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Abstract

There is increasing evidence that pleiotropy, the association of multiple traits with the same

genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests

are often used to jointly analyze multiple traits from a genome-wide association study

(GWAS). The underlying methods, however, are often designed to test the global null

hypothesis that there is no association of a genetic variant with any of the traits, the rejection

of which does not implicate pleiotropy. In this article, we propose a new statistical approach,

PLACO, for specifically detecting pleiotropic loci between two traits by considering an under-

lying composite null hypothesis that a variant is associated with none or only one of the

traits. We propose testing the null hypothesis based on the product of the Z-statistics of the

genetic variants across two studies and derive a null distribution of the test statistic in the

form of a mixture distribution that allows for fractions of variants to be associated with none

or only one of the traits. We borrow approaches from the statistical literature on mediation

analysis that allow asymptotic approximation of the null distribution avoiding estimation of

nuisance parameters related to mixture proportions and variance components. Simulation

studies demonstrate that the proposed method can maintain type I error and can achieve

major power gain over alternative simpler methods that are typically used for testing pleiot-

ropy. PLACO allows correlation in summary statistics between studies that may arise due to

sharing of controls between disease traits. Application of PLACO to publicly available sum-

mary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer

implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17),

9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and

18q23 (ZNF236).
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Author summary

We propose a new approach PLACO that uses aggregate-level genotype-phenotype associ-

ation statistics—commonly referred to as GWAS summary statistics—to identify genetic

variants that influence risk of two traits or diseases. It allows correlation in summary sta-

tistics between studies that may arise due to sharing of controls between disease traits. We

demonstrate that PLACO can achieve major power gain over alternative methods that are

typically used. We applied PLACO to Type 2 Diabetes and Prostate Cancer summary data

from two large case-control studies. Many previous studies have reported an inverse asso-

ciation of these two chronic diseases suggesting shared risk factors; however, shared

genetic mechanisms underlying this association is poorly understood. PLACO identified

a number of novel shared genetic regions that are not detected by individual trait analysis.

Many of the loci implicated by PLACO increase risk for one disease while decreasing risk

for the other. PLACO can similarly be used on other traits to shed light on shared genetic

risk factors.

Introduction

Years of genetic research on various complex human traits have implicated numerous genetic

variants as risk factors for two or more traits. Pleiotropy, the phenomenon where a genetic

region or locus confers risk to more than one trait [1], is widely observed for many diseases

and traits [2], especially cancers [3], autoimmune [4] and psychiatric [5, 6] disorders. It has

also been observed in seemingly unrelated traits; for instance, early-onset androgenetic alope-

cia and Parkinson’s disease [7], Crohn’s disease and Parkinson’s disease [8], and coronary

artery disease and tonsillectomy [9]. Pleiotropy provides new opportunities, as well as chal-

lenges, for diagnosis, therapeutics, and intervention on diseases [1, 2, 10, 11]. Consequently, it

is important to identify and study shared genetic basis of complex traits.

To detect potential pleiotropic effects of genetic variants, many statistical methods for

jointly analyzing multiple traits in genome-wide association studies (GWAS) have been pro-

posed [1, 12, 13]. Use of these methods—commonly referred to as “cross-phenotype associa-

tion tests”—has been gaining traction over the past few years, and has led to successful

discovery and replication of genetic overlap among different human disorders and traits [5,

14–21]. Typical cross-phenotype association methods test the global null hypothesis that no

trait is associated with a given genetic variant against the alternative hypothesis that at least

one of the traits is associated. Thus, rejection of the null hypothesis could just be due to one

trait being associated with the genetic variant, and not necessarily due to pleiotropy.

A number of Bayesian approaches exist that allow evaluation of pleiotropy on a genome-

wide scale based on posterior probability of simultaneous association of a variant with two or

more traits given GWAS summary data for each trait [12]. However, the power of these meth-

ods for detecting variant-level pleiotropy at specified family-wise error rate (FWER) or type I

error rate are not well understood. For instance, conditional false discovery rate (FDR)

approach [22], GPA [23] and their generalizations [24, 25] provide association mapping for a

fixed FDR, which, unlike FWER, is more liberal and is not the standard GWAS error measure.

Additionally, due to the higher level of complexity of Bayesian approaches and the well-estab-

lished standard interpretations of frequentist approaches in GWAS, frequentist approaches are

sometimes more appealing to researchers for association mapping.

In the frequentist realm, recently a few methods have been proposed to specifically test for

pleiotropy, where the rejection of the null hypothesis of no pleiotropy is driven by the
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significant association of a genetic variant with more than one trait [26–29]. All of these meth-

ods require individual-level phenotype and genotype data on the same set of randomly sam-

pled individuals, and cannot be readily extended to diseases on which case-control samples are

available. While one may compare the significant variants of one trait with those of another, it

is worth noting that the discovery of the variants in the first place may be under-powered in

individual GWAS. Two other common strategies for examining genetic overlap between traits

involve estimating genetic correlation, and testing how well polygenic risk score of one disease

explains variation of the other. Both these approaches describe an overall genetic sharing, and

do not indicate genetic sharing at a locus level or implicate novel shared variants/loci. To our

knowledge, there is currently no summary statistics based frequentist approach to specifically

test for pleiotropy between any two traits. Furthermore, there is no frequentist method for

identifying pleiotropic loci between case-control traits that may or may not share controls.

In this article, we propose a formal statistical test of pleiotropy of two traits borrowing ideas

from statistical mediation analysis literature. The proposed method, PLACO (pleiotropic anal-

ysis under composite null hypothesis), can be applied to summary-level data available from

GWAS of two traits and can account for potential correlation across traits, such as that arising

due to shared controls in case-control studies. We conduct extensive simulation experiments

to study type I error and power of PLACO at stringent significance levels. We apply PLACO to

summary data on common variants from two large case-control GWAS of European ancestry

on Type 2 Diabetes (T2D) and on Prostate Cancer (PrCa). Many previous studies have

reported an inverse association of these two chronic diseases suggesting shared risk factors;

however, shared genetic mechanisms underlying this T2D-PrCa association is poorly under-

stood. We replicate some candidate and known shared genes, and identify a number of novel

shared genetic regions.

Material and methods

Model and notation

Consider two genome-wide studies of traits Y1 and Y2 on n1 and n2 individuals respectively

who were genotyped and/or imputed or sequenced at p genetic variants. Assume n1 individu-

als are independent of n2 individuals, with no overlapping samples between the studies. Let Yk
and Xk be the vectors of k-th trait values and genotypes at a given genetic variant respectively

on all nk individuals (k = 1, 2). For the ease of explanation, we will assume the two traits are

binary (e.g., case-control traits); however, our approach, being based on summary statistics, is

applicable to two qualitative and/or quantitative traits. An individual’s outcome or trait can

take value 0 for controls or 1 for cases. If the genetic variant under consideration is a bi-allelic

single nucleotide polymorphism (SNP), an individual’s genotype can take values 0, 1 or 2

depending on the number of copies of minor alleles at the SNP. If the variant is imputed, the

genotypic value will range between 0 and 2. For simplicity, we assume there is no covariate.

Note, this assumption can be easily relaxed by considering trait residuals (obtained from

regressing the covariates on the trait) instead of the raw trait values. Although residualizing

outcome data is not standard, previous studies have shown that it does not affect validity of

genetic association tests [30–32].

The typical approach in a GWAS is to test for association of each genetic variant with the

trait, and report the estimated genetic effect sizes, their standard errors and the corresponding

p-values for all genetic variants (often referred to as ‘summary statistics’). For a given genetic

variant, the marginal model for outcome data is

logitðPðYk ¼ 1jXkÞÞ ¼ αk þ bkXk ð1Þ
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where βk is the genetic effect on the k-th trait (k = 1, 2). The null hypothesis of no association

of the genetic variant with the k-th trait corresponds toHðkÞ0 : bk ¼ 0. The Wald test statistic

Zk ¼ b̂k=ŝk is used to testHðkÞ0 , where b̂k is the maximum likelihood estimate (MLE) of βk and

ŝk ¼ ŝeðb̂kÞ is its estimated standard error. For common variants, the Z-score (Zk) has an

asymptotic N(0, 1) distribution under the nullHðkÞ0 . Since the two studies are assumed to be

independent, Z1 and Z2 are expected to be independently distributed. It is to be noted that the

Z-scores can also be obtained under any other genetic model (e.g., dominant or recessive), and

the following methodological development is still applicable.

Statistical framework for a formal testing of pleiotropy

Defining the null hypothesis. The conventional cross-phenotype association methods

test the global null hypothesis that none of the traits is associated with the given genetic variant

(i.e., β1 = β2 = 0). Rejection of this global null can be due to one associated trait (β1 6¼ 0, β2 = 0

or β1 = 0, β2 6¼ 0) or both (β1 6¼ 0, β2 6¼ 0). Here, we are interested in identifying the genetic

variants that are associated with both the traits or outcomes (i.e., pleiotropy). The effects of

such a genetic variant on the traits may or may not be equal. Formally, our null hypothesis of

no pleiotropy isH0: at most 1 trait is associated with the genetic variant while the alternative

hypothesis isHa: both traits are associated.

A simple approach for testing pleiotropy. Mathematically, our null hypothesis of no

pleiotropy is a composite null hypothesis H0:H00 [H01 [ H02 while the alternative hypothesis

isHa : Hc
00
\ Hc

01
\ Hc

02
, whereH00: β1 = 0 = β2,H01: β1 = 0, β2 6¼ 0,H02: β1 6¼ 0, β2 = 0 and Ac

denotes the complement of set A. Thus, the alternative hypothesis is simplyHa: β1 6¼ 0, β2 = 0

(the situation we are interested in identifying). This is a special two-parameter case of the

intersection-union principle of statistical hypothesis testing. A level-α intersection-union test

(IUT) [33] ofH0 vs.Ha is, reject H0 if a level-α test rejectsH0k for every k = 1, 2. Consequently,

the p-value for the IUT�maximum of the p-values for testingHðkÞ0 : bk ¼ 0 vs.HðkÞa : bk 6¼ 0.

Thus, an approximate conservative p-value of the IUT is max{p1, p2}, where pk is the p-value

corresponding to the test statistic Zk (k = 1, 2) for model in Eq 1. We refer to this approximate

test as ‘maxP’ in our figures and tables.

Other suitable approaches for testing pleiotropy. Observe that our null hypothesis of no

pleiotropy can simply be written asH0: β1 β2 = 0 vs. the alternative hypothesis Ha: β1 β2 6¼ 0.

This immediately reminds us of the product of coefficients hypothesis tests for the significance

of mediation effects in epidemiology [34]. It involves constructing test statistics by dividing

b̂1b̂2 by its standard error, and comparing the observed value of the test statistic to a standard

normal distribution. Several variants of the standard error of b̂1b̂2 are used based on different

assumptions and order of derivatives in the approximations. If Sobel’s approach [34, 35] is

used in our context to testH0, the test statistic is Z1Z2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

1
þ Z2

2

p
, which uses an asymptotic

N(0, 1) distribution as its null distribution.

In the context of genome-wide mediation analysis, the normal approximation of Sobel’s

method depends on a condition that only holds if at least one of the mediation coefficients is

non-zero [36]. In the context of our pleiotropy test in GWAS, we expect most genetic variants

to be not associated with either of the traits (i.e., we expect the global nullH00 to be true for

most genetic variants). As a consequence of sparse signals and hence the breakdown of condi-

tion for asymptotic normality of Sobel’s method, testing pleiotropy using Sobel’s method fails

to control type I error and lacks power to detect pleiotropic effects of a genetic variant. In the

mediation literature, as an alternative to Sobel’s method, [36] proposed a modified p-value cal-

culation for the test of estimated mediation effect that maintains appropriate type I error
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under the assumption that most of the significance tests of mediation are conducted under the

global null that both coefficients are zero. In this article, we borrow Huang’s approach [36]

from mediation analysis to propose a new single-variant test of pleiotropy of two traits in

GWAS. Our approach for identifying pleiotropic variants is particularly useful for characteriz-

ing genetic overlap between two disease traits from case-control GWAS at a variant level.

Our proposed test of pleiotropy: PLACO

Two independent traits. Suppose the global nullH00 holds with probability π00 under

which the single-trait test statistics Z1 and Z2 have asymptotic standard normal distributions.

Further assume that the sub-null hypothesisH01 holds with probability π01 under which Z1 has

a standard normal distribution and Z2 has a conditional N(μ2, 1) distribution given the mean

parameter μ2. We assume a Nð0; t2
2
Þ distribution for μ2. Similarly, assume that the sub-null

hypothesisH02 holds with probability π02 and Z2� N(0, 1) while Z1|μ1� N(μ1, 1), where

m1 � Nð0; t2
1
Þ.

In other words, we are assuming (a) Z1 and Z2 are independent N(0, 1) variables underH00;

(b) Z1 and Z2 are independent N(0, 1) and Nð0; 1þ t2
2
Þ variables respectively underH01; and

(c) Z1 and Z2 are independent Nð0; 1þ t2
1
Þ and N(0, 1) variables respectively underH02. Con-

sequently, the products Z1 Z2, Z1

Z2ffiffiffiffiffiffiffi
1þt2

2

p and
Z1ffiffiffiffiffiffiffi
1þt2

1

p Z2 have normal product distributions under

H00,H01 and H02 respectively (assuming the parameters τ1 and τ2 are known). The (symmet-

ric) normal product distribution is given by the probability density function (p.d.f.)

fðxÞ ¼ K0ðjxjÞ=p, −1< x<1, where K0ð:Þ is the modified Bessel function of the second

kind with order 0 [37].

The p-value (two-tailed) for testingH0: β1 β2 = 0 (no pleiotropy) againstHa: β1 β2 6¼ 0 using

the product of Z-scores as our test statistic is given by

pZ1Z2
¼ 2� PH0

ðZ1Z2 > jz1z2jÞ ¼ 2�
X2

k¼0

PðH0kÞ PH0k
ðZ1Z2 > jz1z2jÞ

¼ p00Fðz1z2Þ þ p01F
�
z1z2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

2

p �
þ p02F

�
z1z2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

1

p �
ð2Þ

where z1 and z2 are the observed Z-scores for the two traits at a given genetic variant, and

FðuÞ ¼ 2
R1
juj fðxÞdx is the two-sided tail probability of a normal product distribution at value

u. Observe that the analytical form for PLACO p-value in Eq 2 contains unknown parameters

π00, π01, π02, τ1 and τ2. One can estimate these parameters only once under the null using the

GWAS summary statistics on the millions of genetic variants genome-wide and assume they

are known. However, this p-value evaluation approach is sensitive to these parameter estimates

and can be quite conservative at genome-wide levels (Section A of S1 Appendix). Instead we

will use an approximate asymptotic p-value to test the null hypothesis of no pleiotropy.

Asymptotic approximation of PLACO p-value. The PLACO p-value in Eq 2 can be

approximated as

p̂Z1Z2
¼ F

�
z1z2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðZ1Þ

p �
þ F

�
z1z2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðZ2Þ

p �
� Fðz1z2Þ ð3Þ

where Var ðZ1Þ ¼ 1þ p02t
2
1

and similarly Var(Z2) are the estimated marginal variances of the

Z-scores under the hierarchical model we assumed [36]. This can be implemented using our R
[38] program PLACO (https://github.com/RayDebashree/PLACO). Details of the estimation

of parameters needed for calculating this approximate p-value are provided in Section A of

S1 Appendix. The approximate p-value p̂Z1Z2
remains unchanged when mixture normal
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distributions or uniform distributions for the mean parameters μ1 and μ2 (underH02 andH01

respectively) are assumed [36].

Adjusting PLACO for correlation across GWAS. The above formulation of PLACO

assumes that the Z-scores for the two traits are independent. While the independence of the

effects b̂1 and b̂2, and consequently the Z-scores, is guaranteed in a mediation analysis assum-

ing there is no unmeasured confounding [39], it is not guaranteed for a pleiotropy analysis. If

the two traits come from studies with overlapping samples, either partially (e.g. studies with

shared controls [40, 41]) or completely, then the Z-scores will be correlated [42] and may lead

to inflated p-values or spurious signals if the correlation is not accounted for in the pleiotropic

analysis.

For two outcomes from two case-control studies, the correlation between the Z-scores is

r � n12;control

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1;casen2;case

n1;controln2;control

q
þ n12;case

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1;controln2;control
n1;casen2;case

q� �

=
ffiffiffiffiffiffiffiffiffin1n2

p
under the global null of no associ-

ation, ignoring the variation due to ŝeðb̂kÞ’s, where nk, case and nk, control are respectively the

number of cases and the number of controls in the study for k-th outcome, and n12, control

(n12, case) is the number of shared controls (cases) between the two studies [42]. In reality, the

cases in two case-control studies are almost always independent and the control group in each

study is frequently at least as large as the case group. The correlation ρ, thus, ranges between 0

and 0.5, where the maximum is reached when there are equal number of cases and controls in

each study, both studies have the same sample size and all the controls are shared (Section B of

S1 Appendix). For two continuous traits, the correlation between the Z-scores under the global

null of no association is r ¼ corr ðZ1;Z2Þ �
n12ffiffiffiffiffiffin1n2
p corr ðY1;Y2Þ, where n12 is the total number

of overlapping samples (i.e., individuals with measurements on both traits) and n1, n2 are the

respective sample sizes of the two traits [42].

The number of overlapping samples between studies/traits may not be known when only

GWAS summary data are available. In such a situation, one can estimate the correlation

parameter ρ by the Pearson correlation of the Z-scores for the genetic variants with “no effect”

on any trait. For a real dataset, the truth about which genetic variants have “no effect” is

unknown. We choose the genetic variants that do not exceed a pre-defined significance

threshold (say, genetic variants with single-trait p-value> 10−4) for any trait to estimate the

correlation ρ between Z-scores [43]. One may also use cross-trait LD-score regression [44] to

estimate ρ; however we did not find appreciable differences between GWAS results obtained

using estimates from these two approaches [13]. Irrespective of the approach, this estimation is

done only once, as implemented in PLACO software, before applying PLACO genome-wide. If

Z = (Z1, Z2)0 be the vector of Z-scores for a given genetic variant and R̂ ¼ 1 r̂

r̂ 1

� �

be the

estimated correlation matrix, one needs to de-correlate the Z-scores as Zdecor = R−1/2 Z so that

Zdecor
1

and Zdecor
2

are uncorrelated. PLACO, as described before, can now be applied on these de-

correlated Z-scores to test for pleiotropy of two correlated traits. However, we found from our

simulation experiments that PLACO is an appropriate test of pleiotropy of two independent or

moderately correlated traits, and may show inflated type I error for strongly correlated traits

or when studies share more than half of their subjects.

Simulation experiments

To evaluate operating characteristics of PLACO as a test for pleiotropy, we conduct simulation

experiments in R [38]. We consider three broad simulation settings: one where we have traits

from independent case-control studies, another with traits from case-control studies with
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shared controls, and the other with correlated traits from quantitative studies. For simplicity,

we do not simulate any covariate or confounder. We simulate unrelated individuals and 10

million independent bi-allelic genetic variants in Hardy-Weinberg equilibrium with a fixed

population-level minor allele frequency (MAF) 5%. We assume the commonly used additive

genetic model in our simulations. Since we need multiple independent replicates to assess type

I error control and power at stringent error thresholds, we generate the genetic variants inde-

pendently. Subsequently, we calculate estimated type I error (power) by averaging over the

number of independent null (non-null) variants identified as having significant pleiotropic

effect on both traits at a fixed significance level α.

Out of the 10 million genetic variants, we assume 99% of variants to be under the global

null of no association H00 (i.e., none of the two traits is associated with these genetic variants),

0.5% variants under the sub-nullH01 (i.e., only the second trait is associated with these genetic

variants), 0.4% variants under the sub-null H02 (i.e., only the first trait is associated with these

genetic variants), and 0.1% variants under the alternativeHa (i.e., these genetic variants have

pleiotropic effects on both traits). Thus, our simulated dataset has 9.99 million null variants to

estimate type I error and 10, 000 non-null variants to estimate statistical power. Note, we have

explored additional simulation settings such as those with higher proportion of variants associ-

ated with at least one trait or with larger MAF of variants; the details and results of which are

provided in Section C of S1 Appendix.

Scenario I: Traits from two independent case-control studies. We simulate the two

case-control studies such that the individuals in one study are independent of the other. We

consider situations where the two studies have either comparable (1:1) or unbalanced (4:1)

sample sizes. In other words, either the two studies have equal sample sizes (n1 = n2 = 2000)

or the first study on the first trait is 4 times larger than the second study on the second trait

(n1 = 8000, n2 = 2000). We assume a case-control ratio of 1:1 in each study, and a baseline

disease prevalence of 15% and 10% for the first and the second disease trait respectively. Our

generative model, described in Section C of S1 Appendix, has been widely used before [45–

47] and is distinct from the hierarchical model assumed by PLACO. In this scenario, we

compare type I error and power of Sobel’s approach, maxP, and PLACO to detect pleiotropy

of the two independent case-control outcomes. Among the existing variant-level Bayesian

pleiotropy methods applicable on a genome-wide scale, while both GPA and conditional

FDR approaches are the most similar to PLACO in terms of the research question, we choose

to compare PLACO with only GPA since GPA was previously shown to be superior to condi-

tional FDR approach in most scenarios [23]. We keep this comparison separate from the

main results because frequentist and Bayesian approaches are not directly comparable;

moreover, PLACO aims to control FWER while GPA uses FDR control. The null genetic var-

iants with non-zero effect on one trait only are assumed to have an odds ratio (OR) of 1.15

for the associated trait. For the non-null variants used to estimate power, we consider differ-

ent choices of the two ORs to incorporate traits with genetic effects of varying directions

and/or magnitudes.

Scenario II: Traits from two case-control studies with overlapping controls. We

assume either 20%, 40%, 80% or 100% of the controls are shared, assuming equal number of

controls in the two studies. Our generative model is the same as used in Scenario I. Here, we

compare type I error of Sobel’s approach, maxP, and PLACO with and without correction for

sample overlap. Evaluating power in this scenario is redundant since the power will depend on

the total number of independent samples, which we explore in Scenario I. For implementing

PLACO that accounts for the overlap, we assume the number of overlapping samples is not

available to calculate correlation through the Lin-Sullivan approach [42], and instead estimate

the Pearson correlation of the Z-scores.
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Scenario III: Two correlated traits from a study of quantitative traits. We simulate a

single study with measurements on two correlated quantitative traits measured either on the

same individuals (n1 = n2 = 2000) or the first trait is measured on many additional individuals

(n1 = 8000, n2 = 2000). We vary both the strength and the direction of pairwise trait correla-

tion: ρtrait = {−0.9, −0.4, 0, 0.4, 0.9}. The null genetic variants with non-zero effect on one trait

only are assumed to explain 0.1% of the variance of the associated trait. The generative model

is the same as before except that a bivariate normal model with means 0, variances 1, and pair-

wise correlation ρtrait is used to simulate the quantitative traits. In this scenario too, we only

compare type I error of Sobel’s approach, maxP, and PLACO (with and without correction for

correlation), and do not evaluate power.

Application to T2D and PrCa GWAS summary data

Many epidemiologic studies [48–52] of T2D and PrCa have reported association between

these two diseases, suggesting shared risk factors. A few studies [53–56] have been undertaken

to identify shared genetic risk factors underlying this T2D-PrCa association. To elucidate

shared genetic mechanisms between these two diseases, which is still poorly understood, we

use our statistical approach PLACO on summary data from two of the largest and most recent

GWAS of T2D and of PrCa in individuals of European ancestry.

Xue et al. [57] meta-analyzed 62,892 T2D cases and 596,424 controls from three large

GWAS datasets of European ancestry (DIAGRAM [58], GERA [59] and UK Biobank [60]).

The authors reported summary statistics on 5,053,015 genotyped (from GWAS chip and Meta-

bochip) and imputed autosomal SNPs (GRCh37/hg19) with MAF�1% that were common to

the three datasets. All imputed SNPs have imputation info score�0.3. The reported summary

statistics were obtained by fixed effects inverse-variance meta-analysis of GWAS summary sta-

tistics from each dataset after adjusting for study-specific covariates such as age, sex and prin-

cipal components (PCs).

Schumacher et al. [61] meta-analyzed 79,194 PrCa cases and 61,112 controls from eight

GWAS or high-density SNP panels of European ancestry imputed to 1000 Genomes Phase 3.

All imputed SNPs have imputation r2� 0.3. The authors combined the per-allele odds ratios

and standard errors, adjusted for PCs and study-relevant covariates, for the SNPs from the

Illumina OncoArray and each GWAS by fixed effects inverse-variance meta-analysis. The

summary statistics file contained information on 20,370,947 SNPs (GRCh37/hg19) across the

autosomes and the X chromosome.

In this paper, we use the two sets of meta-analysis summary statistics of genetic association

with T2D and with PrCa to detect shared common SNPs. Sources of these summary statistics

are provided under Web resources. We remove any SNP with allele mismatch between the two

datasets, and focus on the remaining 5, 041, 948 autosomal SNPs with MAF�1% that are

available in both the studies. For a given SNP, we harmonize the same effect allele across the

two studies so that Z-scores from the two datasets can be jointly analyzed appropriately using

PLACO. From the effect estimates and the standard errors, we calculate the Z-scores, and

remove SNPs with Z2>80 [62, 63] since extremely large effect sizes can disproportionately

influence our analysis. The component studies underlying the T2D and the PrCa GWAS do

not appear to overlap. The estimated correlation between the Z-scores from T2D and those

from PrCa is approximately 0 as well.

To characterize the findings from PLACO, we clump all the significantly associated SNPs

(pPLACO<5 × 10-8) in ±500 Kb radius and linkage disequilibrium (LD) threshold of r2>0.2

into a single genetic locus using FUMA [64] (SNP2GENE function, v1.3.5e). The gene annota-

tions for all loci are based on proximity to the most significant/lead SNPs as mapped by FUMA.
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We perform different gene-set enrichment analyses using the GENE2FUNC function, where

the genes were prioritized by FUMA based on the loci identified by PLACO. To provide addi-

tional evidence of sharing at these loci, we perform Bayesian colocalization test [65] of the

PrCa and the T2D summary data using R package coloc (v3.2.1). This test computes 5 differ-

ent overall posterior probabilities of the chosen region: PP0 (posterior probability of no associ-

ation with either disease), PP1 (association with T2D, not with PrCa), PP2 (association with

PrCa, not with T2D), PP3 (association with both T2D and PrCa due to two distinct causal

SNPs) and PP4 (association with both T2D and PrCa due to one common causal SNP).

For each locus, we choose all the SNPs in ±200 Kb radius of the lead SNP and declare ‘convinc-

ing evidence’ of pleiotropic association of this locus if it shows PP3 þ PP4 � 0:9 and

PP4=PP3 � 3 (cutoffs previously used elsewhere [66, 67]). For this analysis, we use the

coloc.abf() function with default parameters and priors on the effect estimates and their

variance estimates for the SNPs in the chosen region for each of T2D and PrCa. For the signifi-

cant loci with convincing evidence of colocalization, we manually look up Open Targets

Genetics platform [68] to gather information about diseases associated with nearby genes

(selected options ‘genetic associations’, ‘pathways & systems biology’ and ‘RNA expression’),

and on relevant mouse data if available. To characterize the regulatory effects of the significant

pleiotropic signals, we perform whole blood cis expression quantitative trait locus (eQTL) anal-

ysis in FUMA using data from the eQTLGen Consortium [69], the largest publicly available

meta-analysis of blood eQTLs based on>31,500 individuals. For cis-eQTL analysis, we addi-

tionally consider T2D-relevant tissues (liver, pancreas, adipose, skeletal muscle) [70] and

PrCa-relevant tissue (prostate) from GTEx v8 [71].

Results

Simulation experiments: Type I error

Scenario I: Traits from two independent case-control studies. Irrespective of whether

the sample sizes of the two studies are same or widely different, PLACO has well-calibrated

type I error at stringent significance levels (Fig 1). In comparison, the Sobel’s and maxP

approaches are extremely conservative.

Scenario II: Traits from two case-control studies with overlapping controls. Regardless

of the extent of control overlap in the two studies, PLACO exhibits appropriate type I error

when correlation is accounted for in the analysis (Fig 2 and S1 Fig). We also note that if Z-

scores are not decorrelated for studies with overlapping samples, pleiotropy analysis will likely

show spurious association signals as indicated by the inflated ‘PLACO (no overlap correction)’

curve. The other approaches are still very conservative across all scenarios of overlap.

Scenario III: Two correlated traits from a study of quantitative traits. We find PLACO

has well-calibrated type I error for moderately correlated traits irrespective of the direction of

correlation between the traits, and has inflated type I error for strongly correlated traits (S2

Fig). Application of PLACO ignoring correlation will show spurious association signals. As

before, the other approaches exhibit conservative behavior across all scenarios of pairwise trait

correlation. The ‘maxP’ approach can, however, be less conservative for strongly correlated

traits.

Simulation experiments: Power

For benchmarking, we compare power of PLACO against Sobel’s and maxP, along with the

naive approach of declaring pleiotropy when a variant reaches genome-wide significance for

the first trait with the larger sample size and reaches a more liberal significance threshold for
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the second trait. We use two such naive approaches: one using criterion pTrait1<5 × 10-8,

pTrait2<5 × 10-5 and the other pTrait1<5 × 10-8, pTrait2<5 × 10-3 (‘Naive-1’ and ‘Naive-2’ respec-

tively in our figures). As reasoned before, comparing power under Scenario I is sufficient.

Regardless of the magnitude and directions of pleiotropic association and the sample size dif-

ferences between studies, PLACO has dramatically improved statistical power to detect pleiot-

ropy compared to the naive approaches (Fig 3). The Sobel’s and maxP approaches especially

lack power due to their very conservative type I error control.

Simulation experiments: Comparison with an existing Bayesian approach

To make PLACO and GPA comparable to the extent possible, we use the Benjamini-Hochberg

FDR [72] corrected PLACO p-values and 5% FDR threshold to declare significant pleiotropic

association instead of using the FWER genome-wide threshold. For GPA, we use the associa-

tion mapping results at global FDR threshold of 5% as provided by the R package GPA. It

appears that PLACO is superior to GPA in terms of the number of discoveries made when

fewer true pleiotropic variants are present genome-wide, especially if the pleiotropic effects

are not very strong (S1 Table). This observation holds even for skewed sample sizes of the two

traits (S2 Table).

Application to T2D and PrCa GWAS summary data

Overview of joint T2D-PrCa locus level associations. PLACO identified 1, 329 genome-

wide significant SNPs that mapped to 44 distinct loci (Fig 4). The lead SNPs of 24 loci (55%)

increase risk for one outcome while decreasing risk for the other. This observation is consis-

tent with what observational studies [49, 73, 74] and genetic risk-score studies [54, 55] have

reported before: an inverse association between T2D and PrCa. We define a locus as novel if

there is no ‘previously associated SNP’ from GWAS catalog [75] (as of December 16, 2019)

Fig 1. Scenario I: QQ plots for pleiotropic analysis of null data on traits from 2 independent case-control studies.

Observed(−log10p-values) are plotted on the y-axis and Expected(−log10p-values) on the x-axis. Either each study has

1, 000 unrelated cases and 1, 000 unrelated controls, or Study 1 is 4 times that of Study 2, where Study 2 has 1, 000

unrelated cases and 1, 000 unrelated controls. Type I error performance of tests of pleiotropic effect of a genetic variant

on the 2 traits is based on 9.99 million null variants with genetic effects that are either {β1 = 0 = β2} or {β1 = 0, β2 = log

(1.15)} or {β1 = log(1.15), β2 = 0}. The gray shaded region represents a conservative 95% confidence interval for the

expected distribution of p-values. P-values�10-10 are shown here.

https://doi.org/10.1371/journal.pgen.1009218.g001
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within ±500 Kb radius or in LD (r2>0.2) with our index SNP, the GWAS peak, from that

locus. To define ‘previously associated SNP’ in our context of pleiotropy of T2D and PrCa, we

looked for any SNP within each locus that is associated with both T2D-related trait (either of

T2D, 2-hour glucose challenge, glucose level, glycated albumin, HbA1c, insulin level, pro-insu-

lin level, insulin resistance, insulin response, or glycemic traits) and PrCa-related trait (either

of PrCa or prostate-specific antigen levels). Since GWAS catalog includes exome-wide studies,

we chose a slightly liberal exome-wide significance threshold of p<5 × 10−7 to define previ-

ously reported associations. We discovered 38 potentially novel loci, after liftover of GRCh38

genomic coordinates in GWAS catalog to hg19 using R package liftOver [76].

Fig 2. Scenario II: QQ plots for pleiotropic analysis of null data on traits from 2 case-control studies with

different proportions of overlapping controls. Observed(−log10p-values) are plotted on the y-axis and Expected

(−log10p-values) on the x-axis. Equal study sample size, and equal case-control size assumed in each study. Each study

has 1, 000 unrelated cases and 1, 000 unrelated controls, of which either 20%, 40%, 80% or 100% of the controls are

shared between the two studies. Type I error performance of tests of pleiotropic effect of a genetic variant on the 2

traits is based on 9.99 million null variants with genetic effects that are either {β1 = 0 = β2} or {β1 = 0, β2 = log(1.15)} or

{β1 = log(1.15), β2 = 0}. The gray shaded region represents a conservative 95% confidence interval for the expected

distribution of p-values. P-values�10-10 are shown here.

https://doi.org/10.1371/journal.pgen.1009218.g002
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PLACO points to known and candidate shared genetic regions. GWAS catalog search

reveals that 6 out of 44 loci near genes THADA, BCL2L11, AC005355.2, PBX2 (in the major

histo-compatibility complex or MHC region of 6p21), JAZF1 and CDKN2A/B have been previ-

ously implicated in studies of both T2D and PrCa. In particular, THADA [51] (S3 Fig) and

Fig 3. Scenario I: Power of PLACO, maxP and naive approaches at genome-wide significance level (5 × 10−8) for

varying genetic effects of traits from 2 independent case-control studies. Sobel’s approch is excluded from this

figure since it has<1% power across all scenarios. The first naive approach (‘Naive-1’) declares pleiotropic association

when pTrait1<5 × 10−8 and pTrait2<5 × 10−5, while the second naive approach (‘Naive-2’) uses a more liberal criterion

pTrait1<5 × 10−8 and pTrait2<5 × 10−3. Each study either has 1, 000 unrelated cases and 1, 000 unrelated controls, or

Study 1 has 4 times sample size as Study 2, where Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls.

https://doi.org/10.1371/journal.pgen.1009218.g003

Fig 4. Manhattan plot of the PLACO p-values of pleiotropic association of common genetic variants with

outcomes (traits) T2D and PrCa. The black horizontal dashed line corresponds to genome-wide significance level α =

5 × 10−8. The 44 loci with genome-wide significant pleiotropic lead SNP have been highlighted. A locus is defined by

clumping SNPs in ±500 Kb radius around the lead SNP and with LD r2>0.2. Within each locus, if a PLACO significant

SNP has genetic effects in opposite directions for T2D and PrCa, it is plotted as a solid triangle (24 such loci), else as a

solid circle. Each identified pleiotropic locus is categorized (color-coded) as follows. Three loci harbor SNPs that are

marginally genome-wide significant for both T2D and PrCa (single-trait p<5 × 10−8). Four loci contain SNPs that are

marginally genome-wide significant for one disease, and in close proximity (i.e., in the same locus) with another SNP

marginally genome-wide significant for the other disease. There are 10 loci where SNPs are marginally genome-wide

significant for one disease and in close proximity with another SNP marginally suggestively significant (single-trait

p<10−5) for the other disease. Two loci harbor SNPs that are marginally suggestively significant (but not genome-wide

significant) for both T2D and PrCa. There is no locus that contains SNPs that are marginally suggestively significant

(but not genome-wide significant) for one disease, and in close proximity with another SNP marginally suggestively

significant (but not genome-wide significant) for the other disease. The rest of the 25 loci identified by PLACO contain

SNPs that are not even marginally suggestively significant for either T2D or PrCa.

https://doi.org/10.1371/journal.pgen.1009218.g004
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JAZF1 [53] (S4 Fig) represent well-recognized shared genetic regions between T2D and PrCa.

HNF1B, also known as TCF2, is another recognized shared gene [53, 77], which we fail to

detect possibly because we excluded SNPs with extremely large effect sizes [62, 63] (Z2
PrCa > 80

for many SNPs positionally mapped in/nearHNF1B), which may have weakened any signal in

this region. Signals from PLACO point to candidate shared genes such as PPARG [55] (S5 Fig)

and CDKN2A [51, 55] (S6 Fig). PLACO did not find enough evidence of shared genetic com-

ponent in other previously explored genes such as KCNQ1 [51] (S7 Fig) andMTNR1B [51]

(S8 Fig).

Gene-set enrichment analysis. For further analysis, we exclude the 1 locus that lay in the

MHC region of chromosome 6p21 because of strong SNP associations in this long-range and

complex LD block that complicates fine-mapping efforts [70]. The 310 genes to which the 43

pleiotropic loci were mapped by FUMA are significantly enriched in GWAS catalog reported

genes for PrCa, T2D and other T2D related traits (S9 Fig). When tested for tissue specificity

against differentially expressed genes from GTEx v8 data across 53 tissue types, these genes are

significantly enriched in pancreas (a T2D-relevant tissue) and whole-blood (S10 Fig). Analyses

in other annotated gene sets from Molecular Signatures Database (MSigDB v7.0) [78] and in

curated biological pathways from WikiPathways [79], and functional enrichment analyses are

described in Section D of S1 Appendix.

Colocalization analysis. Bayesian colocalization tests of ±200 Kb region around the lead

SNPs of the 43 loci reveal 26 lead SNPs as having the highest posterior probability of being

associated with both PrCa and T2D (Table 1). Eight loci show convincing evidence of contain-

ing SNPs that are likely causal for both T2D and PrCa, 7 of which have the highest posterior

probabilities of being causal SNPs and exhibit stronger signals of pleiotropic association com-

pared to the single trait associations (Table 2). The lead SNP for the eighth locus, near RGS17,

is 54 Kb away from the SNP with the highest causal probability (rs6932847), and both have

similar PLACO p-value of pleiotropic association.

Characterizing the 8 most interesting potentially novel pleiotropic loci. The lead SNPs

of 6 of the 8 potentially novel pleiotropic loci with convincing evidence from the colocalization

analyses have effect alleles that increase risk for one disease while protecting from the other

(Table 2). While the 8 loci contain cis-eQTLs in multiple T2D-relevant tissues (S11–S16 Figs),

SNPs in the loci near RGS17 (Fig 5) andUBAP2 (Fig 6) show significant cis-eQTL associations

in both T2D-relevant and PrCa-relevant tissues. In Open Targets Genetics, genes near the

ZBTB38,UBAP2 and ZNF236 loci show associations with various cancers, diabetes and obesity

(no relevant mouse data available for these genes). The RGS17 locus show associations with var-

ious cancers, including PrCa and prostate neoplasm, and body mass index (BMI) but has no

known associations with any T2D-related trait (no relevant mouse data available). Of particular

interest are theHAUS6 and the RAPSN loci. WhileHAUS6 and its nearby genes RRAGA and

PLIN2 have various cancers (including PrCa) as associated diseases in Open Targets Genetics,

one or more of them are related to metabolism phenotype, abnormal gluconeogenesis and

hypoglycemia in mice. GWAS catalog search of these genes did not yield any known association

result with any T2D-related trait. Similarly, the nearby geneMADD for the RAPSN locus has

various cancers, neoplasms and glucose-related phenotypes as associated diseases in Open Tar-

gets Genetics; and is a recognized T2D gene, which when knocked out in mice, show impaired

glucose tolerance, hyperglycemia and abnormal pancreatic beta cell morphology.

Discussion

In this paper, we propose a formal statistical hypothesis test and a novel method, PLACO, to

determine common pleiotropic or shared variants of two independent traits and show how it
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Table 1. The coloc colocalization posterior probability (PP4) for the lead SNPs from each of the 43 pleiotropic loci identified by PLACO.

Sl.

no.

Lead SNP from PLACO analysis coloc analysis of ±200kb around lead SNP

overall probabilities SNP with highest causal probability

locus position

(hg19)

rsID nearest

gene

pPLACO effect†

direction

PP4 nSNP PP3 þ PP4 PP4=PP3 rsID position pPLACO PP4

1 1q32.1 204560677 rs6679717 AL512306.3 2.6 × 10−13 + − 0.375 482 0.267 8 Same as lead

SNP

2 2p25.1 10094526 rs73913932 GRHL1 4.2 × 10−8 −+ 0.394 909 0.33 40 Same as lead

SNP

3 2p24.1 20881840 rs2289081 C2orf43 2.3 × 10−9 + + 1 690 0.192 14 Same as lead

SNP

4 2p23.3 27827092 rs12464616 ZNF512 9.9 × 10−9 −+ 2 × 10−6 331 0.203 0.1 rs1260334 27748597 2.2 × 10−6 1

5 2p21 43797710 rs11904510 THADA 8.2 × 10−17 −− 0.168 809 1 0 rs10179648 43808065 9.0 × 10−14 0.434

6 2p14 65276452 rs1009358 CEP68 7.9 × 10−9 −+ 0.75 792 0.407 15 Same as lead

SNP

7 2q13 111896243 rs17041869 BCL2L11 1.0 × 10−12 −+ 0.446 626 0.994 1.2 Same as lead

SNP

8 2q36.3 227174983 rs2673148 AC068138.1 1.7 × 10−8 + + 0.057 680 0.057 4.2 rs2673129 227139572 1.9 × 10−8 0.285

9 3p25.2 12276493 rs11709119 PPARG 5.3 × 10−10 −+ 6 × 10−4 709 0.154 0.1 rs35000407 12351521 1.9 × 10−4 0.653

10 3p24.3 23284303 rs114460169 UBE2E2 1.7 × 10−9 −+ 7 × 10−6 1179 0.672 0.0 rs1496653 23454790 8.7 × 10−6 1

11 3q13.2 113309149 rs6808932 SIDT1 1.8 × 10−12 + − 0.394 728 0.879 0.4 rs12635148 113284208 2.6 × 10−12 0.605

12 3q21.3 128039895 rs11708733 EEFSEC 2.4 × 10−8 −+ 9 × 10−6 488 0.023 0.6 rs2811478 127899624 7.2 × 10−4 0.071

13 3q23 141140366 rs6763927 ZBTB38 2.8 × 10−9 −+ 0.174 504 0.923 5.3 Same as lead

SNP

14 3q25.1 152010142 rs76360965 MBNL1 2.3 × 10−12 −− 0.058 558 1 0.1 Same as lead

SNP

15 5q11.2 52058673 rs4530726 ITGA1 3.6 × 10−8 + − 0.099 1026 0.826 7.1 Same as lead

SNP

16 5q31.1 133848917 rs10900829 AC005355.2 4.7 × 10−10 −− 0.109 358 0.877 1.9 Same as lead

SNP

17 6p22.3 20844151 rs9356756 CDKAL1 3.9 × 10−8 −+ 0.064 849 0.043 0.3 rs9465883 20761335 1.3 × 10−5 0.189

18 6q22.1 117264990 rs1741652 RFX6 4.1 × 10−8 −− 10−4 716 0.1 0.1 rs682726 117104975 1.3 × 10−3 0.175

19 6q25.2 153394728 rs4385321 RGS17 1.1 × 10−15 + − 0.17 1094 0.986 67 rs6932847 153448307 1.4 × 10−15 0.58

20 6q25.3 160683381 rs316025 SLC22A2 1.2 × 10−12 + + 0.997 655 0.709 1.1 Same as lead

SNP

21 7p15.3 21012144 rs6944344 LINC01162 4.2 × 10−8 + + 0.697 772 0.055 3.3 Same as lead

SNP

22 7p15.1 28028432 rs38514 JAZF1 8.3 × 10−10 + − 0.366 626 1 0 Same as lead

SNP

23 7q21.3 97754074 rs73404162 LMTK2 8.4 × 10−9 −+ 7 × 10−8 577 0.215 0.1 rs12667763 97668012 7.0 × 10−8 0.704

24 8q22.1 95739642 rs67763258 DPY19L4 1.7 × 10−8 −+ 0.507 1019 0.368 7.8 Same as lead

SNP

25 8q24.21 128391412 rs62516032 CASC8 6.9 × 10−11 −− 0.093 550 0.518 0.0 rs1962471 128281708 1.6 × 10−6 0.197

26 9p22.1 19064129 rs13287517 HAUS6 1.4 × 10−14 + + 0.379 1322 0.999 30 Same as lead

SNP

27 9p21.3 22003223 rs3217992 CDKN2A/B 7.5 × 10−9 + − 10−4 482 1 0 rs1063192 22003367 1.7 × 10−6 0.739

28 9p13.3 34025640 rs1758632 UBAP2 1.2 × 10−12 −+ 0.065 511 1 15 Same as lead

SNP

29 10p13 12208307 rs1053403 NUDT5 2.6 × 10−8 + + 10−8 646 0.744 0.0 rs11257655 12307894 3.8 × 10−7 0.869

30 10q26.12 123038897 rs12413648 LINC01153 9.2 × 10−10 + − 0.15 714 0.651 3.4 Same as lead

SNP

31 11p11.2 47461693 rs7103835 RAPSN 2.8 × 10−10 −+ 0.503 467 0.992 11 Same as lead

SNP

32 11q13.3 68894753 rs12284087 RP11-
554A11.7

3.9 × 10−10 + + 0.67 547 0.179 1.4 Same as lead

SNP

33 11q13.5 76257215 rs3753051 C11orf30 3.0 × 10−9 −− 0.123 714 0.262 2 rs17749618 76251818 3.2 × 10−9 0.129

(Continued)
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may well be applied to correlated traits or traits from studies with sample overlap. In our simu-

lations involving qualitative and quantitative traits with unequal prevalences, unequal genetic

effect sizes, unequal sample sizes—ranging from modest to large—and with/without overlap-

ping samples, PLACO exhibits well-calibrated type I error. We find PLACO is powerful in

detecting subtle genetic effects of pleiotropic variants that may or may not be in the same

direction and that may be missed when each disease trait is analyzed separately (see some

Table 1. (Continued)

Sl.

no.

Lead SNP from PLACO analysis coloc analysis of ±200kb around lead SNP

overall probabilities SNP with highest causal probability

locus position

(hg19)

rsID nearest

gene

pPLACO effect†

direction

PP4 nSNP PP3 þ PP4 PP4=PP3 rsID position pPLACO PP4

34 11q23.2 113807181 rs11214775 HTR3A/B 3.1 × 10−11 −− 1 640 0.723 97 Same as lead

SNP

35 14q13.1 33302882 rs17522122 AKAP6 4.4 × 10−9 + − 0.973 787 0.94 980 Same as lead

SNP

36 15q15.1 40881116 rs10400825 KNL1 3.0 × 10−9 −− 0.058 625 0.908 11 Same as lead

SNP

37 15q26.1 90429148 rs12912009 AP3S2 3.3 × 10−9 + + 0.222 520 0.382 2.8 Same as lead

SNP

38 17p11.2 17724789 rs11656665 SREBF1 8.4 × 10−10 + + 0.289 412 0.951 0.4 Same as lead

SNP

39 17q21.32 45885756 rs9911983 OSBPL7 4.8 × 10−8 −+ 0.939 683 0.707 13 Same as lead

SNP

40 17q21.32 47037024 rs11079847 GIP 2.7 × 10−9 −+ 0.016 667 0.843 0.1 rs9894220 46989154 7.4 × 10−9 0.172

41 18q23 74562251 rs7236466 ZNF236 2.3 × 10−8 + + 0.1 880 0.949 14 Same as lead

SNP

42 20q13.33 62337406 rs6011040 ARFRP1 1.6 × 10−13 −− 0.367 281 0.724 22 Same as lead

SNP

43 22q13.1 40479811 rs9607685 TNRC6B 3.7 × 10−8 −+ 0.035 393 0.114 5.7 rs34419824 40499103 1.6 × 10−7 0.267

† The effect direction duplet reports the effect direction of T2D first, and then of PrCa for the chosen effect allele at the lead SNP.

A high PP4 for a SNP indicates high probability of being the common causal SNP for both T2D and PrCa. SNPs with highest PP4 within ±200 Kb of the lead SNPs are

also reported.

https://doi.org/10.1371/journal.pgen.1009218.t001

Table 2. The potentially novel loci detected by PLACO and with convincing evidence (PP3 þ PP4 � 0:9 and PP4=PP3 � 3) of being causal for both T2D and PrCa

from colocalization analysis.

Locus

no.

Lead SNP from PLACO analysis Summary statistics for lead SNP pPLACO

locus position

hg19)

rsID nearest

gene

effect

allele

other

allele

effect

allele freq.

CADD

score
b̂T2D

pT2D b̂PrCa
pPrCa

13 3q23 141140366 rs6763927 ZBTB38 T A 0.44 3.18 -0.0316 6.8 × 10−5 0.0459 8.5 × 10−9 2.8 × 10−9

19 6q25.2 153394728 rs4385321 RGS17 A G 0.35 4.05 0.0352 2.8 × 10−6 -0.0724 2.7 × 10−18 1.1 × 10−15

26 9p22.1 19064129 rs13287517 HAUS6 C G 0.39 0.44 0.0402 5.3 × 10−7 0.0609 7.1 × 10−14 1.4 × 10−14

28 9p13.3 34025640 rs1758632 UBAP2 C G 0.38 1.24 -0.0491 1.4 × 10−9 0.0432 1.1 × 10−7 1.2 × 10−12

31 11p11.2 47461693 rs7103835 RAPSN A G 0.31 7.53 -0.0384 1.2 × 10−6 0.046 1.4 × 10−7 2.9 × 10−10

35 14q13.1 33302882 rs17522122 AKAP6 T G 0.48 2.19 0.0403 5.2 × 10−8 -0.0337 4.0 × 10−5 4.4 × 10−9

36 15q15.1 40881116 rs10400825 KNL1 G A 0.15 2.66 -0.0452 4.0 × 10−5 -0.0612 2.4 × 10−8 3.0 × 10−9

41 18q23 74562251 rs7236466 ZNF236 G T 0.38 4.03 0.0368 3.8 × 10−6 0.0364 8.2 × 10−6 2.3 × 10−8

PP3 is the probability that the association of a SNP with both T2D and PrCa is due to two distinct causal SNPs; PP4 is the probability that the association of a SNP with

both T2D and PrCa is due to one common causal SNP.

https://doi.org/10.1371/journal.pgen.1009218.t002
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additional simulations in Section C of S1 Appendix). Statistical power is significantly improved

when PLACO is used, compared to the naive approach that identifies pleiotropy when a

genetic variant reaches genome-wide significance for the trait with larger sample size and

reaches a more liberal threshold for the other. We also observe improved power over other

existing approaches, both Bayesian and frequentist, in most scenarios. Based on our simula-

tions, we advocate using PLACO on independent traits, or moderately correlated traits after

decorrelating the Z-scores as described before.

We use the most recent publicly available case-control GWAS summary data on T2D and

on PrCa in individuals of European ancestry to determine variants that influence risk to both

these diseases. We identify several known and candidate shared genes, and detect a number of

novel shared genetic regions near ZBTB38 (3q23), RGS17 (6q25.3),HAUS6 (9p22.1), UBAP2
(9p13.3), RAPSN (11p11.2), AKAP6 (14q12), KNL1 (15q15) and ZNF236 (18q23). A recent

study [80] showed a weak positive genetic correlation between T2D and PrCa. It is worth not-

ing that the concept of genetic correlation is different from pleiotropy. For genetic correlation

to be non-zero, the directions of effect of non-null variants must be consistently aligned [44].

Effect alleles of at least half of the significant SNPs identified by PLACO have opposite genetic

effects on the two diseases, which supports many previous studies reporting inverse relation-

ship between T2D and PrCa, and likely explains the weak genetic correlation in the previous

study.

Fig 5. Regional association plot of significant pleiotropic locus near RGS17 with annotations such as CADD scores,

RegulomeDB scores, and cis eQTL association p-values from 6 tissues. Tissues considered are whole blood from eQTLGen

Consortium; and adipose, liver, muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

https://doi.org/10.1371/journal.pgen.1009218.g005
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The key advantage of PLACO among existing frequentist approaches is not requiring indi-

vidual-level data which makes it easily applicable to datasets for which only GWAS summary

data are available. It does not require compute intensive permutations or Monte Carlo simula-

tions to calculate p-value of simultaneous association of two traits with one genetic variant.

We are conveniently using the asymptotic normality of MLE of genetic effects to get at the null

distribution of the PLACO test statistic. The existence of an analytical form for PLACO p-

value (Eq 2) and its approximation (Eq 3) makes it suitable for application on a genome-wide

scale. While we have applied PLACO to summary statistics from population-based case-con-

trol GWAS, it may also be applied to two traits from family-based designs (e.g., disease traits

from case-parent trio studies). For instance, family-based GWAS data from several study

Fig 6. Regional association plot of significant pleiotropic locus near UBAP2 with annotations such as CADD scores, RegulomeDB scores, and cis
eQTL association p-values from 6 tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver, muscle-skeletal,

pancreas, and prostate tissues from GTEx v8.

https://doi.org/10.1371/journal.pgen.1009218.g006
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cohorts will soon be available under the cohort collaboration study, Environmental influences

on Child Health Outcomes (ECHO, https://www.nih.gov/research-training/environmental-

influences-child-health-outcomes-echo-program), to understand genetic underpinnings of

pediatric outcomes. One important scientific question will be to identify genetic overlap of

such outcomes (e.g., neurodevelopmental disorders, respiratory disorders), which PLACO can

conveniently address, that too without having to pool individual-level data.

Our study and our statistical approach are not without limitations. PLACO requires

genome-wide summary data to infer pleiotropic association of each variant, and cannot be

used when summary data on only a handful of candidate genetic variants are available. Calcu-

lation of PLACO p-value requires parameter estimation using variants across the genome, and

hence cannot be used to test pleiotropy of a set of variants known to be significantly associated

with one trait. PLACO shows inflated type I error when the traits are strongly correlated even

after using our decorrelation approach. The approximate PLACO p-value (p̂Z1Z2
) is a good

approximation when the non-zero effect underH01 orH02 is small [36], else it may be inflated.

Simply stated, if the effect of a genetic variant is very strong on one trait and has no effect on

the other trait, the p-value reported by PLACO may be inflated and indicate a genome-wide

significant result. We suggest that SNPs with marginal Z2>80 be removed before analysis, sim-

ilar to suggestion for LD-score regression approaches. PLACO is a single-variant association

test that is not expected to control type I error for genetic variants with low minor allele counts

since the asymptotic normality of MLE assumption may be violated [13]. It is assumed that the

summary statistics on which PLACO is applied are obtained after appropriately accounting for

all confounding effects, including relatedness and population stratification. PLACO can only

detect statistical association of a variant with two traits, referred to as ‘statistical pleiotropy’

[67], and cannot distinguish between the various types of pleiotropy: biological, mediated, spu-

rious due to design artefacts or spurious due to strong LD between causal variants in different

genes [1]. Notwithstanding these caveats, PLACO provides massive power gain over com-

monly used approaches, and shows promise in providing additional evidence for a shared

genetic component between two traits.

Supporting information

S1 Appendix. Additional text and supporting information. It includes additional details on

PLACO p-value calculation, simulation experiments, and analysis of T2D and PrCa datasets.

(PDF)

S1 Fig. Scenario II: QQ plots for the pleiotropic analysis of null data on traits from 2 case-

control studies with different proportions of overlapping controls. Observed(−log10p-val-

ues) are plotted on the y-axis and Expected(−log10p-values) on the x-axis. Unequal study sam-

ple size, and equal case-control size assumed in each study. Study 1 has 4, 000 unrelated cases

and 4, 000 unrelated controls. Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls,

of which either 20%, 40%, 80% or 100% of the controls are shared between the two studies.

Type I error performance of tests of pleiotropic effect of a genetic variant on the 2 traits is

based on 9.99 million null variants with genetic effects that are either {β1 = 0 = β2} or {β1 = 0,

β2 = log(1.15)} or {β1 = log(1.15), β2 = 0}. The gray shaded region represents a conservative

95% confidence interval for the expected distribution of p-values.

(PDF)

S2 Fig. Scenario III: QQ plots for the pleiotropic analysis of null data on 2 correlated traits

where each trait is measured on the same 2, 000 individuals. Observed(−log10p-values) are
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plotted on the y-axis and Expected(−log10p-values) on the x-axis. Type I error performance of

tests of pleiotropic effect of a genetic variant on the 2 traits is based on 9.99 million null vari-

ants with genetic effects that are either {β1 = 0 = β2} or {β1 = 0, β2 explains 0.1% of Trait 2 vari-

ance} or {β1 explains 0.1% of Trait 1 variance, β2 = 0}. The gray shaded region represents a

conservative 95% confidence interval for the expected distribution of p-values. P-values

�10−12 are shown here.

(PDF)

S3 Fig. Locuszoom plots of association p-values for variants in and around gene THADA.

(PDF)

S4 Fig. Locuszoom plots of association p-values for variants in and around gene JAZF1.

(PDF)

S5 Fig. Locuszoom plots of association p-values for variants in and around gene PPARG.

(PDF)

S6 Fig. Locuszoom plots of association p-values for variants in and around gene CDKN2A.

(PDF)

S7 Fig. Locuszoom plots of association p-values for variants in and around gene KCNQ1.

(PDF)

S8 Fig. Locuszoom plots of association p-values for variants in and around gene MTNR1B.

(PDF)

S9 Fig. Mapped genes (as done by FUMA) for the 43 pleiotropic loci detected by PLACO

were tested for enrichment in GWAS catalog reported genes across diseases and traits.

(PDF)

S10 Fig. Mapped genes (as done by FUMA) for the 43 pleiotropic loci detected by PLACO

were tested against each of the Differentially Expressed Gene (DEG) sets pre-calculated

from GTEx v8 tissue data from 53 tissue types.

(PDF)

S11 Fig. Regional association plot of significant pleiotropic locus near ZBTB38 with anno-

tations such as CADD scores, RegulomeDB scores, and cis eQTL association p-values from

6 tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver,

muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

(PDF)

S12 Fig. Regional association plot of significant pleiotropic locus near HAUS6 with anno-

tations such as CADD scores, RegulomeDB scores, and cis eQTL association p-values from

6 tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver,

muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

(PDF)

S13 Fig. Regional association plot of significant pleiotropic locus near RAPSN with annota-

tions such as CADD scores, RegulomeDB scores, and cis eQTL association p-values from 6

tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver,

muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

(PDF)

S14 Fig. Regional association plot of significant pleiotropic locus near AKAP6 with anno-

tations such as CADD scores, RegulomeDB scores, and cis eQTL association p-values from
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6 tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver,

muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

(PDF)

S15 Fig. Regional association plot of significant pleiotropic locus near KNL1 with annota-

tions such as CADD scores, RegulomeDB scores, and cis eQTL association p-values from 6

tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver,

muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

(PDF)

S16 Fig. Regional association plot of significant pleiotropic locus near ZNF236 with anno-

tations such as CADD scores, RegulomeDB scores, and cis eQTL association p-values from

6 tissues. Tissues considered are whole blood from eQTLGen Consortium; and adipose, liver,

muscle-skeletal, pancreas, and prostate tissues from GTEx v8.

(PDF)

S1 Table. Scenario I: Comparison of PLACO and GPA in terms of error control and power

for 2 independent case-control studies, where each study has 1,000 unrelated cases and

1,000 unrelated controls. Each study has 9.9 × 106 null variants (i.e., variants underH00 or

H01 orH02) andm non-null (pleiotropic) variants, wherem takes values 0, 100, 300, 500, 1000,

3000, 5000 or 10000. Five different choices of odds ratios of association ofm non-null variants

with Traits 1 and 2 are considered. The total number of true positives (non-null variants)

detected (#TP) and the total number of false positives detected (#FP) are reported. PLACO’s

performance for both genome-wide threshold 5 × 10−8 (or equivalently family-wise error rate

(FWER) of 5%) and global false discovery rate (FDR) of 5% are reported, while GPA’s perfor-

mance is based on global FDR of 5%.

(PDF)

S2 Table. Scenario I: Comparison of PLACO and GPA in terms of error control and power

for 2 independent case-control studies, where Study 1 has 4 times sample size as Study 2,

and Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls. Each study has

9.9 × 106 null variants (i.e., variants underH00 orH01 orH02) andm non-null (pleiotropic) var-

iants, wherem takes values 0, 100, 300, 500, 1000, 3000, 5000 or 10000. Five different choices

of odds ratios of association ofm non-null variants with Traits 1 and 2 are considered. The

total number of true positives (non-null variants) detected (#TP) and the total number of false

positives detected (#FP) are reported. PLACO’s performance for both genome-wide threshold

5 × 10−8 (or equivalently family-wise error rate (FWER) of 5%) and global false discovery rate

(FDR) of 5% are reported, while GPA’s performance is based on global FDR of 5%.

(PDF)
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Type 2 diabetes summary data, http://cnsgenomics.com/data/t2d
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SchumacherFR_29892016_GCST006085

Bayesian colocalization analysis, https://cran.r-project.org/web/packages/coloc
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in_R
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Manhattan_Plots_in_R
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tures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739–1740. https://doi.org/10.1093/

bioinformatics/btr260 PMID: 21546393

79. Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A, et al. WikiPathways: capturing

the full diversity of pathway knowledge. Nucleic Acids Res. 2015; 44(D1):D488–D494. https://doi.org/

10.1093/nar/gkv1024 PMID: 26481357

80. Lindström S, Finucane H, Bulik-Sullivan B, Schumacher FR, Amos CI, Hung RJ, et al. Quantifying the

genetic correlation between multiple cancer types. Cancer Epidemiol Biomarkers Prev. 2017; 26

(9):1427–1435. https://doi.org/10.1158/1055-9965.EPI-17-0211 PMID: 28637796

PLOS GENETICS Identifying genetic overlap or pleiotropy between two traits

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009218 December 8, 2020 25 / 25

https://doi.org/10.1093/nar/gkw1055
https://doi.org/10.1093/nar/gkw1055
http://www.ncbi.nlm.nih.gov/pubmed/27899665
https://doi.org/10.1038/s41588-018-0241-6
http://www.ncbi.nlm.nih.gov/pubmed/30297969
https://doi.org/10.1038/nature24277
http://www.ncbi.nlm.nih.gov/pubmed/29022597
https://doi.org/10.1007/s00125-004-1415-6
http://www.ncbi.nlm.nih.gov/pubmed/15164171
https://doi.org/10.1093/aje/kwj320
http://www.ncbi.nlm.nih.gov/pubmed/16968859
https://doi.org/10.1093/nar/gky1120
http://www.ncbi.nlm.nih.gov/pubmed/30445434
https://www.bioconductor.org/help/workflows/liftOver/
https://doi.org/10.1038/ng2062
http://www.ncbi.nlm.nih.gov/pubmed/17603485
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/pubmed/21546393
https://doi.org/10.1093/nar/gkv1024
https://doi.org/10.1093/nar/gkv1024
http://www.ncbi.nlm.nih.gov/pubmed/26481357
https://doi.org/10.1158/1055-9965.EPI-17-0211
http://www.ncbi.nlm.nih.gov/pubmed/28637796
https://doi.org/10.1371/journal.pgen.1009218

