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A B S T R A C T   

Macrophages are one of the most important players in the tumor microenvironment. But the 
contribution of macrophages to lung adenocarcinoma (LUAD) is still controversial. The current 
study aimed to display an immune landscape to clarify the function of macrophages and detect 
prognostic hub genes in LUAD. The transcriptome data were adopted to screen differently 
expressed genes (DEGs) in The Cancer Genome Atlas database (TCGA). The cell type identifica-
tion by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to reveal 
the immune landscape. Weighted gene co-expression network analysis (WGCNA) analysis was 
performed to identify the hub module associated with macrophages. Function Enrichment anal-
ysis was conducted on hub module genes. Moreover, univariate and multivariate Cox regression 
analyses were performed to identify prognostic hub genes. Kaplan-Meier (KM) and Time- 
dependent receiver operating characteristic (ROC) curves were plotted to assess the prognostic 
capacity of the four prognostic hub genes. The GES1196959 dataset from the Gene Expression 
Omnibus (GEO) database was downloaded to verify the differential expression of the 4 prognostic 
hub genes.   

1. Introduction 

Lung cancer is a common malignant tumor and the leading cause of cancer-related mortality worldwide [1]. Lung adenocarcinoma 
(LUAD) is the dominant histologic type of lung cancer, which accounts for approximately 40% of lung cancer cases [2]. Despite major 
progress has been made in LUAD diagnostics and therapy, the five-year survival rate for advanced-stage LUAD remains dismal. Early 
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detection and timely treatment are essential to improve patient survival. Therefore, the discovery of novel early prognostic molecular 
markers is extremely pressing. 

The tumor microenvironment (TME) is a complex ecosystem that includes a variety of components, including tumor cells, vascular 
vessels, fibroblasts, immune cells, and extracellular matrix components. Emerging evidence suggests that the degree of immune cell 
infiltration correlates with prognosis in many types of cancer [3]. Immune-related genes (IRGs) have been reported to correlate with 
the progression, recurrence, and metastasis of lung cancer, suggesting that IRGs have acceptable prognostic values for disease out-
comes [4,5,6]. Macrophages resident in the TME referred to as tumor-associated macrophages (TAMs), are the main immune cells 
found in the tumor microenvironment and can affect tumor progression and metastasis. Based on their distinct abilities, TAMs can be 
categorized into two different states, M1 and M2 phenotypes [7,8]. Recently, increasing evidence has suggested that TAMs are not 
composed of a homogeneous population but rather a mixed population of macrophages. Both M1 and M2 phenotypes that have been 
detected in several malignant solid tumours [9,10,11,12]. In addition to promoting inflammation, M1 macrophage-associated genes 
are also involved in tumor progression and metastasis. Meng Xiao reported that conditioned media from exosomes induced M1-like 
TAMs and significantly promoted migration of oral squamous cell carcinoma cells [13]. Another study found that TNF-α released 
from M1 macrophages increased the metastatic potential of ovarian cancer cells through the activation of the NF-κB signaling pathway 
[14]. However, the biological impact of M1 macrophage-associated gene activities should be further investigated. The present study 
focuses on finding prognosis-relevant M1 related genes in LUAD. 

2. Material and methods 

2.1. Data acquisitions and processing 

The transcriptome data and clinical information of 572 samples from 513 LUAD patients, were downloaded from The Cancer 
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database. GSE116959 dataset included 57 LUAD and 11 normal samples were 
downloaded from the gene expression omnibus (GEO) database and served as validation set. The clinical informations of TCGA cohort 
and GES116959 dataset was shown in Supplementary Table S1. 

2.2. Evaluation of tumor-infiltrating immune cells 

In this study, we used the R package ‘CIBERSORT’ to estimate the fraction of immune cells in TCGA cohort (Supplementary 
Table S1). Specifically, the cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used 
to calculate the fractions of the 22 types of TIICs [15]. Naive CD4+ T cells was not detected in all samples (that was, the proportion of 
immune cells in each sample was 0), and the remaining 21 immune cells were used for subsequent analysis. In this study, 572 samples 
were analyzed for immune cell infiltration, and 530 samples (58 Normal and 472 Tumor) were obtained after filtering with a P < 0.05 
were used for subsequent analysis. 

2.3. Differential expression analysis 

Differential expression analysis was performed on the counter matrix of LUAD and normal samples from the TCGA cohort using 
limma package. The screening conditions for the differential genes were: Fold Change > | ±2|, P < 0.05. Volcano Plot was drawn using 
ggplot2 package to visualize the differentially expressed genes (DEGs) between normal and LUAD samples (Supplementary Figure S1). 

2.4. Co-expression network constructions 

The aforementioned DEGs were utilized to establish a weight co-expression network using the R package “WGCNA” [16]. First, 
based on Pearson’s correlation value between paired genes, the expression levels of individual transcripts were converted into a 
similarity matrix. Parameter β can improve strong correlations and decrease weak correlations between genes. The adjacency matrix 
was then converted into a topological overlap matrix based on the optimal soft-thresholding parameter β which could enhance strong 
correlations between genes and penalize weak correlations. Then, turned adjacency matrix into a topological overlap matrix (TOM). To 
categorize genes with similar expression patterns into different modules, we applied a dynamic hybrid cutting method. 

2.5. Identification of the hub module 

Module eigengenes were used to perform a correlation analysis of each module. We calculated the correlation between module 
eigengenes and the infiltration level of macrophage to determine the significance of the modules by the Pearson test. An individual 
module was considered significantly correlated with Macrophage when P < 0.05. We selected the module with the highest correlation 
coefficient and defined that as a hub module. 

2.6. Enrichment analysis 

The function of the genes in the aforementioned hub module was annotated using the R package GOplot for pathway and process 
enrichment analysis [17], the corresponding Biological Processes (BP), Cell Components (CC), and the function of Gene Ontology (GO) 
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and the signaling pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted. The enrichplot package was 
utilized to visualize the results of the enrichment analysis. 

2.7. Construction of PPI network and identification of hub genes 

The protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes 
(STRING) database based on the hub module genes [18] with minimum combined score >0.4 as a threshold. Then visualized the PPI 
network using the Cytoscape software [19]. According to the degree value, the top 20 genes were designated as hub genes. 

2.8. Risk model development and validation 

Univariate Cox proportional hazards model was performed to screen genes significantly correlated with the survival probability of 
LUAD patients from the 20 hub genes, and P < 0.05 was the threshold. The genes detected by univariate analysis were subjected to a 
multivariate Cox regression analysis for identifying optimal hub genes. The risk score of each sample was calculated by the following 
formula: Risk score = (βgene1 × expression level of gene1) + (βgene2 × expression level of mRNA2) + (βgene3 × expression level of 
mRNA3) + … + (βgeneN × expression level of geneN). (β: coefficient value). 

Subsequently, LUAD patients in the TCGA cohort were divided into high- and low-risk groups by the median risk score as the cutoff 
value. Kaplan-Meier (K-M) curves were plotted using the R packages survival, and survival differences between high-risk and low-risk 
groups were compared by the log-rank test. Receiver operating characteristic (ROC) curve was plotted to assess the accuracy of the risk 
score model using R package pROC. The area under the curve (AUC) of the ROC curve was estimated. 

2.9. Validation of the expression of the optimal hub genes 

The GSE116959 dataset was selected to validate the expression difference of the optimal hub genes between normal samples and 
LUAD samples. 

2.10. Statistical analyses 

Statistical analysis in this study was performed using R software (version 3.6.0). The differences between two group of data were 
compare by Wilcoxon test, and P < 0.05 was considered as significant. 

3. Result 

3.1. Evaluation of tumor-infiltrating immune cells (TIICs) 

CIBERSORT algorithm was conducted to assess the abundance of 22 TIICs in 530 samples (58 normal and 472 tumor samples) using 
the R package ‘CIBERSORT’. LUAD patients were infiltrated with affluent Plasma cells, as statistics have shown. Increased numbers of 
naïve B cells, resting dendritic cells, activated memory CD4+ T cells, macrophages M1, and especially Plasma cells, were observed in 
LUAD patients, while the other immune cell types (including macrophages M2, Mast cells resting, Monocytes) were depleted in 

Fig. 1. Immune landscape of TCGA-LUAD. Bar plot showing the proportion of 22 kinds of TIICs in the normal and LUAD tumor samples. Column 
names of plot were sample ID. 
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number. Gamma delta T cells, activated NK cells, activated mast cells, and activated dendritic cells were kept a balance in their 
number. No naive CD4+ T cells was detected from the CIBERSORT results (Fig. 1, Supplementary Table S2). 

3.2. Gene co-expression network in LUAD 

A total of 12,967 DEGs were obtained, of which 7525 were up-regulated genes and 5442 were down-regulated genes (Supple-
mentary Table S3). Expression values of the 12,967 DEGs were used to construct a co-expression network. Using the R package 
‘WGCNA’, we calculated average linkage and Pearson’s correlation values to cluster the samples of the TCGA database. To build a 
scale-free network, we picked β = 5 (scale-free R2 = 0.9) as the soft-thresholding power (Fig. 2A). A total of nine modules were 
generated through hierarchical clustering (Supplementary Table S4) A hierarchical clustering tree was constructed using dynamic 
hybrid cutting. Each leaf on the tree represented a single gene, and genes with similar expression data were close together and formed a 
branch of the tree, representing a gene module (Fig. 2B). 

3.3. Identification of hub modules and enrichment analysis 

To identify the modules significantly associated with macrophages, we conducted a Pearson correlation analysis. Among the 

Fig. 2. Hub module selection. (A). Soft-thresholding for the adjacency matrix. (B). The cluster dendrogram of all the genes in TCGA- LUAD 
database. Each leaf represents a separate gene, and each branch represents a co-expression gene module. 
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aforementioned nine modules, the brown module was highly correlated to Macrophages M1 (R2 = 0.4, P = 6e-20; Fig. 3A). The 
correlation between other modules and macrophages was less than 0.4. So, we focused on the brown module that was identified as a 
hub module. 308 genes in this module were analyzed using the web tool “Matascape” for the next pathway and process enrichment 
analysis. 30 highest enrichment terms were all cell cycle- and cellular structure-related terms (Fig. 3B), and the three most highly 
enriched terms were protein binding (molecular composition (MF)), nucleus (cellular component (CC)), and cell cycle (biological 
process (BP)) (Fig. 3B, Supplementary Table S5). 

Fig. 3. Functional enrichment analysis of 307 hub module genes. (A). Correlation between modules and traits. The upper number in each cell refers 
to the correlation coefficient of each module in the trait, and the lower number is the corresponding p-value. (B). GO enrichment analysis. The y-axis 
shows significantly enriched GO terms, and x-axis represents the number of gene enrichment in this term. (C). KEGG pathway enrichment analysis. 
In this sub-figure, the x-axis represents the rich factor, and the y-axis represents the different KEGG pathways. The size of the bubbles grows as the 
number of involved genes increases. 

Fig. 4. PPI network of WGCNA hub module genes. A total of 307 genes were filtered into the hub module genes PPI network complex that contained 
224 nodes and 2836 edges. 
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Fig. 5. Association of prognostic hub genes with OS in LUAD patients (A). Forest plot of multivariate Cox regression analysis to assess the asso-
ciation between hub genes and LUAD patients’ OS. The overall survival of LUAD patients with high or low expression of ESPL1 (B), PLK1 (C), 
MAD2L1 (D), and CCNB1 (E). 
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Pathway analysis based on KEGG showed that these genes in the hub module considerably were enriched in 107 pathways (Fig. 3C, 
Supplementary Table S6). Among these terms, the cell cycle pathway was the most significant term, which also enriched more genes 
than other terms. Several enriched KEGG pathways were directly associated with cancer, including the ‘MicroRNAs in cancer’ and 
‘Pancreatic cancer’ pathways. Furthermore, there was the enrichment of certain other terms that were potentially involved in the 
development and progression of LUAD via various biological processes, including the ‘DNA replication’, ‘p53 signaling pathway’, 
‘Apoptosis’, and ‘Nucleotide excision repair’. 

3.4. Identification of prognostic hub genes 

The highly connected genes of the module were investigated as potential key factors related to M1-like macrophages’ infiltration 
level. According to the cutoff standard (combined score >0.9), we selected the eligible genes to construct the PPI network and 
designated the top 20 genes as hub genes based on their degree values (Fig. 4; Supplementary Table S7). We visualized these results 
using Cytoscape. 

We analyzed 20 hub genes by univariate Cox proportional hazard regression analysis. The results indicated that 18 genes except 
AURKB and TOP2A were statistically significant (P < 0.05; Supplementary Table S8). Through the subsequent multivariate Cox 
analysis, 4 genes (ESPL1, PLK1, MAD2L1, and CCNB1) were regarded as prognostic hub genes (Fig. 5A). Besides, we further analyzed 
the relationship between the expression of the above four prognostic hub genes and the survival probability of patients (Fig. 5B–E). The 
results showed that the survival probability of patients with low expression of the hub gene was better than that of patients with high 
expression, indicating that the above-mentioned prognostic hub genes were significantly related to survival probability. Then we 
selected the above genes to construct a risk model and further evaluate its prognostic significance. 

Fig. 6. Construction of the prognostic model. (A). ROC curve for the TCGA- LUAD cohort. (B). Kaplan-Meier survival curves of the TCGA- LUAD 
cohort. (C). The risk score distribution for 450 LUAD patients (TCGA dataset). (D). Distribution of duration of survival in the TCGA- LUAD data. The 
x-axis is arranged in order of patient risk score and y-axis represents patient survival time. (E). The expression pattern of the prognostic signature 
genes in the classifiers of the high- and low-risk groups. 
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3.5. Prognostic value of risk model 

The ROC curve was used to prove the validity of the 4-prognosis hub gene risk model (AUC = 0.653; Fig. 6A). To evaluate the 
prognostic value of the risk model, the risk value of each patient was calculated by the formula below: Risk score = ESPL1 ×
(− 0.218668867) + PLK1 × 0.085289337 + MAD2L1 × (− 0.085415913) + CCNB1 × 0.037918018, and the patients were divided into 
high- and low-risk groups according to the median risk value. The K-M curve showed a significant difference in survival between the 

Fig. 7. Association between the prognostic hub genes and clinic pathological features. (A) Heatmap shows the association of risk scores and clinic 
pathological features based on the prognostic hub genes. (B) Distribution of the risk score in patients stratified by gender, M stage, N stage, T stage, 
and stages. 
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two groups (Fig. 6B). We then ranked the risk score of patients for survival probability and analyzed their distribution (Fig. 6C). Dot 
plots showed the survival status of individual LUAD patients in the training groups (Fig. 6D). The heatmap showed the expression 
patterns of the risk genes in the high- and low-risk patient groups (Fig. 6E). As shown, patients with high-risk scores showed upre-
gulation of ESPL1, PLK1, MAD2L1, and CCNB1 (high-risk genes), whereas, patients with low-risk scores showed downregulation of the 
above genes. Combining the previous results, we concluded that the higher the expression of the four prognostic hub genes, the greater 
the risk of the patient, and the higher the mortality rate. Coincidentally, this also confirmed the result of Fig. 5. 

3.6. Distribution of risk scores for clinicopathological characteristics 

Previous results indicated that macrophages may have important significance in the classification of cancer clinicopathology [20]. 
Furthermore, prognostic hub genes used to construct the risk model were screened from the macrophages relate-brown module. 
Therefore, we further investigated the correlation between the risk score and the clinicopathological characteristics of LUAD. The 
heatmap showed the expression of the prognostic hub genes in the high- and low-risk groups and the correlation between the risk 
model and clinicopathological characteristics (Fig. 7A). The relationships between risk score and clinicopathological stages were 
shown by boxplot (Fig. 7B–D). Except for the M stage, all risk score levels showed significant differences in clinicopathological stages 
(P < 0.05) and showed an upward trend with increased stages. Although no significant difference was detected for M0 and M1, the risk 

Fig. 8. Expression pattern validation for the prognostic genes. ESPL1 (A), PLK1 (B), MAD2L1 (C), and CCNB1 (D) in the GSE116959 database for 
expressing validation. Statistical differences in these data were calculated using Wilcoxon rank-sum test. 
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score level showed an upward trend with increased tumor stage. 

3.7. Validation of risk model gene expression 

The GEO dataset, GSE116959 (68 samples in total, including 11 Normal samples and 57 Tumor samples) was used to verify the 
expression of the prognostic hub gene. The results were consistent with the trend in TCGA. ESPL1, PLK1, MAD2L1, and CCNB1 were all 
significantly expressed in the Tumor group (all P < 0.05; Fig. 8A–D). 

4. Discussion 

Tumor-associated macrophages is heterogeneous in the tumor microenvironment, different types of TAMs play different roles 
within the tumor ecosystem. M1-like macrophage-related genes promote inflammatory processes and also play a role in the pro-
gression of a variety of malignancies. However, although it has been confirmed that some M1 macrophage-related genes play carci-
nogenic roles in LUAD, the functions and mechanisms of M1 macrophage-related genes in LUAD remain to be further studied. We 
believe that, the analysis of LUAD expression data demonstrates that M1 macrophage-related genes have prognostic value. 

CIBERSORT, a gene expression-based deconvolution algorithm, was recently developed to accurately estimate the fractions of the 
infiltration of immune cells subsets in tumor samples [15]. In the present study, weighted gene coexpression network analysis 
(WGCNA) and CIBERSORT were used to analyse LUAD expression data and identify cellular biomarkers related to M1-like macro-
phages. We identified 4 hub genes (ESPL1, PLK1, MAD2L1, and CCNB1) and established a prognostic risk model composed of the 4 hub 
genes to evaluate the prognosis of LUAD. 

ESPL1 gene, encoding the Separase protein, is a protease that cleaves chromosomal cohesin during mitosis. It is overexpressed in a 
wide range of cancers [21,22,23]. Moreover, the overexpression of ESPL1 leads to aneuploidy and tumorigenesis in animal models. 
Mukherjee, et al. showed that MMTV-Espl1 mice in a C57BL/6 genetic background develop aggressive, highly aneuploid, and estrogen 
receptor alpha positive (ERα+) mammary adenocarcinomas [24]. More recently, the Liu Jie group reported that abnormal expression 
of ESPL1 in endometrial cancer cells promoted metastasis and invasion, resulting in poor prognosis of endometrial cancer [25]. In a 
clinical study with long-term follow-up data, abnormal separase expression could predicted impaired survival for luminal breast 
carcinoma. In multivariate analyses, abnormal separase expression showed independent prognostic value [26]. There are few studies 
have investigated the relationship between ESPL1 and lung cancer. Xiaona He et al. identified a total of 2932 DEGs, of which five 
genes, including ESPL1, may link lung adenocarcinoma to smoking history [27]. However, the exact mechanism of ESPL1 in 
cancer-promoting processes remain unknown. Our results suggest that ESPL1 was significantly overexpressed in lung cancer, and it 
was a risk factor in LUAD patients. 

PLK1 (polo like kinase 1) is a highly conserved serine/threonine protein kinase that is broadly expressed in eukaryotic cells and has 
crucial functions in the cell cycle and proliferation [28,29]. Overexpression of PLK1 has been validated as a marker for poor prognosis 
in many cancers. PLK1 knockdown decreases the survival of cancer cells [30]. A recent study revealed high PLK1 expression was 
associated with shorter cancer specific overall survival and disease-free survival in patients with breast cancer (follow-up 15 years). In 
this study, multivariate analysis confirmed the negative prognostic significance of PLK1 overexpression for cancer-specific overall 
survival [31]. PLK1 expression was found to be higher in the lung adenocarcinoma tissues of patients, which was consistent with 
survival prediction [32]. Similarly, PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell 
carcinoma patients [33]. 

Human MAD2 mitotic arrest deficient-like1 (MAD2L1) is a member of the spindle checkpoint proteins. The MAD2L1 gene is located 
on human chromosome 4 [34,35]. To date, studies have shown that the disruption of MAD2L1 function in mammalian cells can affect 
the function of the spindle checkpoint, leading to aneuploidy or tumor development. The overexpression of MAD2L1 in mice lead to 
chromosome instability [36]. A large number of studies have shown that deletion of MAD2L1 gene can cause chromosomal instability 
(CIN), which then drives the occurrence of tumours [35,37]. A clinical study with 203 female patients diagnosed as primary breast 
cancer uncovered that high expression of MAD2L1 was significantly associated with increased risk of disease recurrence and death 
[38]. 

CCNB1 is a member of the cyclin family [39]. CCNB1 interacts with CDK1 to form a complex that regulates the transition from G2 
phase to M phase during mitosis. Recent studies have shown that the overexpression of CCNB1 is closely related to the low survival rate 
of most solid tumours, indicating that the expression status of CCNB1 is an important indicator of the prognosis of solid tumours [40]. 
A previous study noted that Islet-1 (ISL1) promotes gastric cancer cell cycle progression and cell proliferation by upregulating CCNB1, 
CCNB2 and C-MYC gene expression [41]. Chai [42] reported that FOXM1 and CCNB1 are co-overexpressed in liver tumor tissues, and 
that high levels of FOXM1 and CCNB1 are associated with poor prognosis in HCC patients. Zilong Li and colleagues demonstrated that 
BRG1 regulated CCNB1 and LTBP2 transcription by altering histone modifications on target promoters in lung cancer cells [43]. As a 
G2/M checkpoint member, PLK1 can be activated by the CDK1/CCNB1 complex, forming a positive feedback loop [42]. 

Our data showed a significant difference in survival between high- and low-risk groups according to the median risk value. The 
higher the expression of the four prognostic hub genes, the greater the risk of the patient, and the higher the mortality rate. K-M 
analysis revealed significant differences in survival rates between high- and low-risk groups. The area under curve (AUC) of the ROC 
curves of these four hub genes was more than 65%, suggesting that they have the potential as biomarkers for evaluation of the 
prognosis of LUAD. A previous study has demonstrated that immune-related gene expression models can predict prognosis and 
microenvironment immune infiltration in lung cancer based on GEO [44]. However, the data used in that study include lung cancers of 
all histological types, including 17 small cell carcinomas. Moreover, they used TCGA data from 182 LUAD patients as a validation set, 
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but these data do not contain small cell carcinoma samples. Therefore, there is a possibility of presence of selection bias. A prognosis 
analyse have identified 6 hub genes which correlated with poor OS and poor PFS in LUAD. However, all the area under receiver 
operating characteristics (AUCs) were lower than 55, which indicated that the predictive role of 6 hub genes were poor [45]. Another 
Multi-omics Data Analyses Identify the Immune-Related Prognosis markers in Human LUAD which achieved a high degree of accuracy 
on the 1-year (AUC = 0.861), 3-year (AUC = 0.850) survival predictions. But the prognosis model comprised 27 variables. Too many 
variables are required to construct a model, reducing its clinical practicality [46]. 

Our prognostic model combines four hub genes to guide clinical treatment and the judgement of prognosis. Patients with high risk 
should be treated with increased precaution and aggressive therapy. At present, Polo-like kinases (PLKs) have emerged as attractive 
targets of cancer therapeutics. Volasertib, the most advanced and most potent PLK1 inhibitor is currently being tested in Phase I-III 
trials [47]. Beyond that, inhibition of Plk1 sensitized pancreatic ductal adenocarcinoma to immune checkpoint blockade therapy 
through activation of an antitumor immune response [48]. The model associated patient prognosis with these four genes; to the best of 
our knowledge, this has not been reported previously. It is advanced, accurate, and has high clinical practicability. Therefore, we have 
reason to believe that it may be a useful tool for predicting LUAD prognosis. Nevertheless, the current study also had some short-
comings. First, despite the large number of samples downloaded from TCGA, some subgroup analyses could not be performed due to 
insufficient numbers of samples. Second, this study was a preliminary bioinformatic analysis, further experimental, clinical research 
and mechanistic studies of these four genes are needed. 

5. Conclusions 

In the present study, Weighted gene Co-expression Network Analysis (WGCNA) and the CIBERSORT algorithm were used to analyse 
LUAD expression data and identify modules related to M1 macrophages. A risk scoring model based on the ESPL1, PLK1, MAD2L1, and 
CCNB1 genes was established to predict the prognosis of LUAD patients. However, the biological roles and functions of these four genes 
in LUAD still require additional study, and more detailed clinical data are needed to construct a more widely applicable prognostic 
model. We hope that this study will provide important perspectives for the prognosis of LUAD and eventually provide aid in clinical 
decision-making. 
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