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Abstract

Motivation: Searching for precise terms and terminological definitions in the biomedical data space is problematic, as re-
searchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines
that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the
tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence
in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and
weaknesses in different search requirements.
Result: We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies
and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have
been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based
ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and
confidence to the expert-based GT as well as evaluating a broader range of search queries.
Conclusion: The main outcome of this work is the identification of key search factors for biomedical ontologies together
with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select
the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and
practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for
their daily work.
Availability: The source code (of seven ranking algorithms), ground truths and experimental results are available at https://
github.com/danielapoliveira/bioont-search-benchmark
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Introduction

The biomedical domain has a long history of using formal
vocabularies, terminologies, codes and ontologies to describe
data sets ranging from genetics, molecular or chemical domains
to patients receiving medical care [1, 2]. This domain has been
one of the early adopters of Artificial Intelligence (AI), Semantic
Web and recently introduced linked and big data initiatives, re-
sulting in the development of several biomedical repositories
and ontologies.

Biomedical ontologies are typically large [3], covering thou-
sands of concepts represented by classes (e.g. the Gene
Ontology [4] has almost 50 K classes). Most ontologies in this do-
main use a rich vocabulary in labels, synonyms and textual def-
initions associated with classes and properties [5]. For example,
the class http://purl.obolibrary.org/obo/GO_1905294 has (1) a
preferred label: positive regulation of neural crest cell differenti-
ation; (2) a textual definition: any process that activates or
increases the frequency, rate or extent of neural crest cell differ-
entiation; and (3) synonyms: upregulation of neural crest cell
differentiation; upregulation of neural crest cell differentiation;
upregulation of neural crest cell differentiation; and activation
of neural crest cell differentiation.

A key barrier for a data publisher, however, is to find the
right set of ontologies, terminologies or vocabularies to anno-
tate entities in data sets. Often the search results over the ontol-
ogy repositories are overwhelming, with dozens of synonyms
matching in different ontologies, as well as a common disagree-
ment between search engines in the ranking of ontological
resources in their search results. However, various data publish-
ing platforms (in the biomedical context) and infrastructures
advocate that if a database entity is described using a precise
ontological resource, it eventually leads to efficient linking and
querying over published data sets [6, 7]. Owing to different nam-
ing conventions, textual descriptions, synonyms and granular-
ity of the biomedical entities, it is an open research problem to
precisely identify an ontological resource, which best describes
a given concept.

The difficulty of finding ontological resources (i.e. classes
and properties) for a given set of words has direct and indirect
consequences (i) newly introduced repositories often develop
proprietary schemas (including terminologies and codes) that
fit well for a particular use case, developing an ontology from
scratch and hampering the reuse of well-established ontologies;
(ii) a recent study about Linked Open Data [LOD (http://lod-
cloud.net/)] suggests that data sets based on closed and/or pro-
prietary schemas end up being isolated with fewer incoming
links, thus, impeding the main purpose of using linking data
across several co-related facilities [7]; and finally, (iii) loosely
annotated data sets—especially in the biomedical domain—se-
verely affect the horizontal layers (data curation, alignment,
querying, entity disambiguation, etc.) of a data integration solu-
tion, resulting in weak data interoperability.

This research is motivated by the needs of the BIOOPENER
project (http://bioopenerproject.insight-centre.org), which aims
to link cancer and biomedical data repositories by providing
interlinking and querying mechanisms to understand cancer
progression. The BIOOPENER project needs to find the most ap-
propriate ontological classes and properties to describe thou-
sands of data entities independently created in cancer-related
repositories. These repositories are not linked to each other and
after converting them to RDF format, the free-text in the data-
base needs to be annotated with ontological resources.
However, to the best of our knowledge, no systematic study has

been conducted to compare state-of-the-art algorithms and
search engines in the domain of biomedical ontologies to con-
clude their reliability and to understand what search scenarios
motivate the use of each algorithm or service to choose the ad-
equate one for the project’s needs.

In this article, we extend our initial work [8] by testing state-
of-the-art Information Retrieval (IR) algorithms, ontology rank-
ing approaches and established search engines for searching
and ranking biomedical ontologies. The algorithms and search
applications/engines are tested by searching a defined set of
queries obtained from a cancer genomics scenario. Using these
queries, we established a ground truth (GT) by asking 10 bio-
medical and ontology engineering experts to manually rank the
search results for each query. As building a manual GT is an
expensive process, we developed an automated probabilistic
ground truth (PGT). The PGT led to a better understanding of the
GT and allowed the expansion of the ontology collection and
the number of queries tested. We then compared both ground
truths (GT and PGT) with the results of the algorithms and ap-
plications obtained by using Precision@k, Average Precision@k,
Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG). This evaluation provided the neces-
sary knowledge to explore the advantages and disadvantages of
using each search engine and ranking algorithm.

We start the article by discussing relevant related work, fol-
lowed by the description of two biomedical search services
[BioPortal and Ontology Lookup Service (OLS)], a search library
(Solr) and an annotation tool (Zooma) and then seven ranking
algorithms. We present the experimental set-up by describing
the ontology and queries used and by explaining the construc-
tion of the GT and PGT. We provide an analysis and discussion
of our approach and results. Finally, we present our conclusions
in regards to the algorithms and applications tested and give an
overall view of the state of the art of searching biomedical
ontologies with query words.

Related work

IR approaches have been successful in finding and ranking rele-
vant documents. In the Web environment, IR search engines
are primarily keyword-based and analyse the relevance of a
document using content-based or graph-based methods. Early
approaches to query search and ranking focused on entities of
different types, which are present in Wikipedia [9]. Similarly,
classic named-entity recognition (NER) approaches aim to find
information about a given set of entities in a text. Often, NER-
based techniques find results for generic and limited sets of en-
tity types (e.g. Person, Organization, Address). Semantic Search
engines have benefited from well-established IR methods. For
instance, Swoogle (which was initially developed to rank ontol-
ogies only) [10], Sindice.com [11], Watson [12] or Yars2 [13] allow
searching of ontology resources through user queries. The rank-
ing in these search engines follows traditional link-based rank-
ing methods, in particular, adapted versions of the PageRank
algorithm [14], where links from one source of information to
another are regarded as a ‘positive vote’ from the former to the
latter. Falcons [15] is a popularity-based scheme to rank con-
cepts and ontologies. However, most of these strategies focus
on ranking instances but are not as effective when ranking
classes or properties in ontologies.

Ranking ontological resources can be based on different criteria
[16], for example, how well an ontology meets the requirements
of certain evaluation tests [17] or on methods to evaluate general
properties of an ontology based on some requirement [18].
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However, only limited work has been proposed to rank resources
based on user posed queries. AKTiveRank [19] is a system that
uses structural metrics [i.e. Semantic Similarity, Betweenness,
Density and Class Match Measure (CMM)] to evaluate different rep-
resentational aspects of an ontology and calculates its ranking in
relation to a set of search queries specified by a user. BioPortal also
developed a tool [Ontology Recommender (https://bioportal.bioon
tology.org/recommender)] that, from a set of keywords or a text,
tries to return the lowest number of ontologies the covers the
input.

IR algorithms have been successfully applied in a few open-
source indexing and search engines, such as Lucene (http://
lucene.apache.org/), Solr (http://lucene.apache.org/solr) and
ElasticSearch (https://www.elastic.co/). These applications in-
clude Application programming interfaces (API) to provide an
easy implementation and fast search. The user has control over
most aspects of the inner-workings of these applications and
can adapt them to serve specific needs, e.g. ontology search.

General search services and algorithms have been developed
for linked data applications, for instance, the Linked Open
Vocabularies (LOV) (http://lov.okfn.org/dataset/lov/), YAGO [20],
OntoKhoj [21], OntoSearch [22] or OntoSelect [23]. However,
none of them is designed specifically for the biomedical do-
main; therefore, some of them (e.g. LOV and YAGO) index none
of the available biomedical ontologies (LOV and YAGO), and
others are not available any more (OntoSelect, OntoSearch and
OntoKhoj). OntoSelect provided an evaluation methodology [24]
by creating a benchmark that associated topics from Wikipedia
pages with ontologies and then compared the retrieval results
of OntoSelect with Swoogle. However, the authors concluded
that, on average, OntoSelect did not perform better than
Swoogle.

The biomedical community has made a significant effort to
develop services such as BioPortal [25] and the OLS [26] for
searching and applying ontological resources. However, they
often suggest large, vague or loose search results for a given
query. Searching for the right concept in the most appropriate
ontology is, therefore, a strenuous task, as a significant number
of available ontologies exist, in the same or in closely related
domains, that describe overlapping, closely related or the exact
same concept.

OntoCAT [27] provides uniform access for search across dif-
ferent public online repositories (BioPortal and OLS) but also
allows the inclusion of local ontology files in standard OWL or
OBO formats. This software is available as an R package [28] and
is an easy method to programmatically search and integrate
ontologies from different origins in the R environment.

Ontology search: applications and algorithms
Searching applications

We analysed and compared two biomedical repositories with
integrated online search services, a local stand-alone search en-
gine and an annotation tool. The online applications have APIs
publicly available that were searched in the version available on
the 19 December 2017. The following sections describe the
ontology search applications:

BioPortal
BioPortal is a repository containing both open-access and
licenced biomedical ontologies and terminologies. Since its in-
ception, the BioPortal library has grown substantially, from 72
ontologies in 2008 to over 200 in 2011 and, in 2017, already

indexes >500 ontologies. Besides being a repository for biomed-
ical ontologies, BioPortal includes other resources and services.
One of them is providing a search mechanism to find ontologies
or ontology resources through keyword search. This search usu-
ally returns several matches, and the results are ranked by the
popularity (i.e. number of visits), in BioPortal, of their source
ontology.

Solr
Solr is a platform that extends the Apache Lucene search library
for full-text indexing and search. One of Solr’s major features is
a REST-like API for easy integration with any programming lan-
guage. The Lucene engine used by Solr scores documents using
a combination of the Boolean model and a Vector Space Model
(VSM) algorithm. First, it uses the Boolean model to narrow
down the number of documents it needs to score and then uses
the VSM to attribute a final score to a document in relation to a
user’s query.

Ontology Lookup Service
The OLS is a repository for biomedical ontologies. As of January
2018, OLS has 206 ontologies and provides a search mechanism
to match query words with ontological concepts. This search
uses Apache Solr to index ontologies, but it applies specific

boosts to some of the results, such as label or ID exact matches.

Zooma
Zooma (http://www.ebi.ac.uk/spot/zooma/) provides mappings
between a free-text input and a curated repository of annota-
tion knowledge. This repository contains the annotations that
were manually associated with data from sources such as the
Expression Atlas [29] and the Genome-Wide Association Studies
(GWASs) catalogue [30]. When no mappings are found in the
curated data repository, OLS search is used instead to increase
coverage.

Ranking algorithms

We implemented seven commonly used ranking algorithms for
documents and adapted them to, given a free-text query, rank
resources in a collection of ontologies. For content-based algo-
rithms [i.e. term frequency–inverse term frequency (tf-idf),
BM25, VSM and CMM), instead of using words as the base unit,
we considered a resource r (class or property) in the ontology as
the measuring unit. A resource is matched to a query if any of
the query words exist in the values for the label, synonyms or
description. When we wish to retrieve only exact matches, the
query words have to be strictly the same as the value matched
from the label, synonyms or description of a resource. The
graph-based models (PageRank and Semantic Similarity) do not
consider properties, only classes. However, <1% of all resources

in the collection are properties.
Table 1 lists the formal notations applied in the description

of the algorithms. The following sections describe the algo-
rithms with their adaptation for ranking ontologies.

Boolean model
The standard Boolean model is based on Boolean algebra, where
a query is viewed as a Boolean expression. Therefore, for a set
of ontologies and queries, the retrieval is binary and based on
whether the retrieved results contain the query words.
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Term frequency–inverse term frequency
tf-idf [31] quantifies how important a term is in an ontology by
analysing the frequency of the term in the resources of that
ontology and in the overall collection of ontologies.

tfðr;OÞ ¼ 0:5þ 0:5 � f ðr;OÞ
maxff ðrj;OÞ : rj 2 Og

idfðr;OÞ ¼ log
N

jfO 2 O : r 2 Ogj
tf-idfðr;O;OÞ ¼ tfðr;OÞ � idfðr;OÞ:

(1)

Here tf(r, O) is the term frequency of r in O obtained by divid-
ing the frequency of r by the maximum frequency of any re-
source rj 2 O. The inverse document frequency idf ðr;OÞ is a
measure of commonality of a resource across the collection. It
is obtained by dividing the total number of ontologies in the col-
lection, N, by the number of ontologies containing the resource
r and then computing the logarithm of that quotient. The final
tf-idf of r is the product of the tf and the idf.

BM25
BM25 [32] is a weighting scheme that takes into account, not
only term frequency but also ontology size without introducing
too many additional parameters in relation to tf-idf. Usually,
the BM25 score is computed for Vqi 2 Q, but, to tailor this statis-
tic for ontology ranking, we compute the sum of the score of
each rj 2 rO(qi) for each query term qi. Therefore, given a re-
source r 2 rO(qi), with a value (e.g. label) containing the words
r1,. . ., rn, the BM25 score of the ontology O is computed by:

scoreðO;QÞ ¼
Xn

j¼1

idf ðrj;OÞ
tf ðrj;OÞ � kþ 1

tf ðrj;OÞ þ k � 1� bþ b � jOjavgol

� � ; (2)

where tf(rj, O) is term frequency for the matched resource rj in
the ontology O, and idf ðrj;OÞ is the inverse document frequency
of the resource rj 2 rO(qi). jOj is the total number of resources
(i.e. 3�jaxiomsj) in the ontology, and avgol is the average ontol-
ogy size in the ontology collection. k and b are free parameters,
usually chosen, in absence of an advanced optimization, as k 2
[1.2, 2.0] and b¼ 0.75. For the current implementation, we used
k¼ 2.0, b¼ 0.75.

Vector Space Model
A VSM [33] assumes that ontology resources and queries can be
represented by the same type of vector. Non-binary weights are
assigned to indexed terms, usually using weighting schemes
such as tf-idf. The degree of similarity between query and

ontology resources is calculated by comparing the vectors that
represent the query and each ontology resource. The VSM score
was calculated as follows:

simðO;QÞ ¼

Pn
i¼1

wðqi;OÞ �wðqi;QÞ

jOj � jQj : (3)

Here, w(qi, O) and w(qi, Q) are the weights of qi in the ontology
O and query Q, respectively. jOj is the ontology vector norm, and
jQj is the query vector norm. For this implementation, we con-
sider tf-idf as the vector weight. Therefore, the similarity of an
ontology to query Q is computed as:

simðO;QÞ ¼

Xn

i¼1

tf-idfðqi;OÞ � tf-idfðqi;QÞ

jOj � jQj

tf-idfðqi;OÞ ¼
Xz

j¼1

tf-idfðrj;OÞ : rj 2 rOðqiÞ

tf-idfðqi;QÞ ¼
Xn

j¼1

tf-idfðqi;QÞ : qi 2 Q

jOj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXz

j¼1

ðtf-idfðrj;OÞÞ2
vuut

jQj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðtf-idfðqi;QÞÞ2
s

:

(4)

PageRank
PageRank [34] is an iterative method to analyse links, and it was
adapted to assign a numerical score to each ontology in a set of
ontologies. This implementation considers ontologies as nodes
and owl: imports (imports of other ontologies into the current
ontology, i.e. outlinks) as edges. In each successful iteration, the
score of the ontology O is determined as the sum of the
PageRank score of the previous iterations of all the ontologies
that import ontology O divided by their number of outlinks. For
the kth iteration, the PageRank score of ontology O is given by:

scorekðOÞ ¼
P

j2deadlinksðOÞ PRk�1ðjÞ
N

þ

þ
P

i2inlinksðOÞ
PRk�1ðiÞ

joutdegreeðiÞj

scorekðOÞ ¼ d � scorekðOÞ þ
1� d

N
:

(5)

Here, deadlinksðOÞ are ontologies in the collection that have
no outlinks. All nodes are initialized with an equal score (i.e. 1

N,
where N is the total number of ontologies in O before the first it-
eration). In the experimental evaluation, we set the damping
factor d equal to 0.85 (common practice).

Ontologies with no owl: imports statement can still reuse
classes from other ontologies following the MIREOT [35] guide-
lines for referring external terms from a target ontology. In our
experiment, whenever these references existed within the
ontology classes, an owl:imports statement was introduced to
identify the link between the two ontologies.

Class Match Measure
CMM [19] calculates the coverage score of an ontology in rela-
tion to a set of given queries. Despite not ranking each query

Table 1. Notation used

Variable Description

O Ontology collection
N Number of ontologies in O

O An ontology: O 2 O

R Collection of all resources
(i.e. classes and properties) with R 2 O

r A resource: r 2 O and r 2 R
Q Query string
qi Query word i of Q
rO Set of matched resources r for Q in O
rO(qi) Set of matched resources r for qi in O:

Vri 2 rO, ri 2 O and ri matches qi
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individually, this algorithm represents the type of search one
could expect from a user that requires the lowest number of
ontologies to cover all the queries in their search.

The CMM algorithm looks for exact and partial matches and
scores an ontology depending on the number of matches. A
higher number of matches mean a higher CMM score. The score
for an ontology is computed as:

scoreCMMðO;QÞ ¼ ascoreEMMðO;QÞ þ bscorePMMðO;QÞ; (6)

where scoreCMMðO;QÞ is the final score for CMM, scoreEMMðO;QÞ is
the exact match measure and scorePMMðO;QÞ is the partial match
measure for the ontology O with respect to the set of queries Q.
a and b are the exact matching and partial matching weight fac-
tors, respectively. Exact matching is favoured over partial
matching, and therefore, a > b. Here, a ¼ 0.6 and b ¼ 0.4.

scoreEMMðO;QÞ ¼
P

r2O

P
Q2Q uðr;QÞ

uðr;QÞ ¼
(1 if labelðrÞ ¼ Q

0 if labelðrÞ 6¼ Q

scorePMMðO;QÞ ¼
P

r2O

P
Q2Q wðr;QÞ

wðr;QÞ ¼
(1 if labelðrÞ contains 8qi : qi 2 Q

0 if labelðrÞdoes not contain qi 2 Q
:

(7)

u(r, Q) counts the number of exacts matches, and w(r.Q) counts
the number of partial matches. scoreEMMðO;QÞ and scorePMMðO;QÞ
sum the number of matches (exact and partial, respectively)
that exist in every ontology for a set of queries.

Semantic Similarity Measure
The Semantic Similarity Measure (SSM) [19] applied here takes
advantage of the ontological graph structure to calculate how
close resources are in the ontology structure.

scoreSSM(O, Q) is the SSM score of ontology O for a given
query Q. It is a collective measure of the shortest path lengths
for all classes that match the query string.

scoreSSMðO;QÞ ¼
1
z

Xz�1

i¼1

Xz

j¼iþ1

Wðri; rjÞ : 8q2Q ððri; rjÞ 2 rOÞÞ

Wðri; rjÞ ¼

1

lengthðminp2Pfri!
p

rjgÞ
if i 6¼ j

1 if i ¼ j

:

8><
>:

(8)

z ¼ jðri; rjÞj

Summary
Table 2 presents a summary of the characteristics of the
algorithms. The table shows: (1) the main scoring mechanism
of each algorithm, (2) if the algorithm attributes a global
score to the ontology or scores each resource in the ontology
individually, (3) if there is any distinction between partial matches
and exact matches (yes) or if they are treated equally (no) and, fi-
nally, (4) a summary of the conclusions presented in [8].

Evaluation: ontology search applications and
algorithms

This work was divided into two separate but comparable ana-
lyses that give a complete overview of the performance of the

chosen applications and algorithms. The first approach eval-
uated the results against a GT obtained from a questionnaire
answered by experts. The second analysis was based on an
automated PGT obtained from the consensus between the algo-
rithms and four search applications. Figure 1 illustrates how the
search process progresses from the queries to the different algo-
rithms/applications and presents an example of the search re-
sults. The figure shows the evaluation process starting from the
creation of the GT and the PGT and their comparison with the
search results, and finally obtaining the evaluation results.
The following subsections explain the processes common to
both analysis and then detail how both ground truths were ob-
tained and validated.

Ontology loading

The ontology resources were stored in a Virtuoso database by
treating the ontologies as sets of triples. For example, the fol-
lowing triple of the HP ontology was loaded into the virtuoso
database: obo: HP_0006719 rdf: type owl: Class (Prefixes: obo:
<http://purl.obolibrary.org/obo/>; rdf: <http://www.w3.org/
1999/02/22-rdf-syntax-ns#>; owl: < http://www.w3.org/2002/07/
owl#>). In total, the ontologies define around 20 M triples and
645 K distinct classes (subjects of rdf: type owl: Class). In Solr,
ontologies were loaded using the method provided by the OLS
development team (https://github.com/EBISPOT/OLS/tree/mas
ter/ols-apps/ols-solr-app), which uses the owlapi Java API [36] to
manipulate the provided ontologies formatted with the Web
Ontology Language (OWL) (https://www.w3.org/OWL).

Performance metrics

The evaluation of the algorithms and search applications was
based on four metrics: Precision at k, Average Precision at k,
MAP and Normalised NDCG. These metrics evaluate the results
against the GT and the PGT. Both ground truths have a number
of defined relevant search results that vary for each query. For
example, in the GT, the query ‘MYH7’ only had one relevant re-
sult while the query ‘Ovary’ had five. In terms of metrics, this
difference means that, with a fixed k¼ 3, if a search of the query
‘MYH7’ returned more than one result, the precision would be
lower than expected, even if the first result was the correct one.
Therefore, instead of choosing a fixed cut-off, the k is chosen in-
dependently for each query and each GT depending on the
number of search results present in the respective GT.
Therefore, the query ‘MYH7’ was evaluated with a k¼ 1, while
the query ‘Ovary’ had a k¼ 5. This adaptation evaluates if the al-
gorithms and search application return all the relevant results
in the first k positions.

The metrics were calculated as follows:
Precision@k (P@k)

P@k ¼ number of relevant resources in top k results
k

: (9)

Average Precision (AP@k) for a query Q is defined as:

APðQÞ ¼
P

i¼1 relðriÞ � P@i
k

; (10)

where rel(ri) is 1 if ri is a relevant resource for the query Q
and 0 otherwise, P@i is the precision at i and k is the cut-off
value.
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MAP is the mean of AP(Q) over all queries and is calculated
as:

MAP ¼
P

Q2Q APðQÞ
jQj (11)

NDCG is a standard evaluation measure of ranking quality
that allows graded relevance instead of the traditional binary
relevance. NDCG involves a discount function to weight the
rank for penalizing relevant resources that appear in a low pos-
ition in the search result. The Discounted Cumulative Gain
(DCG) is calculated with:

DCGðQÞ ¼
Xk

i¼1

reli
log2ð1þ iÞ : (12)

The NDCG is the quotient between the obtained DCG value
and the ideal DCG value (iDCG). The iDCG is calculated by sort-
ing the results from most to least relevant. In the context of this
work, the iDCG is the DCG of the GT ordering.

Building expert-based GT

The GT was established with a study (The questionnaire is
available at https://goo.gl/pQUvte) involving 10 experts that
were asked to rank the ontology resources matched with the 10
query terms.

Ontology collection and search queries
A collection of 23 ontologies (Table 3) representative of different
domains in the biomedical field was used. The domains chosen
range from chemical compounds to diseases or phenotypes,
among others. The collection also includes different species
such as mouse and zebrafish. The set of ontologies has some of
the most popular and freely accessible biomedical ontologies,
with more than half of them included in the top 50 of
BioPortal’s most visited ontologies (as of December 2017).

The searches tried to match each query with all ontological
resources available in each platform, i.e. online applications
used their services and local tests used the Virtuoso database or
local Solr server. When using the search applications, results
that included ontologies outside this list were excluded. The

Table 2. Summary of IR algorithms

Algorithm Scoring Global WPM Remarks

tf-idf Term frequency No No Frequent resources in the collection have a low score. In ontologies, a
common term does not necessarily mean less relevant. Frequent
terms can be a product of reuse by other ontologies

BM25 Term frequency Yes No Suffers from the same issue has tf-idf, but the cumulative score ranks
domain ontologies higher

VSM Vector similarity No No Uses tf-idf to weight vectors and also considers the tf-idf of the query,
aggravating the tf-idf drawback

PageRank Links between ontologies Yes No Ranks based on popularity, which may lead to popular but less rele-
vant resources, being ranked higher

CMM Coverage of the set of queries Yes Yes Ontologies with a large number of partial matches will be scored
higher than ontologies with few exact matches

SMM Closeness between
ontological resources

Yes No Although this algorithm can be useful when considering similarity
among the matched resources of two or more query terms of a
multi-keyword query, it performs poorly on single-word queries

Note: Scoring summarizes the main scoring method of the algorithm. Global indicates if the score attributed by the algorithm is per resource or per ontology. WPM

(weights partial matches) shows if the ontology distinguishes between partial and exact matches.

Figure 1. Evaluation workflow: from input search queries to evaluation results.
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search applications and the ranking algorithms were tested
using a set of queries in the domain of ovarian cancer. Table 4
presents the 10 search terms chosen from the BIOOPENER pro-
ject repositories and the abbreviations used in this article.
Despite belonging to the domain of ovarian cancer, the selected
terms represent different branches of the biomedical domain,
i.e, the terms represent diseases, drugs, tumours, organs and
genes.

The general frequency of the terms was assessed with a
Google search, which showed that the queries ‘Carcinoma’ and
‘Ovary’ are the most popular results and queries related to dis-
ease names were less common. The query ’MYH7’ is related to a
very specific gene name and, therefore, was the search with the
least results. Finally, all the queries were used as input in
BioPortal and OLS’ Web search, with the default parameters
(search through all the ontologies and show exact and partial
matches).

Experts
The experts were sourced from the IBM Research, USA; King
Abdullah University of Science and Technology, Kingdom of
Saudi Arabia; Maastricht University, The Netherlands; Medical
University of Graz, Austria; Indian Institute of Technology (IIT)
Bombay, India; Saarland University, Germany; Universite de
Rennes 1, France; and the US National Library of Medicine, USA.
The areas of expertise of these judges included knowledge en-
gineering and the biomedical domain, with all of them having

at least some experience in both domains.
To assess the level of experience in the biomedical and

knowledge engineering fields, each expert was asked to rate his
knowledge in a Likert scale of five levels, from ‘No Knowledge’
to ‘Expert Knowledge’. Table 5 shows that most experts have
considered themselves to have a strong to medium knowledge
in both domains apply or work with biomedical data. All of the
judges have worked with ontologies, six worked specifically
with biomedical ontologies and some have developed
ontologies.

Questionnaire
The experts were given a list of ontology classes to rank in rela-
tion to 10 queries (Table 4). These classes were obtained by
searching BioPortal and OLS and also from the search results of
the IR algorithms. All results were merged and taken out of
order. The results presented to the judges were composed by
the classes with labels that were an exact match of the query
terms. However, the judges still had access to all the retrieved
classes and could introduce classes they deemed relevant but
were not shown. The questionnaire presented definitions from

medical dictionaries to establish the search intention of each
query. The definitions did not follow ontological definitions pat-
terns. Their main goal was to lower the ambiguity of the queries
and to provide some guidance to the judges. For each of the
classes displayed in the questionnaire, we provided the class
Uniform Resource Identifier (URI) preferred label and definition.
The judge could rank the classes in a Likert-type scale with a
number of options equal to the number of items to rank, with
the first option corresponding to the best rank, plus the last
rank reserved to mark the search term as ‘not-relevant’.

Validation
The questionnaire answers of each judge were evaluated with
two different approaches:

1. Rank agreement considers the observed agreement between
the ranks allocated to each search result.

Table 3. Ontologies used in this benchmark with name, acronym,
number of triples and reference

Name Acronym # Triples

Chemical Entities of Biological
Interest Ontology [37]

ChEBI 8187078

Cell Ontology [38] CL 69796
Human Disease Ontology [39] DOID 203125
The Drug Ontology [40] DRON 138898
EMBRACE Data And Methods [41] EDAM 33300
Experimental Factor Ontology [42] EFO 469954
Foundational Model of Anatomy [43] FMA 612982
Gene Ontology [4] GO 1575776
Human Phenotype Ontology [44] HP 350017
Mouse Adult Gross Anatomy Ontology [45] MA 25523
Mammalian Phenotype Ontology [46] MP 335821
Mouse Pathology Ontology [47] MPATH 11992
Neuro Behavior Ontology [48] NBO 10376
National Cancer Institute Thesaurus [49] NCIT 5784846
Ontology of Adverse Events [50] OAE 54334
Ontology of Genes and Genomes [51] OGG 1211539
Phenotypic Quality Ontology [52] PATO 31644
Plant Ontology [53] PO 59932
Uber Anatomy Ontology [54] UBERON 690529
Vertebrate Trait Ontology [55] VT 44183
Caenorhabditis elegans Phenotype

Vocabulary [56]
WPhenotype 31991

Xenopus Anatomy and Development
Ontology [57]

XAO 40611

Zebrafish Anatomy and Development
Ontology [58]

ZFA 82964

Table 4. Cancer-related queries and their number of search results on Google, BioPortal and OLS, in April 2017

Query terms Abbreviation Type Google BioPortal OLS

Ovary Ovary Organ 25.400.000 29 1054
MYH7 MYH7 Gene 86.500 8 22
Paclitaxel Paclitaxel Drug 4.640.000 18 149
Carcinoma Carcinoma Disease 32.800.000 25 4025
Carboplatin Carboplatin Drug 2.710.000 19 212
Ovarian teratoma OT Tumour 434.000 18 1164
Ovarian cystadenoma OCys Tumour 148.000 18 1100
Ovarian choriocarcinoma OChor Tumour 317.000 20 1129
Ovarian embryonal carcinoma OEC Tumour 164.000 19 5069
Ovarian mucinous adenocarcinoma OMA Tumour 117.000 15 2235
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2. Relevancy agreement analyses the results in terms of the
observed agreement in a binary scale of relevant/not-
relevant.

For each approach, the answers of each judge were com-
pared in pairs, and the final result was obtained by averaging
the pairwise agreement.

The answers were further analysed with a chi-square good-
ness-of-fit test [59], which is a non-parametric statistical test to
determine if an observed value is significantly different than its
theorized value. Therefore, this test was applied to assess the
randomness of the expert’s answers. The null hypothesis con-
sidered was ‘each rank has an even number of answers’, which
leads to the alternative hypothesis ‘the ranks are not equally
chosen among experts’. This test was performed for each query
with a significance level of 0.05.

Building PGT

To validate the GT as well as to include a more diverse set of
queries and ontologies, we extended the approach used in [60]
to build a PGT without involving human experts. In [60], the au-
thors present an approach to calculate the probability that each
document in a collection belongs to a possible GT by using the
consensus from multiple systems as the reference. The main
idea in [60] is that a probabilistic GT is equivalent to an un-
known GT and contains the probabilities of each document (di)
that appears in the search results to belong to a real GT. These
probabilities are calculated with the following:

PðdiÞ ¼
1
s

Xs

k¼1

SkðdiÞ; (13)

where s is the set of systems being tested, and Sk(di) represents
the search result of document di by system Sk. The authors of
[60] consider the result to be binary, i.e. the document di is either
present or absent of the search results of system Sk. By using
these probabilities, the authors then calculate a probabilistic
precision and recall. For the purpose of our work, however, a
comparison with the GT was necessary. Therefore, we de-
veloped an extended PGT that can be compared with the
expert-based GT using the performance measures.

Extending and building the PGT
To extend the original approach to the ontology context, instead
of using ontologies as documents, each ontology resource was

considered the measuring unit. This adaptation allows the
ranking of several resources matched in the same ontology.

Using the principle of the DCG, a ranking approach was
added to the creation of the PGT to obtain a non-binary classifi-
cation of each resource. The method used a penalty measure—
in a logarithmic scale [61]—for search results that appear lower
on the list. The penalty is proportional to their position p.
Considering all search results relevant, the discount metric
(DM) is obtained with:

DMp ¼
1

log2ðpþ 1Þ : (14)

The probability of each ontology resource belonging to a pos-
sible GT is:

PðdiÞ ¼
1
s

Xs

k¼1

DMpðSkÞ: (15)

Resources with a P(di)� 0.1 were removed, which closely
translates to at least one system ranking a resource as first. The
remaining resources were sorted in descending order.

Ontology collection and search queries
The PGT was compared against two sets of queries and ontolo-
gies. The first set included the same search queries and ontolo-
gies as the GT evaluation. The second was extended to include
51 extra queries obtained by [62] from the BioPortal query log
(Table 6) and added 130 ontologies from the OBO Foundry
(http://obofoundry.org/), which, considering the previous 23
ontologies, led to a collection of 153 ontologies.

The method for building the PGT relies on the ability of
systems to retrieve relevant results. Therefore, for this process,
the search parameters were changed to return only exact
matches.

Comparison between GT and PGT

The GT and the PGT were compared by calculating their Rank
agreement and Relevancy agreement. These comparisons were
performed over the collection of 10 queries and 23 ontologies.
The evaluation results of both ground truths were compared
using the Pearson correlation coefficient and the linear distance
between the values obtained for each query with each algo-
rithm/search application. The results were then averaged for
each performance metric.

Table 5. Level of self-accessed knowledge of the experts in the biomedical and knowledge engineering fields

Expert Biomedical Works
with BD

Produces BD Applies BD Knowledge
engineering

Worked
with Ont.

Developed
a BmO

1 5 Yes Yes Yes 2 Yes No
2 3 Yes Yes Yes 5 Yes Yes
3 5 Yes No Yes 5 Yes Yes
4 4 Yes No Yes 5 Yes Yes
5 5 Yes Yes No 4 Yes No
6 4 Yes No Yes 5 Yes Yes
7 5 No No Yes 3 Yes Yes
8 4 Yes Yes No 3 Yes No
9 5 Yes Yes Yes 5 Yes Yes
10 5 No No Yes 5 Yes Yes
Average or ratio yes:no 4.5 8:2 5:5 8:2 4.2 10:0 7:3

Note: BD ¼ biomedical data; ont. ¼ ontology; BmO is biomedical ontology. Bold numbers distinguish which values refer to the average.
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Results

The results are presented in relation to the GT, the comparison
between the GT and the PGT and the extended results using
only the PGT.

GT results

Figure 2 presents a box plot for each query with the respective
answers that were included in the questionnaire. The results
for each box plot are ordered by the mean, with ties not yet
resolved. Overall, the queries show a high dispersion of an-
swers. The query ‘MYH7’ had only one search result, and the
opinions of the experts were divided equally between relevant
and not-relevant. None of the means indicated that the judges,
in average, considered a search result not relevant, i.e. the
mean would have to be equivalent to the highest number in the
options. The experts did not suggest more classes to be added
to the preselected classes.

Table 7 shows the rank obtained for the query ‘carcinoma’
by calculating the mean of the scores attributed to each class
by the judges. If any mean calculation resulted in a draw, the
final rank was obtained by searching the popularity of each
ontology in BioPortal and ranking the most popular higher
than the least popular. For example, the last two rankings in
the Table 7 have a same mean value (3.2), and the EFO result
was ranked above the MPATH because of EFO’s higher popular-
ity in BioPortal.

Validation
The observed agreement between the judges in relation to the
rank was, in average, 30% with an SD of 20%. The relevancy
agreement was, in average, 85%, with an SD of 15%. These re-
sults show that the judges have a high level of agreement when
consider which classes are relevant or not-relevant but have a
low agreement when ranking the ontology resources.

The expected values and the observed values of each query
for the chi-square goodness-of-fit test are shown in Figure 3.

Table 6. Expanded query set obtained from [62]

Type Queries

General Concentration unit, daily living, electron microscopy, health belief, health services, body weight, cell mass, cell proliferation,
disease staging, dose response, clinical trial, compound treatment, differential scanning calorimetry, growth protocol,
high-performance liquid, high throughput, sequence alignment

Cell or tissue Bone marrow, brown adipose, connective tissue, connective tissue development, granulosa cell, haemoglobin E
Anatomy Collecting duct, digestive system, embryonic structure, frontal lobe, harderian gland, heart ventricle
Genetic Copy number, gene expression phenotype, gene regulation, genetic modification
Condition Convulsive status epilepticus, fatty liver, generalized anxiety, heart failure, heart rate, venous thrombosis
Disease Breast cancer, eye disease, haemoglobin E thalassaemia, hepatitis b, hepatitis c, ovarian cancer
Disorders Cystathione synthase deficiency, Dowling-Degos syndrome, epileptic encephalopathy, fever infection syndrome,

Goldstein-Hutt, nephrotic syndrome

Figure 2. Box plot of the results of the GT questionnaire. The y axis displays the possible number of ranks for each item (i.e number of answers plus the additional not-

relevant rank). The x axis shows the class id for each of the possible answers for the queries. The dotted line represents the median, and the dashed line represents the

mean by which the results were ordered.
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The line represents the expected value, i.e. the value each rank
should have if the rankings were equally chosen by the judges.
The bars represent the actual number of times each rank was
chosen. Except for the ‘MYH7’ query, the ranks in all queries dif-
fer from the expected value.

The chi-square goodness-of-fit test indicated that, with
a¼ 0.05, half of the answers reject the null hypothesis and the
other half of the answers accept it, which implies that there is
some disagreement between the judges. The ‘MYH7’ query had

a v2 of 0 because of the point previously raised of a single prese-
lected relevant class. Queries with more general domains, such
as ‘carcinoma’ and ‘ovary’, have a lower P-value, which strongly
suggests that the judges’ responses are less likely to be random.

Comparison between GT and PGT
Figure 4 shows the relevancy and ranking agreement between
the GT and the PGT for the collection. For all queries, except
‘Ovarian Choriocarcinoma’, the ground truths agree about
which search results are considered relevant. ‘Ovarian
Choriocarcinoma’ has a lower agreement because of the pres-
ence of the class ‘choriocarcinoma of ovary’ (http://purl.oboli
brary.org/obo/DOID_5550), which is not an exact match. As the
PGT was built based on exact matches only, this result was not
considered and, therefore, is not featured on the final PGT. The
rank agreement between ground truths is much lower than the
relevancy agreement with an average of 63%.

NDCG uses the GT ranking to compute the iDCG. However,
none of the remaining metrics takes into account the GT rank-
ing to evaluate the performance of the algorithm/system.
Therefore, because of the high relevancy agreement between
GT and PGT, P@k, AP@k and MAP are considered more reliable
than the NDCG when evaluating searches with the PGT.

Evaluation with performance metrics

Against the GT
Tables 8 and 9 present the AP@3 and NDCG of each algorithm
and application tested for the set of 10 queries. Figure 5 shows
box plots for each of the metrics studied with consideration of
partial and exact matches, and Figure 6 examines exact
matches only.

Algorithms results analysis. Tables 8 and 9 show that for the algo-
rithms, most of the queries had an AP@3 and a NDCG equal to 0.
The main contributors to these results were the partial
matches. As none of these algorithms (except CMM) weights
partial or full matches differently, a class that contained any of
the query words was considered a match and was ranked ac-
cording to the algorithm. Most of the algorithms, except tf-idf
and VSM, also rank matches globally, which leads to several
non-relevant results having a high score because of the global
score of the ontology. CMM is one of the algorithms that rank
ontologies globally, but as it evaluates the coverage of the set of
queries by an ontology, it goes even further by considering the
query set globally as well. ‘MYH7’, ‘Carboplatin’ and ‘Paclitaxel’
achieved the best AP@3 and NDCG results because of their low
number of possible matches.

The comparison of Figure 5 with Figure 6 shows that forcing
exact matches considerably increases the performance of the IR
algorithms. However, the consequence of this change is that
the algorithms and search applications ignore synonyms. By
forcing exact matches, even the same label with a different
order will not be returned by the algorithms. However, in the
small scale considered, this was not a significant issue, as only
one query matched with a synonym (http://www.ebi.ac.uk/efo/
EFO_0002511— ‘simple cystadenoma’) and only one matched
with a label with a different word order (http://purl.obolibrary.
org/obo/DOID_5550— ‘choriocarcinoma of ovary’).

Search Applications Results Analysis. BioPortal focuses on preci-
sion, only showing the best hit in the ontologies with a match,
while OLS focuses on recall, with the highest scoring terms
ranked first, but also showing all possible partial matches after.
These results mostly follow the same frequency pattern as
Google’s results (Table 4), except for queries of type ‘Drug’,
which have less or equal frequency as diseases. This can be ex-
plained by the number of query words in each search, as drugs
only contain one word, the combinations of partial matches

Table 7. Ranking of ‘Carcinoma’ in the GT

Rank Mean URI

1 1.9 http://purl.obolibrary.org/obo/NCIT_C2916
2 2.1 http://purl.obolibrary.org/obo/HP_0030731
3 3.7 http://purl.obolibrary.org/obo/DOID_305
4 3.2 http://www.ebi.ac.uk/efo/EFO_0000313
5 3.2 http://purl.obolibrary.org/obo/MPATH_549

Figure 3. Goodness-of-fit chi-square expected and observed results, represented by a line and bars, respectively. Each chart contains a bar for the number of rankings

available for each query and one extra one representing the ranking of ‘Not-Relevant’ (NR). A bold and underlined query term indicates that the test rejected the null

hypothesis, with a ¼0.05.
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Figure 4. Relevancy and ranking agreement between the GT and the PGT.

Table 9. NDCG. The colours code the NDCG values and range from dark green (highest NDCG, i.e. 1.0) to red (lowest NDCG, i.e. 0.0)

Note: The last column and last row represent the mean of each column/row, colour coded from blue (high mean) to light yellow (low mean).

Table 8. AP@3. The colours code the AP@3 values and range from dark green (highest AP@3, i.e. 1.0) to red (lowest AP@3, i.e. 0.0)

Note: The last column and last row represent the mean of each column/row, colour coded from blue (high mean) to light yellow (low mean).
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were limited. The search applications show high performance
with MAP of 0.97 for OLS, 0.82 for Solr, 0.80 for Bioportal and 0.43
for Zooma.

NDCG evaluates the results considering not only the ontol-
ogy classes present but also the position in which they appear.
OLS achieved the highest NDCG performance with an average of
0.99 over all queries, BioPortal obtained an average NDCG of 0.90
and Solr with 0.92. Zooma obtained the lowest NDCG perform-
ance with an average of 0.58.

Figures 5 and 6 show that the difference between the results
with or without forcing exact matches does not have a major ef-
fect in the search applications tested, as they were already
ranking the exact and relevant matches in the first k positions.
Zooma does not allow exact match-only search; therefore, the
results are the same in both figures.

Against the PGT
Figure 7 presents the results for the collection of 10 query terms
and 23 ontologies with forced exact matches against the PGT.
Except for Zooma, the metrics show high performance for all al-
gorithms and search applications. Overall, BioPortal and OLS
slightly outperform the remaining methods with Zooma having
the lowest performance in this setting.

Figure 7 is directly comparable with Figure 6, as it used the
same search parameters, but the results were compared with
the PGT instead of the GT. Even though the box plots appear dif-
ferent, the medians are aligned and Table 10 shows a high

correlation between the results with the GT and the PGT with a
low average distance between the results. This correlation indi-
cates that the results with the PGT show lower dispersion but
are correlated to the results against the GT (which show higher
dispersion in the box plot). The MAP comparison between the
two figures also shows a high degree of similarity, with OLS and
BioPortal slightly outperforming all other algorithms and
Zooma obtaining the lowest results.

From these results we concluded that the PGT is a reliable com-
plement for an expert-based GT in the setting described.
Therefore, we extended the number of queries and ontology collec-
tion and tested the algorithms and search applications against the
respective PGT. Figure 8 shows that the overall conclusions of the
extended search are similar to the ones obtained with the smaller
query set. The search applications achieve a superior performance
against the IR algorithms, with OLS having the best performance,
followed by BioPortal, Solr and Zooma having the lowest results.

Discussion

These are some of the key search factors which influenced the
process of ranking resources in ontologies.

Ground truth
Some judges ranked a class as not relevant, while other judges
chose the same class as the most relevant. The principles of

Figure 5. NDCG, P@k, AP@k and MAP results for the 10 query collection, considering partial matches, against the GT.

Figure 6. NDCG, P@k, AP@k and MAP results for the 10 query collection, considering exact matches only, against the GT.
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ontology engineering guide that ontologies should be orthogonal,
which means that the same concept should not be independently
created in each ontology, but, if it already exists, it should be
reused from existing ontologies. In reality, however, ontologies
are neither complete nor orthogonal, and labels do not have a
perfect representation of the semantics of a concept. The exact
same concept can, therefore, be described in different ontologies,
and experts do not agree, which one should be the unifying one,
as some experts will have different interpretations of the seman-
tics of the label or the semantic categorization of the ontology of
a concept. This disagreement makes the task of building a gold
standard for ontology search results tough.

Probabilistic ground truth
The main goal of building a PGT was to perform a deeper evalu-
ation without having more human experts. Finding experts
both in the biomedical domain and knowledge engineering to
fill an extensive questionnaire is a non-trivial task. The PGT
was shown to have a significant agreement with the GT, and
the extended search showed that even with a broader domain
of queries, the search applications still outperform the IR algo-
rithms, and OLS and BioPortal are the best performing systems.

Partial matches
The performance of all the IR algorithms suffered from too
many partial matches. In biomedical ontologies, it is common
to find multi-word labels, as this domain describes complex
concepts such as different phenotypes or anatomical parts. For
example, when the input for the algorithms is the query
‘Ovarian Cystadenoma’, the results consist mostly of partial
matches of the word ‘ovarian’. The large number of partial
matches led to a precision and NDCG of 0 for most algorithms
tested. The CMM algorithm is the only one in this set that dis-
tinguishes between partial and exact matches. However, it did

not perform better than others, as it does not evaluate each
query individually. The relevance of partial matches to the per-
formance of the IR algorithms was demonstrated with the limi-
tation of the search to exact matches only. However, this
performance change cannot be considered usable, as search
through exact matches only exclude the complex semantics (i.e.
synonyms or descriptions) of ontologies from the search.

Tie-breaking
In the GT, ties were resolved by ordering them by ontology
popularity, which was obtained from BioPortal. This method is
also the main boost factor for search results in BioPortal. In this
context, this method did not create a bias towards BioPortal, as
the number of ties was low (only two ties for all 10 query words)
and the remaining search applications also had a good overall
performance, with OLS slightly outperforming BioPortal.

Controlled versus open-access ontologies
The search process included a set of 23 ontologies that was later
expanded to 153 open-access ontologies. BioPortal contains sev-
eral restricted access ontologies (e.g. SNOMED CT) that were fea-

tured in the search results but could not be included in the GT
and, therefore, could not be evaluated. In some cases, this
means that even though the GT contains some of the possible
classes, BioPortal can have several more, and there was no way,
at this point, to evaluate their relevance in relation to the open-
access ontologies.

General versus specialized terminologies
The search applications tested did not agree on the ranking for
some queries. This issue was more noticeable when the query
was more general, such as in the search for ‘ovary’. This query
has several exact matches in different ontologies, and all of the
applications ranked them differently. Some of those matches
are species-specific, but their descriptions are general. Table 11

shows the comparison of the results of the distinct applications
tested, the GT and the PGT.

Solr considerations
Solr achieved a good performance, and its biggest advantage is
that any user can index and search through their own set of
ontologies.

Figure 7. NDCG, P@k, AP@k and MAP results for the 10 query collection, considering exact matches only, against the PGT.

Table 10. Correlation and average distance between GT and PGT
results for each metric tested (P-value< 0.01)

Metric Pearson’s R Average distance

NDCG 0.75 0.03
P@K 0.64 0.07
AP@K 0.69 0.05
MAP 0.93 0.05
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OLS considerations
OLS uses Solr as its base for indexing and searching and boosts
specific ontologies. The value of the boost is unknown, and the
process of attributing a boost to an ontology is not explicitly
explained.

Zooma considerations
Zooma’s performance suffered not only from obtaining matches
from annotated data but also from its focus on high precision.
For all queries that found a match in the curated data, the
search returned only one or two results. In most cases, these re-
sults did not match what the experts considered to be the most
relevant ontology class. With only eight data sources to choose
from, it is possible that the annotated data focused on domains
not represented by the queries used. The queries that achieve
top scores with Zooma are the queries that did not match any
term in the curated data and, therefore, Zooma used OLS to find
matches for the query.

Conclusion and recommendations

The article evaluates and reviews seven state-of-the-art ranking
algorithms and four search applications. The article established
a GT through a user study with 10 experts that ranked 10 cancer-
related queries and also established a GT based on the consen-
sus from the algorithms and systems tested. The ground truths
were compared against the results from the noranking algo-
rithms and the search applications. The evaluation experiment
used 61 search queries (10 terms from the cancer genomics do-
main plus 51 general biomedical terms) and 153 biomedical
ontologies (23 ontologies related to cancer genomics terms plus
130 general biomedical ontologies). Based on this analysis, we
are able to conclude that (1) in their current state, the algorithms

cannot handle partial matches, but forcing exact matches boosts
their performance with possible loss of information, and (2) the
search applications are already robust in finding the relevant
concepts for search queries in the correct order, with high preci-
sion and recall. The performance of search applications severely
degrades with ambiguous search queries when compared with
specific/concise queries. After evaluating the technologies, we
conclude that, even though BioPortal and OLS outperform all
other applications, one should not be chosen over the others by
performance alone, but instead each situation (i.e. search scen-
ario) should be analysed to choose which application to use:

Searching for top-K
Both BioPortal and OLS have good precision in the top three
hits, but both of them return a lot more results for general
queries. It is possible to tune both tools to only return exact
matches to reduce the number of matches, but the applications
can still obtain more classes than the user is expecting. On the
other hand, Zooma’s smaller repository returns only one or two
results, but, that means that the queries have to be tuned to-
wards the domains annotated by the curated data.

Set of ontologies
If the set of ontologies used is a restriction for the search,
BioPortal, OLS and Zooma can filter the ontologies shown in the
results. Besides the ontologies available in OLS, Zooma also in-
cludes data sources used for the annotation process. OLS, how-
ever, does not index part of the ontologies indexed by BioPortal
because of (1) BioPortal allowing user-submitted ontologies and
OLS curating the ontologies allowed in the system, and (2)
BioPortal having a large set of relevant licenced ontologies (e.g.
SNOMED CT), which are not indexed by OLS and, unless the
user has access, cannot be indexed with Solr. Both of these con-
ditions should be taken into account when choosing which ser-
vice to use. If the user wants to use only open-access
ontologies, it can filter them in BioPortal, but more easily can
just search through all the indexed ontologies in OLS. However,
if the user wants to search the largest possible set of ontologies,
BioPortal would be the suggested choice.

Looking for partial matches
When the main goal of the search is not to find an exact match
but to find related terms to the one being searched, OLS is the
best solution. Contrary to BioPortal, which shows only the most

Figure 8. NDCG, P@k, AP@k and MAP results for the extended query and ontology collection, considering exact matches only, against the PGT.

Table 11. Comparing the ranking for ?ovary? between the GT,
BioPortal (BP), OLS, Solr and PGT

Class URI GT BP OLS Solr PGT

http://purl.obolibrary.org/obo/NCIT_ C12404 1 1 1 3 1
http://purl.obolibrary.org/obo/XAO_ 0000258 2 4 3 2 4
http://purl.obolibrary.org/obo/FMA_ 7209 3 2 5 - 5
http://purl.obolibrary.org/obo/ZFA_ 0000403 4 3 4 1 3
http://purl.obolibrary.org/obo/MA_ 0000384 5 - 2 4 2
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relevant class in each ontology, OLS ranks and shows every pos-
sible match within the ontologies it has indexed. High-scoring
matches are shown first and then every possible partial match
is also displayed.

Custom set of ontologies
In a hypothetical scenario where a user has a custom ontology,
Solr would be the most appropriate choice. Solr allows the users
to index their ontologies with no restrictions.

Search with curated annotations
Despite Zooma’s lower performance in this context, it can be
applied in a situation where a user would rather have a previ-
ously curated annotation to map to a term than just a search re-
sult generated by an algorithm. When possible, Zooma returns
mappings that match the term and that have been previously
annotated in different repositories.

Future work

In the future, to consolidate the GT, we will study other meth-
ods of breaking ties. One possibility is to apply the CMM algo-
rithm to get the coverage of the ontology for a set of queries.
The ontology with the highest CMM score would be ranked
higher. Another option could be to search the LOD Cloud for
popularity of the ontology classes to rank them according to
real-world usage. Further algorithms and techniques could be
studied to infer how the popularity-based tie-breaking affects
the results. A framework integrated with an application, such
as Solr or ElasticSearch, could also be useful to streamline the
process of indexing and searching through a customized set of
ontologies and control the search process. Furthermore, testing
with the ranking algorithms could also lead to the development
of a standard technique to rank some of the more generic
queries to obtain a uniform ranking among the different search
applications.

We believe that the proposed benchmark is a good indicator
of the performance of biomedical ontology search applications,
and we expect that this evaluation will allow researchers to
apply the current search techniques more reliably and that find-
ing the best application to fit their annotation needs will be eas-
ier. We hope that with this work ontology engineers will also be
better informed on how to find and use ontological resources in
their research work.

Key Points

• The article is the first attempt to evaluate four ontology
search applications and seven IR algorithms on their
ability to retrieve top-ranked search results.

• A total of 61 search queries and 153 biomedical ontolo-
gies are evaluated against four ontology search applica-
tions and seven IR algorithms.

• An extensive judgement based on the opinions of ex-
perts and automatically generated GT is derived evalu-
ating the overall performance of ontology search appli-
cations and IR algorithms.

• The set of ontologies available is an important criterion
for selection the system. If the user requires the largest
set of ontologies, they should choose Bioportal. If they
require every possible exact and partial match, OLS is
the most appropriate. Solr would be the most appropri-
ate when the user has a custom set of ontologies.

• The article identifies key search factors for biomedical
ontologies that will help biomedical experts and ontol-
ogy engineers to select the best-suited search applica-
tion and/or algorithm in different search scenarios.
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