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Abstract

Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from
experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this
reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand,
observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational
content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources
for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying
directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first
step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining
an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm.
In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based
method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational
experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms
competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a
consistent estimate of the regulatory network.
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Introduction

The ability to reconstruct cellular networks plays an important

role in our understanding of how genes interact with each other

and the way information flows through them to regulate their

expression levels. Such reconstructions heavily depend on the

input data employed. The availability of data on the response of

the cell to perturbations -either by knocking out or silencing genes-

offers the possibility for improved network reconstructions and

constitutes a key input in functional genomics. As pointed out in

[1], high-dimensional phenotypic profiles obtained from pertur-

bation experiments in the form of expression data offer the

potential for obtaining a comprehensive view of cellular functions,

even though they exhibit a number of limitations as outlined in

[2]. A key problem is the fact that perturbation experiments only

provide indirect information on gene interactions, as explained

below [3]. Further, inferring large scale cellular networks from

perturbation data is computationally challenging, and only a

limited number of computational tools have been developed to

address it. Some approaches are built on clustering of phenotypic

profiles [4,5], which are based on the reasoning that functionally

related genes should exhibit similar behavior under perturbations

and hence cluster together. A tailor-made approach for the

problem of estimating networks from perturbation data is the

nested effects models (NEMs) [1,2,6]. NEMs are a special class of

graphical models originally introduced to uncover the hierarchies

among transcription factors based on observations of affected

genes. More recently, NEMs have been extended to reconstruct

regulatory networks by taking advantage of the nested structure of

the observed perturbation effects, where for computational

efficiency purposes, triplets of genes are used to assemble the

global regulatory network. Extensions of this method that capture

temporal effects by using perturbation time series measurements

are described in [7,8]. In response to the reconstruction problems

presented in the DREAM challenges (see more information in the

Results section), methods like feed-forward loop down ranking

(FFLDR) [9] and a t-test based method coupled with ordinary

differential equations to model temporal changes in expression

data (Inferelator) [10] were also developed.

The computational difficulty of reconstructing a network from

data, alluded to above, stems from the fact that in order to capture

the regulatory interactions one should consider all possible

orderings of genes in the network (so that parent nodes influence

child ones) and score the resulting network structures accordingly.
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Figure 1. Overview and details of the RIPE method. (A) Overview of the RIPE algorithm. (B) First step to obtain a large set of causal orderings
from a network with cycles. The network graph is decomposed into strongly connected components, so called super-nodes, (left) followed by a DFS
on the strongly connected components (right). For example, the post-visit time of super-node A is 8, and thus A precedes all other nodes. The
topological ordering of super-nodes is A[B[C[D. (C) Illustration of MC-DFS algorithm. Gene perturbation graph (left), DFS visit times for labeling
#1 (middle), and DFS visit times for labeling #2 (right). (D) Depiction of a small network to illustrate the influence graph and the predictors used in
the penalized likelihood estimation procedure. The true regulatory network (left), the influence graph under no noise (middle), observed influence
graph, with false positive and false negative edges (right). Edges in the regulatory networks are shown in thick lines and additional edges in the
influence graph are distinguished with narrow lines; red dash lines indicate false positives.
doi:10.1371/journal.pone.0082393.g001
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The computational complexity of identifying all possible orderings

of a set of nodes in a directed graph is exponential in the size of the

graph. Hence, the approach based on nested effects models

employs several heuristics for searching the space of orderings.

Similarly, [11] employs a Markov Chain Monte Carlo based

search method and subsequent scoring of the resulting network

structures.

Another set of approaches solely utilizes observational gene

expression data that capture the system in steady state. A major

technical tool for such reconstructions is graphical models [12]

that encode a probability model over the genes through the

underlying network. Over the last few years, a number of

algorithms have been proposed in the literature for the estimation

(reconstruction) of primarily Gaussian graphical models under the

assumption of a sparse underlying structure (see [13,14] for a

discussion and references therein). The main shortcoming of these

approaches is that graphical models for observational data are

mostly capable of identifying dependencies between genes, rather

than causal relations representing regulatory mechanisms. Further,

the presence of more genes than available samples usually leads to

very sparse reconstructions. It should be noted that recent work is

geared towards identifying causal effects from observational data

by employing the concept of intervention calculus [15]. Also

utilizing only steady state gene expression data is a method

implemented in the PC-algorithm [16] that starts from a complete

undirected graph and recursively sparsifies it based on conditional

independence decisions; directionality can only be inferred for a

subset of edges (due to the issue of observational equivalence [12])

and is added as a post-processing step.

Time course gene expression data have also been used to

estimate gene regulatory networks, using two classes of models. In

the first approach, called Granger causality, the predictive effect of

genes on each other are used to estimate regulatory relationships

among genes [17,18]. In the second approach, known as dynamic

Bayesian networks (DBNs), the framework of Bayesian networks is

extended to incorporate biological networks with feedback loops

[14,19,20]. More recently, penalization methods have been

applied to improve the estimation of high-dimensional regulatory

networks from small sample sizes [21–24].

The proposed computational approach in this study utilizes

both gene expression data obtained from perturbation experi-

ments, and an independent expression data set reflecting steady

state behavior of the cell. The main steps are summarized in

Figure 1A. Specifically, based on the perturbation phenotyping

data, we obtain a (large) set of causal orderings of the genes

through a fast search algorithm which samples from the space of

all possible orderings (see section Obtaining Causal Orderings

from Perturbation Data for the definition of a causal ordering and

algorithmic details). These orderings correspond to the inherent

layering of nodes of the graph. Each set of orderings is then

employed to obtain a directed acyclic regulatory graph/network

(DAG) using the independent gene expression data set through an

extension of a fast penalized likelihood method introduced in [13].

Further, the likelihood of every estimated graph is calculated.

Finally, a consensus regulatory network (which can very well contain

cycles when the true network is cyclic) is obtained by averaging a

small set of the most likely DAGs obtained. The advantage of the

proposed algorithm is that it utilizes both perturbation and steady

state expression data, and once the set of gene orderings is

determined, a theoretically rigorous and computationally fast

likelihood-based method for estimating the underlying network

structure is used. Further, causal orderings are determined by

searching through the entire set of orderings consistent with the

perturbation data, thus taking a global perspective, as opposed to

competing methods (e.g. the nested effects model or the PC-

algorithm) that only utilize information pertaining to direct

neighbors of nodes and then assembling the network from such

local estimates.

The proposed methodology has a number of additional

advantages over competing methods. First, the underlying

assumption in the estimation of regulatory networks from

perturbation data is that the structure of the network does not

change in different knockout experiments, and therefore observa-

tions from these experiments can be combined in order to estimate

the underlying regulatory network. However, such an assumption

is not fully valid: biological systems and regulatory networks are

highly robust [25,26], which is believed to be the result of

redundant regulatory mechanisms, and knocking out a single gene

may trigger an alternate regulatory pathway, resulting in a

different network structure. On the other hand, the main

assumption of the methodology proposed in this paper is that

the causal orderings of genes remain stable in different perturba-

tion experiments, which is significantly less restrictive. Second,

although the problem of reconstructing regulatory networks is

computationally NP-hard, the computational complexity of the

approximate algorithm proposed in this paper is considerably

lower than most methods of network reconstructions directly from

perturbation data. This is mainly due to the following facts: (i) the

space of possible orderings is smaller than the space of graphs

(even acyclic ones) [11], and (ii) by employing the Monte Carlo

sampling framework over the space of orderings, the approximate

algorithm offers a tractable alternative in high dimensional

settings. Our extensive experimental results indicate that the

algorithm does not require an exhaustive search over the space of

orderings, and a much smaller set of orderings often results in

significant improvements over competing methods. Finally, it is

known that perturbation data in the form of single gene knockouts

do not provide sufficient information for estimation of regulatory

networks and, in theory, all possible knockout combinations may

be needed to fully discover a regulatory network. On the other

hand, the indirect information in perturbation experiments is

sufficient for estimating the causal orderings (see the subsection

Obtaining Causal Orderings from Perturbation Data under

Methods). Therefore, by breaking down the network reconstruc-

tion problem into three steps, not only can we achieve better

computational complexity, but we can also transform a non-

tractable problem into a sequence of tractable sub-problems.

Further, the proposed approach offers the possibility to gain

insight into the informational contributions of the two data sources

used, and offers improved performance through systematic

integration of the two sources of data.

Methods

Method Overview
We introduce next a three-step algorithm, called RIPE (standing

for Regulatory network Inference from joint Perturbation and

Expression data), which incorporates both perturbation screens

from knockout/knockdown experiments, as well as gene expres-

sion data usually reflecting steady state behavior of the cell, in

order to address the problem of estimation of regulatory networks.

We adopt the term steady-state data in our presentation for wild-

type data. The data obtained from perturbation (knock-out/down)

experiments are referred to as perturbation data. Note though that in

practice, the actual ‘‘lab measurements’’ of the knockout effects are

also considered in an equilibrium state. However, for presentation

clarity, we differentiate the two above-mentioned sources of data.

The main steps for RIPE are illustrated in the flowchart of

Inferring Regulatory Networks
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Figure 1A. In the first step, the data from the perturbation screens

are employed to obtain a large collection of causal orderings. In

the second step, each causal ordering is used in conjunction with

the steady state data to obtain an estimated regulatory network

through a penalized likelihood approach. Finally, in the third step

a consensus network is constructed from the best networks

obtained in the second step. A detailed description of these three

steps follows.

Obtaining Causal Orderings from Perturbation Data
Estimating the Influence Matrix from Perturbation

Data. Let P denote the binary influence matrix of size k|p, with

p representing the number of genes under study and k the number

of single genes that are knocked out/down. In general, the RIPE

algorithm requires ‘‘perturbation’’ of individual genes. These

perturbations can be in the form of knockouts and/or knockdowns

as illustrated in the the section DREAM4 Challenge under

Results. Thus, all references to knockout experiments throughout

the text also include single gene knockdowns. Each knockout

experiment is repeated ni times, and captures the effect of the

knockout gene on the remaining genes. Also required are

observations on the unperturbed network (repeated n0 times), to

determine the baseline expression of the p genes.

An entry in the influence matrix P(i,j)~1 if the knockout

experiment for gene i is affecting gene j, and 0 otherwise. To assess

whether an entry is non-zero, meaning that gene j is differentially

expressed in the knockout experiment of gene i compared to its

baseline expression, we can use e.g. a (moderated) 2-sample t-test.

Applying different cutoffs to the p-values obtained from such an

analysis results in different number of non-zero entries in P. In

Section Determining the Influence Matrix under Results, we

describe a systematic procedure for determining the appropriate p-

value cutoff. It is therefore clear that as the quality of the

perturbation experiments improves, and/or number of replicates

for each perturbation experiments increases, fewer false positive/

negative edges are present in the P. Well-conducted perturbation

experiments with ni in the range of 2 to 5 replicates often provide

the required level of accuracy.

From matrix P one can obtain the directed influence graph

GP(V ,E) of P, where V is the set of vertices and E the set of the

graph edges. The graph GP contains an edge from node i to node j
if the corresponding entry P(i,j)~1.

It is worth noting that the RIPE algorithm can also be used in

the case where kvp, which is often of interest in the setting of

regulatory networks. In this setting k is the number of transcription

factors (TFs), and p the total number of genes under study.

Assuming that there are no directed edges from target genes to

TFs, causal orderings are then found only from TFs to other TFs

as well as target genes. To simplify the exposition of statistical

models, we discuss the details of the algorithm in the setting where

k~p, and defer the case of kvp to Section Regulatory Network

in Yeast, where we illustrate the application of RIPE in such a

setting by estimating the gene regulatory network of yeast with

k~269 perturbations on transcription factors, and p~6051 total

genes.

Obtaining Causal Orderings based on the Influence

Matrix. A critical step in the proposed approach is to obtain

causal orderings of the genes from the influence matrix P. In case

the influence matrix P describes ‘‘acyclic’’ causal effects (i.e, the

influence graph of P is acyclic), a single ordering of the underlying

graph would suffice. However, most likely the perturbation matrix

contains cyclic causal effects, due to the presence of feedback

mechanisms in the regulatory network. Further, perturbation

experiments usually yield noisy data, which could also result in

cycles in the influence matrix, even if the underlying network is

acyclic. Hence, one usually deals with an influence matrix whose

underlying graph contains cycles and an individual causal ordering

is not sufficient. We discuss next how one can obtain a set of causal

orderings from the influence graph GP .

We start by providing key definitions for a linear ordering of a set,

topological ordering of an acyclic directed graph, and causal ordering of

a directed graph. A linear ordering of the elements of a set is a

collection of ordered pairs of the set elements, such that the ordering

of each pair satisfies a certain criterion. In graph theory, an

example of a linear ordering is a topological ordering. A topological

ordering (known also as topological sort [27]) of a directed acyclic

graph GP comprising of p nodes, corresponds to a linear list of the

form (x1,x2, . . . ,xp) of the nodes f1, . . . ,pg, with xl denoting the

label of the node in the l-th position in the ordered list. The

ordering adheres to all partial relations i[j implied by the graph

GP , where the relation i[j is interpreted as ‘‘node i precedes node

j’’, i.e. there is an acyclic path from node i to node j. We define the

causal ordering of a directed graph to be the linear listing of nodes

that corresponds to a valid depth-first search traversal of the graph,

defined next. Before proceeding to the description of our

algorithms, we want to emphasize a distinction between the terms

topological sort and causal ordering. In acyclic graphs, a topological

sorting is a special case of a causal ordering. In other words, the

former refers to graphs with no cycles; the latter refers to linear

orderings of causal effects induced by the influence graph, and are

obtained from graphs that potentially have cycles. The difference

is that in the latter ordering, not all partial relations of the form

i[j hold.

A standard method in graph theory for obtaining a topological

ordering of an acyclic graph is by employing the depth-first search

(DFS) algorithm [27,28] which is outlined in Figure 2. When the

exact same algorithm is utilized in graphs with cycles, a causal

ordering is obtained. DFS is a graph traversal algorithm. It

‘‘searches’’ the graph by traversing it ‘‘in-depth’’. This means that

when a node is discovered, the algorithm will continue searching

for undiscovered nodes adjacent to the current one. When the

algorithm reaches a ‘‘dead-end’’, it backtracks until it finds

previously visited nodes that have undiscovered neighboring

nodes, and if this fails as well, it proceeds to new nodes not yet

visited. The complete details of the algorithm are shown in

Figure 2, where a recursive implementation of the method is given

(similar to the one in [27]). Note that the algorithm saves the time

of the first discovery of the node (pre-visit time) and the time of

final departure of the node (post-visit time). Final departure for,

say, node i occurs when there are no paths starting from i and

leading to undiscovered nodes. The ordering is readily acquired by

a descending sort of the post-visit times, as shown in the right

panel of Figure 1B.

For cyclic graphs, a mere application of DFS does not produce

sufficient information to help us reconstruct the regulatory

network. We would like to obtain as many causal orderings as

possible, and evaluate each individual causal ordering using our

penalized likelihood method described in the next section. To

tackle the problem of obtaining a large set of causal orderings in

graphs with cycles, we need to introduce the following two steps.

N In step 1, we decompose the graph into its connected

components. Specifically, a strongly connected component [27] is a

subgraph, such that there exists a path from every node to any

other node in the subgraph. Hence, if we collapse each

strongly connected component into a single super-node, the

resulting graph is a DAG (see Figure 1B, left panel). We then

produce a topological sorting of the super-nodes. Note that since

Inferring Regulatory Networks
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the super-nodes form a DAG, a mere topological sort is

sufficient (see Figure 1B, right panel).

N In step 2, we produce a set of causal orderings for each super-

node. Recall that in the presence of cycles, a causal ordering is

not a topological ordering; instead, it is a linear listing of nodes

that arises from a graph traversal using DFS. We propose two

methods to obtain a set of causal orderings, each described in

the sequel. The first involves an exhaustive DFS search and

can be employed on strong components with relatively few

nodes; the other couples DFS with Monte Carlo sampling and

is suitable for large size strong components.

After completion of the above steps we combine the set of

orderings corresponding to each super-node and thus we obtain

the ‘‘universe’’ of causal orderings imposed by the influence matrix

P. For the network graph depicted in Figure 1B, the universe of

orderings includes 1[f5[6g[f2[3[4g[7, 1[f5[6g[
f4[2[3g[7, 1[f5[6g[f3[4[2g[7, 1[f6[5g[f2[3
[4g[7, 1[f6[5g[f4[2[3g[7, 1[f6[5g[f3[4[2g
[7.

In the exhaustive DFS approach, we modify and extend

Knuth’s backtracking algorithm [29] that was proposed for

generating all topological sorting arrangements of a DAG. The

exhaustive search procedure is initiated at every node of the

strongly connected component (thus, a parallel/concurrent

implementation of this is feasible). This ensures that all possible

causal orderings will be considered. Now, suppose that our search

method has just discovered a new node, say node j. A key idea that

ensures that all paths initiated from that node will be accounted, is

to save all adjacent nodes of the newly visited node in a circular

list. Suppose the list of node j contains nodes fi1,i2,:::,ikg. Then,

DFS proceeds exactly as discussed above, i.e., it traverses the

graph ‘‘in-depth’’, starting from i1. After all paths originating from

node i1 are visited, the algorithms backtracks to j, and then the

alternative paths will be explored by consulting our circular list

(i.e., paths starting at i2, etc). However, exhaustively searching via

backtracking has exponential complexity due to the huge number

of combinations of paths that DFS can take. This makes the

method practically infeasible for relatively large strongly connected

components (e.g. larger than *10). Nevertheless, it represents a

useful tool for obtaining the universe of orderings in small size

components.

For large size strong components, we develop a fast approximation

algorithm, named MC-DFS, that incorporates ideas from Monte

Carlo sampling techniques. MC-DFS consists of two simple steps:

first, it employs a random labeling of the graph nodes; then, it runs

DFS based on the current labeling. The workings of the MC-DFS

heuristic algorithm can be best demonstrated – for m~2 label

permutations – with the example of Figure 1C. Suppose that the

influence graph given by matrix P is the one depicted on the

leftmost panel of the figure. The middle panel depicts labeling 1
and the rightmost panel shows labeling 2. The DFS post- and pre-

visit times for both cases are as shown in the figure. Given labeling

1, DFS produces the following causal ordering: G2[G1

[G4[G8[G3[G6[G5[G7. Given labeling 2, DFS produc-

es: G4[G8[G3[G6[G2[G1[G5[G7. Thus, a large set of

random permutations of the node labels, followed by an

application of the DFS algorithm allows us to obtain a significant

number of causal orderings and efficiently sample the space of all

possible orderings. Obviously, the quality of the sampled space of

orderings depends on the number of label permutations used (for

some empirical assessment see the Results and Discussion

sections). The complexity of DFS is O(DV DzDED) for a graph with

DV D nodes and DED edges. Thus, the total complexity of MC-DFS

for a strong component of r nodes and e edges is O(mrzme),
should one decide to generate m permutations.

Estimation of Network Structure Using Gene Expression
Data

As mentioned above, a gene regulatory network can be

represented by a directed graph, whose adjacency matrix is

denoted by A. The element Aj,i~1 if gene i is directly regulated

Figure 2. Algorithm for DFS. Detailed steps of the algorithm for the DFS search.
doi:10.1371/journal.pone.0082393.g002
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by gene j, and Aj,i~0 otherwise. In the setting of graphical models

[12], the nodes of the graph represent random variables

X1, . . . ,Xp and the edges capture associations between them.

It was shown in [13], that if the underlying network is a DAG

and an ordering of its nodes is known, then estimating the network

reduces to estimating its skeleton, a significantly simpler compu-

tational problem. Specifically, the causal effects of random

variables in a DAG can be explained using structural equation models

(SEM) [12]. In the setting where the data are normally distributed,

SEM’s can be represented based on linear functions explaining the

relationship between each node and the set of its parents in the

network:

Xi~
X

j[pai

hjiXjzZi, i~1, . . . ,p ð1Þ

Here, pai denotes the set of parents of node i, and Zi’s are latent

variables representing the variation in each node unexplained by

its parents (for normally distributed data, Zi*N (0,s2)). Finally,

the coefficients hji for the linear regression model represent the

effect of gene j on i for j[pai.

In the case of cyclic graphs, the above SEM representation for

DAGs is not directly applicable. However, for each causal

ordering from the previous section, the nodes of the graph can

be reordered to obtain a DAG. Hence, using the above

representation, the problem of estimating the structure of the

DAGs corresponding to a causal ordering of nodes, say o, can be

posed as a penalized likelihood estimation problem as shown in

[13]. In particular, let X be the n|p matrix of gene expression

data, whose columns have been re-arranged according to the

causal ordering o, and denote by X I the submatrix obtained by

columns of X indexed by set I . Then as shown in [13], the

estimate of the adjacency matrix of DAGs under the general

weighted lasso (or ‘1) penalty, is found by solving the following ‘1-

regularized least squares problems for i~2, . . . ,p

ÂA1:i{1,i~argmin
h[Ri{1

fn{1EX i{hTX1:i{1E2
2zli

Xi{1

j~1

Dhj Dwjig ð2Þ

where A1:i{1,i denotes the first i{1 elements of the ith column of

the adjacency matrix and li is the tuning parameter for each lasso

regression problem. In Section Choice of Parameters and

Properties of the Algorithm, we discuss the choice of this tuning

parameter. Finally, wji represents the weights of the lasso method;

for the regular lasso penalty used here, wji:1. In the RIPE

algorithm, a natural extension of [13] is to use the above penalized

likelihood estimation framework in order to estimate a DAG for

each ordering o[O, where O is the set of orderings found from the

perturbation data. However, the perturbation data provide

additional information regarding the influence of the genes in

the network. In particular, in the absence of noise, the set of

parents of each gene in the regulatory network are a subset of the

set of parents in the influence graph. Using this observation, we

generalize the penalized estimation problem in (2) to limit the set

of variables in each penalized regression to those of the parents of

node i in the influence graph, consistent with each ordering, which

equates the set of all ancestors of i in the regulatory network. In

other words, for each ordering o, the set of edges pointing to each

gene in the regulatory graph is estimated by solving the following

‘1-regularized regression (lasso) problem:

argmin
h[RDJo D

fn{1EX i{hTXJoE2
2zliEhE1g ð3Þ

where Jo:paPo
i denotes the set of parents of i in the influence

graph consistent with ordering o and EhE1 is the ‘1 norm of h.

To illustrate the optimization problem for estimation of DAGs

in the second step of RIPE, consider the regulatory network in the

left panel of Figure 1D. The middle panel of the figure represents

the ideal influence matrix, obtained when no errors are present in

the perturbation data, and the right panel represents a realization

of the influence graph with both false positive and false negative

edges. In the first step of RIPE, causal orderings are determined

based on the graph in the right panel of Figure 1D. An example of

such an ordering is o~(g2[g1[g3[g4[g5). Note that in this

case many orderings exist, due to the presence of cycles in the

influence graph. In the second step of the RIPE algorithm, a

penalized regression problem is solved for each node, where the set

of predictors are the set of parents of the node in the right panel of

Figure 1D, consistent with the given ordering. In particular, the

following regression problems are solved for o (here Xi*XjzXk

denotes regression of Xj on Xi and Xk, ignoring for ease of

presentation the corresponding penalty term):

X1*X2, X3*X1zX2, X4*X1zX2, X5*X2zX3zX4

Using the results of these regressions, the value of the penalized

negative log-likelihood function is then determined for each of the

estimated graphs. Based on these values, the ‘‘best’’ networks are

then used to construct the consensus graph, as described next in

the section discussing the third step of the RIPE algorithm.

Given the set of orderings O of cardinality M:DOD, one needs

to solve M separate penalized regression problems, and store their

corresponding penalized negative log-likelihood values, where the

computational cost of each of these problems is O(np2). However,

this step is fully parallelizable and using n processors the

complexity reduces to O( M
n np2).

Graph averaging: a consensus regulatory network
As mentioned above, the estimated influence matrix P from

perturbation screens results in multiple orderings o, either due to

feedback regulatory mechanisms or noisy measurements. In such

cases, the estimate of the adjacency matrix of the graph can be

obtained from those corresponding to the set of orderings

achieving the smallest penalized negative log-likelihood values.

Therefore, the final step of the RIPE algorithm includes a model

averaging procedure that combines the estimated DAGs from

multiple orderings to construct a cyclic consensus network. This is

illustrated with a small cyclic subnetwork in Figure S1. In this

example, the true network includes a number of cycles, and the

estimate from the RIPE algorithm correctly identifies some of

these cycles (also see Text S1).

Let Lq denote the lower qth quantile of the penalized negative

log-likelihood values, denoted by ‘, and Q~fo[O : ‘(o)ƒLqg be

the set of orderings with the lowest 100q% penalized negative log-

likelihood values. The RIPE estimate of the adjacency matrix is

then defined as the consensus DAG:

ÂAc
i,j~

1

DQD

X

k[Q

1DAk
i,j

Dw0
ð4Þ

Here, Ak is the DAG estimate from the k-th ordering, ÂAc denotes
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the confidence of each edge in the final estimate, and 1V is the

indicator function which equals 1 when the condition V holds, and

0 otherwise.

Consequently, the estimate of the edge set of the graph is

defined as ÊE~f(i,j) : ÂAc
i,j§tg, where t is the threshold for

including an edge. The value of t determines the desired level of

confidence, and can be chosen by the user depending on the

application of interest. Nevertheless, the above formulation

provides a flexible estimation framework, in which t is considered

a tuning parameter or can be set based on prior analyses (see the

section Choice of Parameters and Properties of the Algorithm

below and the Results section for more details about the choice of

t).

The RIPE algorithm also produces an estimate of the sign of

each edge, as well as the magnitude of the effect, defined by the

matrices ÂAs and ÂAv below:

ÂAs
i,j~sgn(

X

k[Q

sgn(Ak
i,j )) ÂAv

i,j~
1

DQD

X

k[Q

DAk
i,j D ð5Þ

where the sgn(0):0.

Choice of Parameters and Properties of the Algorithm
Similarly to any other learning algorithm, the performance of

the RIPE algorithm depends on the choices of tuning parameters.

There are three tuning parameter that need to be determined: (i)

the penalty coefficient l, (ii) the likelihood quantile q, and (iii) the

confidence threshold t. Next, we discuss strategies for choosing

these parameters.

In penalized regression settings, l determines the weight of the

penalty term in the optimization problem, with larger values of l
resulting in more sparse estimates. In [13], the following error-

based choice of l was proposed for the i-th regression in (2),

li(a)~2n{1=2Z� a
2p(i{1)

: ð6Þ

Here, Z�x is the x-quantile of the standard normal distribution and

it can be shown that this choice of penalty controls the probability

of falsely joining two unconnected ancestral components at level a.

Interestingly, numerical studies in [13] show that the result of the

analysis is not sensitive to the choice of a, and values of a[(0:1,0:5)
result in comparable estimates.

Even though the choice of l in equation (6) controls the

probability of false positives, it results in over-sparse estimates.

Numerical studies in [24] strongly suggest the smaller value

0:6li(a), which is used in the numerical studies in this paper.

Unlike the choice of l, our numerical studies indicate that the

RIPE algorithm is not sensitive to the choices of q and t, and a

wide range of values can be used for these parameters (see Results

and Figures S2, S3, S4). It is worth pointing out that since the

value of q determines the proportion of highest likelihoods used in

constructing the consensus graph, when the perturbation data

gives a reliable estimate of the influence matrix P, multiple

orderings from the first step of RIPE would result in true feedback

cycles in regulatory networks, and therefore, the differences in

corresponding likelihood values are mostly due to the inherent

noise in expression data. As a result, in the ideal case with no

errors in the influence graph, a value of q~1 would produce the

‘‘best’’ estimate. However, in practice, to avoid inferior estimates,

outlier values of the likelihood should not be incorporated in the

estimate. Our numerical analyses show that values of q[(0:1,0:9)
would result in comparable estimates.

Finally, the choice of t determines the confidence of edges in the

estimated consensus network: large values of t result in edges that

are more consistently present in all estimated graphs, while small

values allow for less frequently present edges to be included in the

final estimate. As with l, our numerical studies indicate that large

values of t result in over-sparse estimates, and we recommend

values of t[(0:05,0:35) (see the Results section and Figures S2, S3,

S4). All estimates in the paper were obtained by setting q~0:1 and

t~0:25, to achieve a balance between the standard performance

measures of Precision and Recall.

To complete our discussion of the RIPE algorithm, it is worth

noting that an accurate influence matrix P including binary

information from single gene knockouts contains sufficient

information for obtaining the causal orderings of the underlying

regulatory network, but not its structure (see Lemma 1 in the

Supporting Information (Text S1) for a formal statement and

proof of this result). In the RIPE algorithm, abundantly available

steady-state expression data are used to compensate for this lack of

information. Further, we establish the asymptotic consistency of

the network structure estimated using the penalized likelihood

method (see Lemma 2 in the Supporting Information, Text S1).

Results

Preliminaries
Determining the Influence Matrix. In Section Estimating

the Influence Matrix from Perturbation Data under Methods we

describe how to estimate an influence matrix P from perturbation

experiments using differential expression analysis. The analysis

produces p-values for each entry in the matrix, and by choosing a

specific cutoff p�, we get an estimate of P; note that a lower p�

gives rise to a sparser matrix. To select a reasonable cutoff, the

number of edges in the influence graph for different p-values are

plotted together with the size of the largest connected component,

see Figure 3. If the network is modularized, i.e. to some extent

consists of nodes grouped together as illustrated in Figure 1B, we

would consider a drop in the size of the largest connected

component indicative of a good choice of p-value. If only a few

edges make the difference between a large and a small connected

component, we have most likely found the p-value for which the

‘‘noise edges’’ have been removed to reveal the modularized

structure. If such a drop in the size of the large component is

missing, possible reasons can be that the underlying network does

not exhibit a modularized structure, or that the signal strength of

the experimental data is rather low to clearly reveal it. However, a

plot of the type given in Figure 3 can still be useful in such a

setting, since we can choose a p-value based on the size of the

connected component. An overly large connected component is

not very realistic from a biological perspective, in addition to being

computational demanding since it produces many potential

orderings.

Performance Evaluation Criteria. Several evaluation cri-

teria have been proposed for assessing the performance of different

network reconstruction methods. However, the choice of criteria

depends on the information available on the ‘‘true’’ regulatory

network: in synthetic, or in silico examples, the gold standard is

known, and Precision, Recall and F1 measures are often used as

standard metrics (with F1 being the harmonic mean of the other

two metrics). On the other hand, in real data applications, the gold

standard is often unknown and the appropriate performance

criteria should be determined based on the information at hand. In

the section below, titled Regulatory Network in Yeast, the known

protein-DNA interactions for yeast present in the BIOGRID

database (release 3.1.74) [30] are used as gold standards. To

Inferring Regulatory Networks

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e82393



account for the fact that the BIOGRID database may not include

all regulatory interactions, we carried out an experiment similar to

the approach implemented in [15]. More specifically, to assess the

significance of the number of true positives for each of the

estimates, 10,000 Erdös-Rényi random graphs with the same

number of edges as each of the estimates were generated (using the

R-package igraph [31]), and the number of true positives in

randomly generated graphs was used to approximate the p-value

for significance of the number of true positives observed. The

resulting p-value determines the likelihood of observing a given

number of true positives in randomly generated graphs, and can

be used directly for performance evaluation.

DREAM4 Challenge
To illustrate the performance of the RIPE algorithm, we first

evaluate it by using networks from the DREAM4 in-silico network

challenge, which is part of a series of challenges [32], aiming at

inferring gene regulatory networks from simulated data. The gold

standard networks in DREAM4 were generated by extracting

modules from two source networks: yeast and Escherichia coli. The

modules were extracted so as to preserve the structural properties

of the underlying network, such as degree distribution and network

motifs (statistically overrepresented circuit elements) [33]. The

underlying dynamics in the models include mRNA and protein

dynamics simulated by stochastic differential equations with both

experimental and internal noise added (an extension to the

method in [34]).

The simulated data sets available within DREAM4 consist of

observations from the unperturbed network (wild-type), perturba-

tion experiments in which all genes are knocked-out one-by-one

(knockouts), perturbation experiments in which the activity of all

genes are lowered one by one with a factor of two (knockdowns), as

well as small perturbation of all genes simultaneously (multifactorial)

and finally, time series.

Three of the five 100-node networks were selected for analysis;

network 1 (Net1), network 3 (Net3) and network 5 (Net5). These

particular choices were made based on the differences in

topologies, as well as on how well the network structures were

predicted in terms of AUC (Area Under the ROC Curve) in the

in-silico challenge. Specifically, several competing research teams

submitted predictions of the network structures for the DREAM4

challenge. Net1 was best predicted overall, while the structure of

Net5 was the most difficult to deduce. We chose to also analyze

Net3 since Networks 2–4 were predicted with comparable

accuracy, with intermediate AUC values compared to Net1 and

Net5. The varying prediction accuracies can be explained by the

differences exhibited by the various network structures; for

example, Net1 has a layered structure, with many nodes

functioning as either parents or children in the graph, while Net5

has a more complex topology with several short cycles and nodes

with multiple parents.

The DREAM4 challenge only includes one replicate of each

simulated experiment, and in order to assess the noise levels in the

data, we simulated five replicates of each of the wild-type,

knockdown, and knockout experiments, as well as one multifac-

torial data set for the networks of interest by using GeneNetWea-

ver 3.0. The DREAM4 default settings were used, excluding

standardization of the simulated data.

Two methods tied for first place in predicting the topology for

the 100-node networks in DREAM4; a t-test based method [10]

and a method based on confidence matrices, pruned by down-

ranking of feed-forward loops (FFLDR) [9]. As the two methods

performed comparably, we chose to compare our method to

FFLDR, for which the authors kindly provided their code. In [10],

the t-test method is also combined with time-series data using

ordinary differential equations to model the temporal changes in

the gene expression (known as Inferelator). However, as this

method was not submitted in the challenge of network topology

prediction, and in addition utilizes time series data, we have not

included it in the comparisons.

The influence matrix P was estimated by comparing the

expression levels from perturbation experiments (five replicates for

each knockout/knockdown) to the corresponding levels in the

unperturbed network (five replicates of the wild-type data), as

described in the Preliminaries section above (see Figure 3). The p-

value 0.019 was selected for both Net1 and Net5, while 0.003 was

chosen for Net3. For the knockdown data, the same method was

used to select the cutoff p-values as for the knockout data (see

Figure 3. Influence graph characteristics versus p-value for DREAM4. Number of edges (open triangles) in the influence graph and the size
of the largest connected component (dots) versus cut-off p-value for differential expression. The data is based on five replications of the knockout
and wild-type experiments for (A) 100-node network 1, (B) 100-node network 3, and (C) 100-node network 5 in the DREAM4 challenge.
doi:10.1371/journal.pone.0082393.g003
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Figure S5). For FFLDR, the optimal performance for large-scale

networks is obtained by directly comparing the expression levels in

knockout experiments, and hence, the five replicates of the

knockout data (not using the wild-type data for comparison) were

averaged, and this signal was used as input to the method.

Table 1 summarizes the performances of the PC-algorithm

(PCALG, as implemented in the R-package pcalg), the Nested

Effects Model (NEM, as implemented in the R-package nem), as

well as the FFLDR and RIPE (based on 10,000 MC-DFS

orderings) algorithms in reconstructing Net1, Net3, and Net5. Since

the DREAM4 challenge does not include suitable steady-state

expression data, to employ PCALG and RIPE, n~100 indepen-

dent samples from a Gaussian distribution with mean 0 and

variance 1 were generated from each of the networks. The

strengths of associations among genes were chosen as uniform

random numbers in the range +(0:2,0:8) and to handle the effect

of cycles in the regulatory network, the magnitudes of strengths

were then normalized according to the method described in [35].

As a benchmark, we also evaluated the performance of the

ARACNE procedure [36] on the simulated data. It is important to

note that ARACNE estimates undirected networks. Thus, the

estimates from ARACNE cannot be directly compared with the

other methods mentioned above. Nonetheless, we applied

ARACNE with a number of p-value cutoffs and found that the

Bonferroni adjusted p-value cutoff of 1:010|10{5 offers the best

performance compared to the true network.

It can be seen from Table 1 that RIPE outperforms the

competing methods (see F1 measure), with the exception of

knockdown data for Net1 where FFLDR exhibits a slight edge. The

differences in performance are more pronounced for the more

complex Net5. As mentioned above, Net3 and Net5 pose more

challenging reconstruction problems compared to Net1; hence, all

methods exhibit inferior performances in the reconstruction task.

On the other hand, while knockout data represent ideal

perturbation experiments, knockdown data correspond to less

accurate ones. Therefore, the performances of NEM and FFLDR,

that only employ perturbation screens, as well as RIPE, deteriorate

in the case of knockdown data, whereas the performance of

PCALG and ARACNE are not affected by the change in the

perturbation data, as it uses as input only steady state expression

data.

To further evaluate the performance of ARACNE, PCALG and

RIPE, we also applied these methods to the multifactorial data. As

described earlier, the multifactorial data set is obtained from non-

i.i.d observations, which violate the underlying assumption of both

PCALG and RIPE algorithms. In addition, this data set does not

correspond to a steady-state setting. Interestingly, the results in

Table 2 indicate that the performance of all three competitors

deteriorates by roughly similar factors, which can be attributed to

the lower quality of this multifactorial data set. On the other hand,

the results show that even when the steady-state data violate the

underlying assumptions of the model, the performance of the

RIPE algorithm is comparable to that of FFLDR, particularly for

the more complex structure of Net5.

These results strongly indicate that combining perturbation

screens with steady state expression data are beneficial to the

regulatory network reconstruction problem, especially in settings

where the perturbation data are rather noisy and the steady state

data exhibit good quality. To better address this issue and obtain a

deeper insight into the effect of noise on the perturbation data we

undertake a number of experiments based on synthetic data.

Experiments with Synthetic Data
To assess the influence of the inputs and steps required by the

various algorithms, we examine a number of settings both in small

and large scale networks.

Small Directed Acyclic Graph. We start our discussion on

synthetic data with the toy example illustrated in Figure S6.

Specifically, we employ a randomly generated DAG of size p~20
corresponding to the true regulatory network. To emulate possible

regulatory mechanisms, the generated DAG includes a number of

‘‘hub’’ genes, as well as two genes that are not regulated by any

other gene.

To obtain independent expression data (X ) consistent with the

underlying DAG, an association weight of r~0:8 is assigned to all

the edges in the graph and the available functions in the R-

package pcalg are used to generate n~50 independent samples of

Gaussian random variables with mean 0 and variance 1, according

to structural equation models that incorporate the influence of

nodes of the graph on each other (see [37] for more details).

The influence matrix P corresponding to the perturbation data

is generated as follows: given the adjacency matrix of a DAG A, it

is shown in [38] that P~q I{Að Þ{1r, where I denotes the

identity matrix and q:r the ceiling operator. We denote by P0 the

ground truth influence matrix corresponding to the generated

DAG. However, as previously discussed, in practice the influence

matrix is extracted from gene expression data obtained from the

perturbation experiments and hence is inherently noisy. Depicted

in Figure S7 is the matrix P0 (left-most image) and three variants

of that matrix that we examine; in the first one (P1) the direction of

a small proportion of edges reversed (second image from the left)

and in the second one (P2) edges are added (second image from

the right); the third matrix (P3) includes both reversed edges, as

well as an addition of extra edges (right-most image).

Table 1. Reconstruction results for DREAM4 networks with simulated steady state data.

Method Net1, KO Net1, KD Net3, KO Net3, KD Net5, KO Net5, KD

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

ARACNE 17 41 24 17 41 24 10 48 16 10 48 16 16 51 25 16 51 25

PCALG 48 26 34 40 23 29 48 25 33 44 25 31 40 20 27 43 22 29

NEM 28 34 31 6 6 6 14 9 11 4 4 4 9 17 12 7 10 08

FFLDR 92 57 70 86 46 60 66 44 53 60 28 38 44 35 39 49 26 34

RIPE 80 71 75 74 46 56 65 49 56 61 30 40 59 47 52 56 34 42

Performance measures, in percentages, for methods of reconstruction of DREAM4 Net1, Net3, and Net5, using both knockout (KO) and knockdown (KD) data. Steady
state expression data is generated from structural equation models based on the true graph.
doi:10.1371/journal.pone.0082393.t001
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In this case, the small size of the network together with the

relatively small amount of noise introduced in the influence matrix

allows us to obtain all possible orderings; specifically, P3 which

contains the most number of orderings, has 12 strongly connected

components of small size with a total of 3926 possible orderings,

and hence can be easily handled with exhaustive search. On the

other hand, the total number of orderings for P0, P1 and P2 are 1,

1, and 2 respectively. However, we emphasize that obtaining the

causal orderings of large strong components (i.e., larger than 15

nodes) using the exhaustive method is computationally expensive,

and the MC-DFS heuristic becomes the only practical choice.

The results of applying the four methods under consideration to

each of the input data sets are given in Table 3. Note that NEM

and FFLDR use only the four influence matrices P0{P3 as input,

while the PCALG only uses the steady state gene expression data

X ; finally, RIPE uses both of them. The numbers in parentheses

correspond to the standard deviation of the metrics for PCALG

and RIPE obtained from 100 replications of the steady state gene

expression data X . The numbers reported for RIPE, are obtained

by considering all possible orderings generated using the

exhaustive DFS algorithm for P0{P3, and for P3 the consensus

graph was obtained by setting q~0:1 and t~0:25. A graphical

summary of F1 measures over different versions of the influence

matrix is given in Figure 4A. It is worth noting that as discussed

above, the choices of q and confidence threshold t do not critically

affect the performance of RIPE and values of q[(0:1,0:9) and

t[(0:05,0:6) yield comparable results (see Figures S2, S3, S4).

that PCALG only uses the X data, thus the identical entries in the

table. It is worth noting that although the performances of NEM,

FFLDR and RIPE are affected by the increasing level of noise in

the perturbation data (as expected), RIPE can compensate for this

loss of accuracy by incorporating the additional information from

the steady-state data. Obviously, all these effects would be

magnified if a large number of spurious edges are added or a

large number of true edges are deleted, thus introducing a

significant amount of noise in the influence matrix P. Interest-

ingly, our results indicate that PCALG has a slight edge over NEM

(both in case of DREAM data and the synthetic network). This

may be due to the specific structure of the DAG under

consideration (experiments show that NEM, which uses triplets

of nodes to determine the order of the edges, often performs better

in chain-type graphs, for example in DREAM4 Net1). The inferior

performance of NEM in this setting can also be attributed to the

fact that NEM, as originally proposed, performs well settings

where the number of perturbation experiments is significantly

smaller than the number of affected genes, which is not the case in

our numerical experiments. On the other hand, RIPE takes a

global view by constructing causal orderings, in addition to

independently evaluating them with steady state gene expression

data. Of particular interest is the significant deterioration in the

performance of FFLDR in the cases of P2 and P3 that indicates a

vulnerability of the method in the presence of noise in its input

data.

Finally, to assess the effect of approximation used in MC-DFS,

in comparison to having the universe of orderings, we estimated

the regulatory network from P3 with different number of

orderings. The average values of the Precision, Recall and F1

measures over 100 replications for different number of orderings

considered are given in Table 4. All estimates were obtained by

using q~0:1 and t~0:25 for estimating the consensus graph. It

can be seen that, in comparison to the estimate obtained by

evaluating all 3926 ordering using exhaustive DFS, the one

obtained by considering a random subset of a small number of

orderings provides comparable results. In particular, aside from a

slight increase in recall, as the number of orderings increases, the

performance of the method with only 200 orderings obtained

using MC-DFS is comparable to utilizing the universe of orderings

generated from an exhaustive search with DFS. This result

suggests that the MC-DFS algorithm represents a viable alterna-

tive for settings involving a large size strongly connected

component, and as a result, the RIPE algorithm is not highly

sensitive to the number of orderings used to reconstruct the

network.

Effect of False Positive and Negative Errors in

Perturbation Data. To analyze the effect of false positive and

negative errors in the perturbation data on the performance of the

RIPE algorithm, a randomly generated DAG of size p~100 was

used as the true regulatory network. The influence matrix P
corresponding to the true perturbation data, and independent

expression data of size n~100 consistent with the underlying

DAG were generated according to the methods explained in the

previous section.

To emulate the effect of false positive and negative errors, three

different scenarios were considered: false positive errors (FP), in

the form of edges not present in the true influence graph, false

negative edges (FN ), in the form of missing edges compared to the

true graph, and both false positive and false negative edges

(FPzFN ). Additionally, to assess the effect of increasing noise

levels, 3 levels of noise in each of the above scenarios were

considered. To determine the appropriate noise levels, the number

of edges in P0 (198) were used as calibration, and the proportion of

false positive and false negative edges were adjusted so that each

randomly perturbed influence matrix included the same number

Table 2. Reconstruction results for DREAM4 networks with multifactorial data.

Method Net1, KO Net1, KD Net3, KO Net3, KD Net5, KO Net5, KD

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

ARACNE 25 9 13 25 9 13 28 19 23 28 19 23 16 14 15 16 14 15

PCALG 24 09 13 24 09 13 39 15 22 39 15 22 21 08 12 21 08 12

NEM 28 34 31 6 6 6 14 9 11 4 4 4 9 17 12 7 10 8

FFLDR 92 57 70 86 46 60 66 44 53 60 28 38 44 35 39 49 26 34

RIPE 74 38 50 80 30 43 71 31 43 68 23 34 54 32 40 52 24 33

Performance measures, in percentages, for methods of reconstruction of DREAM4 Net1, Net3, and Net5, using both knockout (KO) and knockdown (KD) data.
Multifactorial data from DREAM4 challenge is used as steady-state expression data.
doi:10.1371/journal.pone.0082393.t002
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of expected false edges. The results were 9 noisy influence graphs

under each of FP, FN and FPzFN settings with roughly 25, 50

and 75 false edges.

Considering the inefficiency of NEM for network estimation in

high dimensional settings especially when the number of effect

genes is small, we focus on the performance of FFLDR and RIPE,

using PCALG as a benchmark. The results for RIPE were

obtained based on 1000 randomly generated orderings for the

cases where the influence graphs were generated with false

positives (since the true graph is a DAG, the case of FN amounts

to a single ordering).

The performance of the above methods in each of the input

data sets are given in Table 5, where the results for RIPE and

PCALG correspond to averages over 50 independent draws of the

steady state data. Figure 4B summarizes the values of F1 measures

for different methods. These results reveal a number of interesting

aspects of FFLDR and RIPE algorithms. First, as expected,

increasing levels of false negatives impact the performance of

RIPE, while FFLDR could be severely impacted by high false

positive rates. Secondly, while the worst-case performance of RIPE

(for the case of FN ) matches that of FFLDR, the proposed data

integration framework can result in significant gain in network

estimation accuracy in other scenarios. While high quality

perturbation screens greatly improve the performance of both,

by combining steady state data and perturbation screens, the

RIPE algorithm could compensate for the inaccuracy of the

perturbation data, whereas estimation based on perturbation data

alone can result in FFLDR estimates that are inferior to those of

PCALG. Finally, Figure S8 shows the improvement with

increasing number of orderings in F1, P, and R for inference

using the influence graph with highest level of false positives

(1:5%). It can be seen that although the three measures moderately

improve with higher number of orderings, a small number of MC-

DFS orderings are sufficient for acceptable performance of the

RIPE algorithm. Note that due to the acyclicity of the underlying

graph, different levels of false negative errors correspond to a

single ordering for the influence graph, and hence a similar

comparison for the case of false negatives is not relevant.

Large Cyclic Graph (p~1000). Our final numerical exper-

iment with synthetic data compares the performance of RIPE with

those of PCALG and FFLDR in reconstructing large cyclic graphs

in the presence of both false positive and negative noise in the

perturbation data. The setting of this simulation is similar to that

of the previous section, with the main difference being the size of

the graph and presence of cycles (feedback loops) in the true graph.

In particular, a random cyclic graph with p~1000 nodes and

*2p~1984 edges was generated, and n~500 samples were

generated from zero mean, unit variance Gaussian random

variables, as steady state expression levels from the true network.

As before, three different scenarios were considered: false

positive errors (FP), false negative edges (FN ), and both false

positive and false negative edges (FPzFN ) at 3 noise levels in

each of the above scenarios. The noise levels were set up so that

approximately 200, 400, and 600 erroneous edges were included

in each of FP, FN, and FPzFN settings.

The performance of the above methods for each of the input

settings is given in Table 6, where the results for RIPE (with 1000

random orderings) and PCALG are averages over 5 independent

drawings of the steady state data. Figure 4C summarizes the values

of F1 measures for different methods. These results confirm the

findings of the previous section. In particular, RIPE outperforms

the other two algorithms in all the simulated settings, and the

difference between the performances of RIPE and FFLDR is

magnified as more false positive edges are added to the

perturbation graph. Finally, as expected, the PCALG does not

compare favorably with the other two methods in the setting of

cyclic graphs.

Regulatory Network in Yeast
To evaluate our method on real data, we explore the

transcription factor (TF) regulatory network in Saccharomyces

cerevisiae. The influence matrix P was estimated from a large

transcription factor knockout experiment [39], that was subse-

quently reanalyzed by [40]. Briefly, the experiment consists of 269

knockouts or knockdowns of yeast transcription factors, investi-

gated by hybridization to microarrays under normal conditions. In

total, 588 custom-made two-color microarrays with wild-type

standard total RNA used as reference strain were employed in four

batches and three different strains. Reanalysis of the data involved

within-array normalization, background correction, between

array-normalization and corrections for batch effects and strain

effects. The genes were ranked using a moderated t-statistic, and

FDR-correction was applied based on the method of [41].

We extracted the expression values for the genes corresponding

to the 269 TF knockouts (resulting in a square matrix of expression

values) and a p-value cut-off was chosen to 0.002 based on the

same type of plot as for the DREAM4 networks (see Figure S9).

The resulting influence matrix corresponds to a graph with a

strongly connected component of size 113.

The steady state experimental data employed come from a

publicly available data set (ArrayExpress E-TABM-773) and has

been used (e.g., see [42]) to assess the day-to-day variation in large

yeast array experiments. The data contains 200 samples, with

samples from each day hybridized against a pool of wild-type

strains. Although the samples are not necessarily independent, or

Table 3. Reconstruction results for synthetic networks subject to error in the perturbation data.

Method P0 P1 P2 P3

P R F1 P R F1 P R F1 P R F1

PCALG 54(8) 52(10) 53(8) 54(8) 54(8) 52(10) 53(8) 52(10) 53(8) 54(8) 52(10) 53(8)

NEM 50 33 40 55 33 39 36 33 41 21 28 24

FFLDR 100 67 79 40 92 67 77 33 36 33 28 30

RIPE 95(4) 99(2) 97(2) 79(4) 90(4) 94(1) 92(3) 100(1) 88(3) 61(5) 84(6) 71(5)

Average performances measures, in percentages, for methods of network reconstruction in the synthetic networks. Numbers in parentheses show standard deviations
for methods based on simulated steady state data (PCALG and RIPE). P0 indicates the ideal influence graph and P1 to P3 represent noisy versions of the influence graph
(see Figure S7).
doi:10.1371/journal.pone.0082393.t003
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identically distributed (due to batch effects, temporal correlations

etc), here we use this dataset as an approximation for i.i.d

measurements. For the strong components whose size prohibits an

exhaustive search, we apply the MC-DFS heuristic with

m~10,000 random permutations.

The performance of the competing methods is based on the

strategy outlined in the Preliminaries section above. Figure 5

shows the histogram of the number of true positives for randomly

generated graphs of the same size as each of the reconstructed

networks, as well as those obtained from three different methods

Note that the NEM algorithm failed to produce an estimate of the

network in this case after 10 days of run time and thus its results

were not included. Interestingly, the RIPE estimate is the only

method for which the number of true positives are significantly

larger (at 5% significance level) than that obtained in a random

Table 4. Impact of increasing number of orderings used in
the RIPE algorithm.

Number of Orderings P R F1

100 60 81 69

200 61 82 70

1000 61 82 70

2000 60 83 70

3926 (all) 61 84 71

Average performance measures, in percentages, for RIPE in the synthetic
network P3 .
doi:10.1371/journal.pone.0082393.t004

Figure 4. Performance of RIPE and competing methods on the reconstruction of synthetic networks. (A) Average F1 measures for
reconstruction using NEM, PCALG, FFLDR and RIPE on a network of size p~20. P0 corresponds to the ideal influence graph and P1 to P3 represent
increasing levels of noise in perturbation data (see also Figure S7). (B)–(C) Average F1 measures for reconstruction of synthetic regulatory networks
using PCALG, FFLDR and RIPE for different levels of false positive and negative noise in perturbation data. Numbers in parentheses indicate the
expected number of false edges in each case. The true graph is an acyclic graph (DAG) of size p~100 in (B) and a cyclic graph of size p~1000 in (C).
doi:10.1371/journal.pone.0082393.g004
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graph (0.0185 for RIPE compared to 0.1265 for FFLDR and

0.5543 for PCALG). These findings further highlight the

advantage of the proposed approach over existing methods.

A comparison of the estimated graphs using these three methods

indicates a significant overlap between RIPE and FFLDR

reconstructions: specifically, out of 520 edges detected in RIPE

and 622 edges in FFLDR, 225 edges are in common. On the other

hand, the PCALG reconstruction has considerable less overlap

with the other two estimates: 8 and 12 common edges with RIPE

and FFLDR, respectively. The significant overlap between the

FFLDR and RIPE estimates suggests that some of the edges

detected by both methods may indeed correspond to true

regulatory interactions in yeast, which are not included in the

BIOGRID database. Such results could be used as a starting point

for designing the corresponding validation experiments.

As with the DREAM4 data, we also applied ARACNE for

estimation of the yeast network, and found that the Bonferroni

adjusted p-value cutoff of 1:38|10{6 results in the best estimate,

with 131 true positives (compared to BIOGRID) and 5594 total

edges. This indicates that the estimated network based ARACNE

is significantly denser compared to all other estimators. Evaluation

of the significance of the number of true positives using the

random graph method described above gives a p-value of 0:0286,

which indicates that ARACNE has a significantly larger propor-

tion of true positives compared to FFLDR and PCALG. This is

somewhat in agreement with the analysis on the DREAM4 data,

where the combined performance of ARACNE based on the F1

measure was affected by its low Recall rate compared to the other

methods.

As pointed out in the Methods section, the RIPE algorithm can

also be applied in the case where kvp. To illustrate this, we next

describe the application of the RIPE algorithm for estimation of

the entire regulatory network of yeast with k~269 TF’s and

p~6051 total genes. In such settings, one often obtains

perturbation data on a subset of genes of interest (here the set of

TFs) and is interested in obtaining an estimate of the regulatory

Table 5. Impact of increasing false positive and negative errors in perturbation data on estimation of acyclic graphs.

F1 P R

PCALG FFLDR RIPE PCALG FFLDR RIPE PCALG FFLDR RIPE

NO ERR 70(3) 99 97(1) 68(3) 100 97(2) 73(3) 98 97(1)

FP 0.50% 70(3) 73 96(1) 68(3) 65 95(2) 73(3) 84 97(1)

1% 70(3) 48 94(1) 68(3) 40 91(2) 73(3) 62 96(1)

1.50% 70(3) 45 83(1) 68(3) 30 77(2) 73(3) 97 91(1)

FN 10% 70(3) 90 90(1) 68(3) 93 92(2) 73(3) 88 87(1)

20% 70(3) 85 85(1) 68(3) 86 88(1) 73(3) 85 83(1)

30% 70(3) 73 74(1) 68(3) 76 80(2) 73(3) 71 69(1)

FP + FN 0.25%, 5% 70(3) 74 92(1) 68(3) 65 92(2) 73(3) 86 93(2)

0.5%, 10% 70(3) 58 88(1) 68(3) 52 88(2) 73(3) 66 87(1)

0.75%, 15% 70(3) 56 88(1) 68(3) 48 89(2) 73(3) 68 87(1)

Average performances measures, in percentages for PCALG, FFLDR and RIPE in the synthetic DAG of size p = 100 with different error structures. Numbers in parentheses
indicate the standard deviation of the estimates over 50 draws of simulated data (only for PCALG and RIPE).
doi:10.1371/journal.pone.0082393.t005

Table 6. Impact of increasing false positive and negative errors in perturbation data on estimation of high dimensional cyclic
graphs.

F1 P R

PCALG FFLDR RIPE PCALG FFLDR RIPE PCALG FFLDR RIPE

NO ERR 27(3) 58 63(1) 31(3) 89 83(1) 25(3) 43 50(1)

FP 0.02% 27(3) 47 63(1) 31(3) 63 83(1) 25(3) 38 51(1)

0.04% 27(3) 39 61(1) 31(3) 43 80(1) 25(3) 35 50(1)

0.06% 27(3) 34 59(1) 31(3) 33 73(1) 25(3) 35 50(1)

FN 2% 27(3) 57 61(1) 31(3) 88 83(1) 25(3) 43 49(1)

4% 27(3) 55 59(1) 31(3) 82 81(1) 25(3) 41 47(1)

6% 27(3) 54 59(1) 31(3) 82 81(1) 25(3) 40 46(1)

FP + FN 0.01%, 1% 27(3) 54 62(1) 31(3) 73 83(1) 25(3) 43 49(1)

0.02%, 2% 27(3) 48 61(1) 31(3) 64 80(1) 25(3) 39 50(1)

0.03%, 3% 27(3) 42 61(1) 31(3) 51 79(1) 25(3) 35 50(1)

Average performances measures, in percentages, for PCALG, FFLDR and RIPE in the synthetic cyclic network of size p = 1000 with different error structures. Numbers in
parentheses indicate the standard deviation of the estimates over 5 draws of simulated data (only for PCALG and RIPE).
doi:10.1371/journal.pone.0082393.t006
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interactions among the set of perturbed genes and all other genes in the

network. In this example, this amounts to a network with edges

from each of the 269 TF’s to each of the genes (TF’s and TG’s) in

the network. Specifically, this corresponds to a 2-layer graph

consisting of edges amongst TF’s, as well as edges between TF’s

and TG’s.

Considering the fact that perturbation data are only available

for a subset of k perturbed genes, one has to impose a constraint on

the orderings between perturbed genes and the rest of the genes in

the network. A natural constraint is to assume that no edges exist

from unperturbed genes to the perturbed ones. This assumption

defines a clear choice for ordering of nodes in the graph: the set of

perturbed genes (say 1 to k) appear before the unperturbed ones in

any ordering of nodes. It is then clear that RIPE can be applied to

estimate the regulatory edges in the network by obtaining

estimates of the two-layer network using the penalized regression

approach in (3). The computational efficiency of the RIPE

algorithms facilitates its application to estimation of the entire

network regulatory interactions based on limited perturbation

data. Estimation of the regulatory network of yeast with p~6051
genes and k~269 transcription factors based on 1000 orderings

takes less than 22 minutes on a 2.7 GHz Laptop with 6 GB of

memory. The resulting estimate includes 134 interactions reported

in the BIOGRID dataset (true positives) and a total of 10014

edges. In an experiment similar to those reported above, the

number of true positives in 1000 random graphs with the same

number of edges and similar 2-layer structure no network with

equal or larger true positives was observed (p-valuev0:001). The

distribution of number of true positives in comparison to the

number of true positives for the RIPE estimator are shown in

Figure S10.

Discussion

The proposed methodology offers several advantages over

existing approaches in addressing the key problem of reconstruct-

ing of regulatory networks. It relies on a global assessment of

causal orderings and employs both perturbation screens and

steady state expression data for the reconstruction step that boosts

performance. Further, the penalized likelihood method used for

estimating the edges exhibits a certain degree of robustness to

misspecification of the causal orderings, as observed in [13]. As

mentioned in the introductory section, highly accurate perturba-

tion data may be sufficient for the reconstruction task at hand, but

this is not often the case. On the other hand, integrating two data

sources proves beneficial, as our numerical work illustrates. We

discuss next several issues related to the RIPE algorithm and

outline some future research directions.

As previously indicated, scalability issues are important to the

proposed methodology, since the influence matrix P usually

contains cycles due to natural feedback loops in gene mechanisms

and the noisy measurements in the perturbation experiments.

Hence, calculating all possible causal orderings compatible with P
may become infeasible given the exponential complexity of the

problem. The proposed MC-DFS heuristic offers a fast, reliable

alternative. Our numerical experiments suggest that in practice it

is not required to exhaustively search the space of possible

orderings, and a moderate number of randomly generated

orderings often produce comparable estimates. Based on the

results reported here, for graphs of up to p~1000 nodes, a total of

*1000 orderings results in reliable estimates.

Our extensive evaluation studies strongly suggest that the RIPE

algorithm is especially suitable in settings where one deals with

noisy perturbation data and fairly good quality steady state

expression data are available. Algorithms utilizing only informa-

tion from perturbation screens work well for topologies without

many cycles, while those relying only on observational data are not

particularly competitive. Further, other data sources that can

further filter the influence matrix, such as binding experiments

(e.g. based on ChIP-chip technology), would be beneficial.

The proposed methodology is in principle applicable to other

organisms for which steady state gene expression data with large

sample size exist, such as Arabidopsis, mouse and human. The

bottleneck would be the paucity of systematic perturbation screens,

since they are more costly to produce. But the RIPE algorithm

would be well suited for estimating a regulatory subnetwork for

which adequate perturbation data are available.

An interesting extension of the proposed methodology involves

perturbation screens from time course data [8]. The RIPE

algorithm can be extended as follows. Relying on the fact that the

bperturbation screens convey the causal ordering of the genes in

the network, the DAG scoring method itself can be extended to

cover time course steady state expression data. For example, a

modified version of the likelihood scoring of DAGs can be used to

shrink the estimated networks in each time point towards a

common skeleton for the underlying network (similar to the

Figure 5. Performance evaluation for the reconstruction of the yeast regulatory network. Number of true positives for each method, in
comparison to the BIOGRID database, as well as a histogram for the number of true positives in randomly generated networks of the same size are
shown. The p-values are obtained based on 10,000 randomly generated networks.
doi:10.1371/journal.pone.0082393.g005
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approach described in [43]), or each time point can be modeled as

a modified version of the network at the previous time point [44].

Supporting Information

Figure S1 Small cyclic subnetwork example. The true

network (left) includes a number of cycles, and the estimate from

the RIPE algorithm correctly identifies some of these cycles (right).

(TIFF)

Figure S2 Numerical study on choices of t and q. Values

of the Precision (P) for different combinations of t (threshold for

including an edge in the consensus graph) and q (proportion of

highest values of the log-likelihood function used in constructing

the consensus graph).

(TIFF)

Figure S3 Numerical study on choices of t and q. Values

of the Recall (R) for different combinations of t (threshold for

including an edge in the consensus graph) and q proportion of

highest values of the log-likelihood function used in constructing

the consensus graph).

(TIFF)

Figure S4 Numerical study on choices of t and q. Values

of the F1 measure for different combinations of t (threshold for

including an edge in the consensus graph) and q (proportion of

highest values of the log-likelihood function used in constructing

the consensus graph).

(TIFF)

Figure S5 Influence graph characteristics versus p-
value for knockdown experiments in DREAM4. Number

of edges (open triangles) in the influence graph and the size of the

largest connected component (dots) versus cut-off p-value for

differential expression. The data is based on five replications of the

knockdown and wildtype experiments for (A) 100-node network 1,

(B) 100-node network 3, and (C) 100-node network 5 in the

DREAM4 challenge. P-values chosen for analysis were 0.03 for (A)

and (C), and 0.027 for (B).

(TIFF)

Figure S6 Synthetic regulatory network.
(TIFF)

Figure S7 Illustration of influence matrices for synthet-
ic networks. P0: ground truth, P1: 5% of directions reversed,

P2: 10% new effects added, P3: 5% directions reversed and 10%

new effects added. A black dot in position (i, j) (i.e., in row i and

column j) represents that gene i inuences gene j.

(TIFF)

Figure S8 Effect of increasing number of ordering used
in RIPE. The values of F1, P and R are displayed for increasing

number of orders in the synthetic DAG with p = 100 nodes under

1.5% false positive edges.

(TIFF)

Figure S9 Influence graph characteristics versus p-
value for the yeast regulatory network. Number of edges

(open triangles) in the influence graph and the size of the largest

connected component (dots) versus cut-off p-value for differential

expression in the transcription factor knockout experiments in

yeast. The graph is based on expression data from 588 two-color

microarrays for 269 transcription factors. The p-value cut-off was

chosen to 0.002.

(TIFF)

Figure S10 Performance of RIPE in estimating the
layered yeast regulatory network. The distribution of

number of true positives, in comparison to the number of true

positives for the RIPE estimator, for 1000 random graphs with the

same number of edges and similar 2-layer structure (p = 6051

genes and k = 269 transcription factors). No random network with

equal or larger true positives was observed (p-value,0:001).

(TIFF)

Figure S11 Simple graphs with 3 nodes.
(TIFF)

Text S1 Supporting information.
(PDF)
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