in the MAPK signaling that removes
negative feedback control over the H-RAS oncogene
might enable it to establish the cancer phenotype.
Therefore we conclude that the appropriate combination
of changes in several networks was needed in order to
enable “the tumor signature” gene products to generate
a tumor phenotype.

Discussion
Attempts to identify a list of mutations that confer the
advantages needed for tumorigenesis have not yet
revealed the general characteristic of cancers. In this
paper we use a system-level approach that identifies the
altered gene expression patterns and delineates the sig-
nificance of each alteration in the establishment of the
cancer phenotype. These patterns are derived as con-
straints on the increase of the thermodynamic entropy.
The entropy thereby cannot reach its maximal value at
the steady state. Within each transcription pattern that
we identified, bioinformatics databases are used to
delineate which networks are involved.
Our input is data provided by microarray analysis of

the many induced and spontaneous changes that occur
during the transformation in the WI-38 model system

[21]. In very detailed studies gene clusters are identified,
but the extent of contribution of each such transcription
pattern to the cancer phenotype is not known. The
information-theoretical analysis offers an understanding
of the different stages in the processes and their role
during the process of transformation. The essence of
our approach is that it identifies a small number of
independent transcription patterns. These patterns are
exhaustive in that they fully describe the process.
Furthermore, as shown in equation (2), the weights of
these patterns quantify the changes in each gene expres-
sion level between any two stages.
We demonstrated a convergence between our data

analysis and the analysis presented [21] that examined
the changes in expression levels during the process of
transformation of the WI-38 immortalized fibroblasts.
For the HF1 model system our analysis has uncovered
several important additional processes that were not
described by the previous analysis of this model system.
The first major transcription pattern identified by sur-

prisal analysis of the microarray data shows that the
progressive transformation of the WI-38 cells was
accompanied by induced transcription of the genes par-
ticipating in protein metabolism and cell proliferation.
The expression of the ATP producing genes remained
unchanged. We further identified a large group of
reduced transcripts with an involvement in signal trans-
duction pathways (see Figure 6). Signal transduction
requires energy expenditure, that plays a role in improv-
ing the sensitivity and specificity of the signal transduc-
tion process [37] and also in the process of signal
amplification. Thus, this overall shrinkage in signal trans-
duction seems to provide the energy required for cell sur-
vival and proliferation. We suggest that the enhanced
growth rate of the late WI-38 cells occurs at the expense
of ATP consuming signal transduction processes. This
finding is strikingly similar to our previous observations of
the enhanced proliferation on the background of reduced
signal transduction and cap-dependent translation during
the process of transformation of the cervical cancer HF1
model [22,23,31]. In these cells too, the energy metabolism
remained unchanged during the course of transformation.
Thus, two independent models of cellular transformation
show a similar rationale of energy reorganization in the
pre-cancerous state: induced rate of cellular proliferation
and reduced ATP consuming pathways, with ATP produ-
cing networks remaining unchanged.
Primary cells and cells at an earlier stage of transfor-

mation are usually resistant to H-RAS transformation
that inhibits cell proliferation through different mechan-
isms [32]. Therefore it is important to identify the
appropriate cellular context that enables productive
H-RAS transformation. Using the information theoretic
approach we identified point 8 as the point in the
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transformation route that includes the appropriate phe-
notype enabling H-RAS transformation. At that point
those WI-38/T fast cells that underwent 355 PDLs gave
rise to the cancerous phenotype. This stage was the first
time point that showed reduction in signal transduction
pathways and among them the p38 pathway that is
responsible for the negative feedback of RAS prolifera-
tion [33]. On the other hand, at the time point 9 (WI-
38/T fast cells) the process of immortalization changed
direction and led to a different network reorganization
from that seen at the cancerous point 12 (WI-38/Tfast/
R/G). To conclude, we suggest that point 8 in time is
the essential intermediate stage that has the appropriate
cellular context for further oncogenic transformation.
This context appears before the HRAS activation and
p53 inactivation and it seems to be a necessary but not
sufficient condition for the full cellular transformation.
The earlier and later stages exhibit different cellular
context that apparently would not lead to the cancerous
phenotype after H-RAS activation and p53 repression.
The current analysis gives us a possible explanation for
the inability of the late HF1 cells to undergo H-RAS
transformation, as we observed experimentally (unpub-
lished results). Compared to time point 12 in the WI38
system, the HF1 cells had an even more severe reduc-
tion in signal transduction that included the PI3K-PKB
pathway. This pathway is known to be required for H-
RAS transformation and NF�B activity [36,38]. We sug-
gest that to achieve a full H-RAS transformation of the
late HF1 cells both the PI3K-PKB and H-RAS pathways
need to be intact.
The third transcription pattern identified the “tumor-

forming” genetic signature according to Milyavsky et al.
[21]. This signature expressed synergistically upon
H-RAS introduction and p53 inactivation after time
point 8 (Figure 6). Induction of chemokines and cyto-
kines occurred on the background of the reduced signal-
ing (Figure 6) including the reduced negative feedback
on H-RAS, H-RAS activation and p53 inhibition. The
third transcription pattern of the long trajectory 1-5-7-
8-10-12, as identified by our analysis, defines the neces-
sary “fine tuning” process towards cancerous phenotype.
We described transcription pattern a = 1 as the neces-
sary condition and transcription pattern a = 3 as the
increment that makes it into the sufficient condition.
According to our analysis the HF1 model does exhibit
the major transcription pattern just as for the WI-38
model but lacks the third transcription pattern and
therefore is short of the sufficient condition.

Conclusions
We have identified a major transcription pattern that
showed a contraction in expression of the signaling net-
work during WI-38 cell transformation. The contraction

in the signaling network during the process of transfor-
mation was accompanied by induction of cellular prolif-
eration and protein metabolism, whereas the expression
of the ATP generating pathways remained unchanged.
We hypothesize that the decrease in expression of many
ATP consuming signaling pathways cuts the energy
requirements for cell maintenance, allowing energy to
be diverted towards rapid cell proliferation. These
results are supported by the our previous findings in the
cervical cancer in vitro model, in which we observed
reduction of ATP consuming pathways and induction of
cellular proliferation in the absence of enhanced ATP
production. It thus appears that the rationale of cellular
regulation is unchanged in two distinct models of cellu-
lar transformation.
Using surprisal analysis we identified the major neces-

sary transcription pattern for cellular transformation by
H-RAS and p53 inhibition. Moreover we recognized the
appropriate cellular context for the RAS transformation.
“Tumor-forming” genetic signature did not appear in
the major transcription pattern. The minor third tran-
scription pattern that defines the transition from the
point 8 through 10 to the last cancerous point 12
includes the transcripts participating in the “tumor sig-
nature”. According to our analysis the third transcrip-
tion pattern appears to be the “fine tuning” that
completes the premalignant transformation.

Additional material

Additional file 1: Supplemental materials. The file contains: - A section
“Surprisal analysis” describing the more practical aspects of surprisal
analysis (p.1). - Table S1 providing the results of surprisal analysis in a
digital form (p.5). - Additional supplementary figures (Figures S1-S6, pp.6-
11). - Validation section (p.11). - Results of the analysis of the minor
transcription patterns (p.13). - Lists of transcripts participating in different
transcription patterns given as supplemental tables S2-S19 (pp.14-36).
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