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Abstract: Pangenomes are a rich resource to examine the genomic variation observed within a
species or genera, supporting population genetics studies, with applications for the improvement of
crop traits. Major crop species such as maize (Zea mays), rice (Oryza sativa), Brassica (Brassica spp.),
and soybean (Glycine max) have had pangenomes constructed and released, and this has led to the
discovery of valuable genes associated with disease resistance and yield components. However,
pangenome data are not available for many less prominent crop species that are currently under-
utilised. Despite many under-utilised species being important food sources in regional populations,
the scarcity of genomic data for these species hinders their improvement. Here, we assess several
under-utilised crops and review the pangenome approaches that could be used to build resources
for their improvement. Many of these under-utilised crops are cultivated in arid or semi-arid
environments, suggesting that novel genes related to drought tolerance may be identified and
used for introgression into related major crop species. In addition, we discuss how previously
collected data could be used to enrich pangenome functional analysis in genome-wide association
studies (GWAS) based on studies in major crops. Considering the technological advances in genome
sequencing, pangenome references for under-utilised species are becoming more obtainable, offering
the opportunity to identify novel genes related to agro-morphological traits in these species.

Keywords: pangenome assembly; graph pangenomes; presence absence variation; QTLs; trait
discovery

1. Introduction

Plant breeders have continually faced the challenge of increasing crop yield, nutrition,
and disease resistance as the human population increases, and regions suitable for the
production of crops shift with a changing global environment [1–3]. The construction of
the first reference genome assembly for a crop species, rice (Oryza sativa) in 2002 [4], greatly
improved the ability to associate traits with genomic regions, increasing the success of
selection for specific traits that increase agronomically beneficial phenotypes. Improving
genomic resources for crop species has predominantly focused on a limited number of
high-yield, popular species such as wheat (Triticum aestivum) [5], rice (Oryza sativa) [6],
maize (Zea mays) [7], barley (Hordeum vulgare) [8], soybean (Glycine max) [9,10], canola
(Brassica napus) [11], and sorghum (Sorghum bicolor) [12]. These species are often referred
to as major crops due to their extensive use in agriculture systems and high demand as
food sources worldwide. The focus of genomic research and trait selection on major crops
has led to many minor crops falling behind, limiting the opportunity to diversify the food
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bowl or discover the genetic basis for valuable traits within these species. Hence, under-
utilised crops need investment to support their improvement and characterise traits that
can potentially be transferred to major crops [13,14].

Reference genome sequences have recently been assembled for some under-utilised
crop species such as yam bean (Pachyrhizus erosus) [15], kenaf (Hibiscus cannabinus) [16]
and white fonio (Digitaria exilis) [17]. However, using a single reference leads to bias
due to the significant structural variation (SV) observed within a species [18–20]. SVs
can arise as a consequence of whole-genome duplication and subsequent fragmenta-
tion [21–23], or tandem and segmental duplication of genomic regions [24]. This duplica-
tion and fragmentation can lead to gene copy number variation (CNV) and gene pres-
ence/absence variation (PAV). CNV and PAV can also result from insertion of gene copies
by transposable elements [25], de novo gene birth [22,26], introgression from closely re-
lated species, or horizontal gene transfer [27], which may affect heritable traits. Hence,
single reference genomes do not reflect the gene content and diversity of a species, and
improvements in the genomic resources over single reference genomes are needed in order
to increase the success of genomics-based plant breeding for both major and under-utilised
crop species.

Pangenomes are references that capture the genetic diversity of a species rather than
a single individual and can reduce reference bias in genomic analysis, allowing more
accurate prediction of traits [18,19]. A pangenome contains a core genome (shared among
all individuals) and the variable or dispensable genome that is absent from one or more
individuals [28]. The idea of a core and variable genome for a species represented by a
pangenome was first described by Tettelin et al. in 2005 [28] and later proposed for use in
plants by Morgante et al. in 2007 [29]. In 2014, the first plant pangenome was published,
representing seven wild soybean (Glycine soja) individuals [30]. This was used to associate
genes with the domestication traits of organ size, biomass, seed composition, flowering and
maturity time, and disease resistance. Since then, other pangenomes have been constructed,
including one representing 3 rice individuals [31], 10 Brassica oleracea individuals [32],
18 bread wheat individuals [20], 54 Brachypodium distachyon individuals [33], 53 canola indi-
viduals [34], 5 sesame (Sesamum indicum) individuals [35], 725 tomato (Solanum lycopersicum)
individuals [36], 89 pigeon pea (Cajanus cajan) individuals [37], and 1961 cotton (Gossypium
spp.) individuals [38] (Table 1). These provide valuable resources for understanding genetic
variation in these species [39]. However, there are few pangenomic resources for under-
utilised species, which limits the application of genomics to develop improved varieties
of these crops. In this review, we examine several under-utilised crop species that lack
pangenome resources and discuss the benefits the development of these resources may
have for these species as well as the overall benefits to agriculture. The current methods for
pangenome construction and trait analyses are also discussed. This review aims to provide
a foundation for further studies to construct pangenomes for under-utilised crop species
and improve their traits through plant breeding based on pangenomic analyses.

2. Under-Utilised Species

Many minor crops have yet to benefit from genomics-based breeding methods, despite
many being important food sources in specific regions (Table 2). Under-utilised crop species
cover a broad range of crop types, including cereal grains, vegetable, tubers, fruits, and
crops with industrial uses (Table 3). Here, we describe several promising under-utilised
crop species for each crop type and discuss the currently available genomic resources.

2.1. Cereal Grains

Wheat, maize, and rice constitute the major cereal grain crops and are responsible
for supplying the majority of the global food requirement. However, these species are
sensitive to drought and heat stress, leading to reduced yield or even crop failure in some
environments [40]. Several under-utilised cereal crops are adapted to harsh environments
and are alternatives to these major crops [41].
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Little millet (Panicum sumatrense) is a small millet species native to India (hence its
alternative name ‘Indian Millet’) and is primarily grown in semi-arid regions of Asia and
Africa. This species requires minimal water and has a tolerance to drought and high salinity
soil. However, Little millet is only grown in specific regions and few people consume
it despite its nutritional benefits of high carbohydrate, dietary fibre, calcium, iron and
Vitamin E content [42]. The genomic resources for Little millet are limited to the chloroplast
genome sequence [43] and a transcriptome assembly [44] that has been used to characterise
genes responsible for abiotic stress tolerance. This species lacks both a sequenced genome
and a genetic map, limiting further study and genomics-based selection of traits.

White fonio (Digitaria exilis) is a panicoid grass and an under-utilised cereal crop from
West Africa that is valued for its grain that is high in dietary fibre and protein [45]. The crop
grows in hot, dry and low-fertility environments and requires no fertiliser or irrigation on
poor-quality soils. However, white fonio has a low yield and minimal research has been
undertaken into breeding to improve traits of this crop [46]. A genome sequence of white
fonio has recently been assembled and annotated [17,47] and has been used for sequence-
based genotyping [48]. Combining these genetic resources with other panicoid grass
resources such as Setaria italica (foxtail millet) [49], Cenchrus americanus (pearl millet) [50],
and Panicum miliaceum (proso millet) [51] through pangenomic and comparative genomic
strategies may support white fonio research to benefit breeders and consumers [52].

2.2. Vegetable/Pulse Crops

The Vigna genus of legumes has many genetic resources, but few specifically for the
under-utilised crop, moth bean (Vigna aconitifolia) [53]. Moth bean is a multipurpose
legume that provides hot-season pasture and hay for livestock and seed. This species is
the most heat-tolerant crop of the Asian Vigna species and is able to withstand drought
conditions. Seeds and young pods of moth bean are suitable for human consumption and
have a high vitamin and mineral content. While moth bean domestication is well studied
and documented, the genetics of the domestication process is largely unknown. Genetic
resources are largely limited to genetic linkage maps that can identify domestication-related
traits and QTLs not present in moth bean, but that are present in other Vigna species [54].
These data can be integrated into genomic resources such as a pangenome, enhancing the
genetic improvement of moth bean and related Vigna species.

Lablab bean (Hyacinth bean, Lablab purpureus) is a leguminous crop that is commonly
grown as a food source due to the seed having high protein content and a comparable
nutritional profile to soybean [55]. In addition to being a source of nutrition, lablab bean
is used to improve soil fertility as a cover crop and green manure [56]. Lablab bean
has a higher drought tolerance compared to other commonly cultivated legumes and is
able to grow across a wide range of climate and environmental conditions, withstanding
temperatures from 18 ◦C to 50 ◦C and annual rainfalls from 200 to 2500 mm [57]. To
enhance the production and benefits of lablab bean, new varieties need to be developed,
especially those that are tailored to extended drought periods. Studies have largely focused
on conventional breeding, but polygenic traits such as drought tolerance can be supported
by more genomic research, which has been limited [58,59]. A draft genome for lablab
bean was assembled in 2019 [60] and a chloroplast genome assembly in 2021 [61]. Further
development of genomic resources through pangenomics would provide tools to help
improve traits of this species and become an important safety net crop against the impact
of climate change on legume production.

2.3. Tuberous Crops

The genus Pachyrhizus contains three yam bean species cultivated for their starchy
tuberous root, P. erosus, P. ahipa and P. tuberosus. Yam bean is a regionally important crop in
Mexico and Southeast Asia where it is eaten as part of many traditional dishes. Yam bean
has a high yield and the crop can thrive in humid conditions [46,62]. The P. erosus tuber
contains high vitamin C, iron, zinc and potassium [63]. Presently, there is a draft genome



Int. J. Mol. Sci. 2022, 23, 2671 4 of 21

assembly P. erosus [15], and a flow cytometry study analysis [64], but P. erosus lacks the
pangenome resources that would support studies of its abiotic stress traits for transfer to
major legume crops [65].

African arrowroot (Canna edulis) is a tuber crop that originated in Central and South
America and is distributed throughout Europe, North America and in tropical regions of
the world. The tuber contains large amounts of starch which is highly viscous, often used
in cakes, noodles, dye, and animal fodder [66]. African arrowroot is also known for its
horticultural use in gardening and for the treatment of industrial wastewaters to remove
pollutants such as nitrogenous and phosphorous compounds [67]. African arrowroot
has a diverse germplasm and has over 1000 hybrids, making genomic studies into the
species difficult. Presently, the only genomic resources for African arrowroot are a complete
chloroplast genome [68]. Pangenome resources could be used to explore the diversity in
gene content and compare genomic structures with related species.

2.4. Industrial Crops

Kenaf (Hibiscus cannabinus) is an annual crop that is cultivated for the bast fibres
that are produced on the stem bark of the plant. The species is the third most important
source for fibre production after cotton and jute (Corchorus spp.) and it is often used in the
production of paper, rope, building materials and as a livestock feed [69]. Kenaf has a high
biomass yield and can acclimate to many different climates and soils [69], but little research
has been undertaken on this species. A de novo transcriptome of kenaf was assembled
in 2015 [69], and a mitochondrial genome sequence was assembled in 2018 [70]. These
resources were recently supplemented in 2020 by a genome assembly, allowing for genes
involved in the development of bast fibre and leaf shape to be identified [16]. Further
study of the candidate genomic regions for bast fibre yield and quality-related traits using
pangenomics could provide insights into yield and quality traits that could expedite the
selection of elite traits.

Safflower (Carthamus tinctorius) is a thistle-like plant that is commercially cultivated
for the vegetable oil extracted from its seeds. The species is found across Asia, Europe,
Australia and the Americas [71], where it is popular due to the high content of linoleic acid
and flavonoids, such as hydroxysafflor yellow A, in the oil [72]. Molecular studies have been
undertaken in safflower primarily for fatty acid composition and flavonoid biosynthesis.
Whole-genome sequencing efforts had been limited to short-read sequencing [71], but
more recently, a chromosome-level reference genome assembly [73] was constructed that
has allowed for evolutionary analysis of the divergence of safflower and the study of
linoleic acid and flavonoid biosynthesis. While this whole-genome reference sequence
has aided study into the genetic improvement of safflower, further improvement and
understanding of how the Asteraceae family evolved and speciated can be achieved through
the construction of pangenomic resources for safflower.

2.5. Fruits

Guava (Psidium guajava) is an important tropical and subtropical fruit of the Myrtaceae
family, being the fourth most significant fruit crop in India [74]. The species is a highly
sought-after export because it is a rich source of vitamin C, fibres and phytochemicals [75].
However, guava is vulnerable to the guava wilt pathogen Nalanthamala psidii and fruit
flies, causing worldwide threats to the stability of guava production. Despite being eco-
nomically valuable, there are few genomic resources for the species, especially resources
that can be used to study the response of guava to biotic and abiotic stresses [76]. Most
genomic resources for guava have only emerged in the early 2020s, including a genome
assembly [76,77], high throughput and EST-based InDel/SNP markers [76] and a transcrip-
tome assembly [78]. These resources lay the groundwork for improving the agronomic
traits of guava by gene mapping and genomic selection that could be expedited through
a pangenome.
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Ethiopian banana (Ensete ventricosum) is a local crop that contributes to the food secu-
rity of Ethiopia, providing a staple food source for approximately 20 million people [79].
The Ethiopian banana is an important dietary starch source and has uses in the production
of fibre, medicine and other industrial products as well as an important role in stabilising
soils, as well as being of cultural importance in Ethiopia [79]. Unlike most under-utilised
crop species, pangenomics have been applied to Ethiopian banana with the species be-
ing included in a higher-level pangenome assembled for the Musaceae family [80]. This
banana pangenome has allowed the identification of candidate regions for drought re-
sistance, meristem initiation and stress resistance. The continued development of this
pangenome will increase its value as a tool for trait improvement, broader diversity studies
and evolutionary studies of banana species.

3. Developments in Pangenome Resources to Aid in the Breeding of
Under-Utilised Crops

The three main approaches for pangenome construction used across genomic research
are de novo assembly and comparison, iterative mapping and assembly, and graph-based
assembly (Figure 1). The suitability of each approach depends on several factors, such as
organism genome complexity, sequencing data quality and coverage, genetic similarity
among individuals used for the pangenome construction and the intended final application
of the pangenome. De novo assembly requires the individual genomes to be assembled
separately, followed by whole genome comparison [29,30]. The iterative mapping and as-
sembly approach involves mapping reads from different individuals to a starting reference
genome, assembling the unmapped reads into novel contigs and then adding the novel
contigs to the reference, forming a pangenome [32,34]. The iterative mapping approach
and the de novo assembly approach are highly complementary, widely used and have been
extensively discussed in other reviews [18,81,82].

Modelling suggests that as few as 10 representative individuals in a pangenome may
capture the majority of gene diversity of a species. However, the advantage of increasing
the number of individuals is that it permits an assessment of gene content variation across
a population, and how this may change with breeding [9]. Recent pangenome studies
of major crop species assess data from thousands or tens of thousands of individuals
and include high quality chromosome-scale assemblies to further increase trait prediction
accuracy [18,36].

Pangenome graphs are a relatively new pangenome construction method that combine
the benefits of the iterative mapping and de novo assembly approaches. The method
presents variation across multiple genomes as different paths along a graph of sequence
or variant nodes. Pangenome graphs are constructed through whole-genome alignment,
unassembled read alignment or de novo graph assembly [83,84]. Sequence graphs such as
minigraph [85] represent nodes as short sequences, leading to highly complex networks
that can present SVs in a manner where they can be compared among closely-related
species [85,86]. Variation graphs, on the other hand, are a compact form of sequence graph
used to present genetic variation across a population [87]. In variation graphs such as
vg [88] or MGR [89], SNPs and SVs are represented by nodes and are connected when
shared among individuals, allowing representation of large-scale SVs such as inversions
and duplications [85,90,91].
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Figure 1. Scheme showing three pangenome assembly methods. Sequence reads from genomes A, B
and C can be used to assemble the species pangenome using de novo method yielding three separate
genomes that will be compared to define the core and variable regions. In the iterative assembly,
genome A is assembled de novo and used as a reference for assembling the remaining genomes B
and C. Because genome A has different genes from genome B and C, it may change the gene order
in genome B (highlighted in the blue box) or collapsing CNV in genome C (highlighted in the blue
box). In the iterative assembly, genes not represented in the reference genome (genome A) have to
be assembled de novo and may lose their location information as shown by the green gene below
genome B assembly. Graph pangenome assembly of genomes A, B and C represent the genes as
interconnected nodes, each path representing a genome.
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Another type of pangenome graph is the practical haplotype graph (PHG) [92,93],
which is a trellis graph representing genic and intergenic regions. PHGs avoid challenges
in aligning repetitive and highly divergent regions through the use of a reference genome
coordinate system that uses genes to anchor sequences [92,94], minimising errors due to
reference bias, poor alignment and miscalled variants [95]. A common use of PHGs is to
determine which haplotypes or genotypes of parental haplotypes that have been sequenced
at high coverage are present in progeny that have been sequenced at low coverage. These
graphs have been used in sorghum [92], maize [96] and cassava (Manihot esculenta) [95] to
impute SNPs from low-coverage DNA sequence data. PHGs can support plant breeding
as they can accurately capture the position of genomic variations among individuals.
Advances in pangenomics are leading to the construction of higher-level pangenomes often
referred to as super-pangenomes that represent genomic information at the genus level
and above [80,97,98]. Super-pangenomes have the potential to aid introgression of traits
from related species that can confer agronomic benefits. An example is alien introgression
in Brassica breeding, where the Ogura fertility restorer gene system carried by the Rfo locus
was introgressed into B. napus (which contains the Brassica A and C genomes) from closely
related Raphanus sativus (radish) [99,100].

Super-pangenomes can support a more comprehensive view of gene PAV across
species and provide a framework for evolutionary studies. The super-pangenome of ba-
nana identified gene differences between Musa and Ensete genera [80], as well as 12,310 new
gene models in the species, forming distinct PAV clusters between the Ensete and Musa ac-
cessions. Variable genes related to flowering, meristem regulation and nutrient metabolism
were enriched in the Musa accessions, reflecting the morphological diversity of Musa
fruits [80]. Super-pangenomes at the genus level can also identify traits or genes lost
during domestication or that have evolved in related species that can then be selected for
in breeding. The latest soybean pangenome represented 1110 soybean individuals [10]
and demonstrated that there had been a reduction in the number of protein-coding genes
during domestication and subsequent breeding of elite varieties, with wild soybean having
on average 620 more genes and a 21 Mbp larger genome than modern cultivars [10,101].
Studying how genes change in frequency between domesticated crops and their wild
relatives using super-pangenomes can support the breeding of crops better adapted to
diverse environments and more resilient to climate change.

Plant pangenome assemblies have shown that variable regions are often associ-
ated with biotic or abiotic stress [93], leading researchers to focus on the construction
of pangenomes based on specific functional traits. These trait pangenomes aim to de-
scribe the landscape of genetic variation related to a trait. For example, resistance gene
analogues (RGAs) have conserved domains and motifs that contribute to resistance to
pathogens [102–105]. Thus, a pan-RGA can provide a platform to investigate the impact of
genetic variation on plant resistance, as well as identify genetic markers for RGA profiling
of species that may have limited genomic data [102]. A pan-RGA can be employed as a
reference for resistance gene cloning [106,107]. In addition, trait pangenomes can be used
to investigate the evolution and domestication of specific traits. For example, one study
examined the differences in the nucleotide binding sites of leucine-rich repeat receptors
(NLRs) during colonisation of new habitats by Solanum chilense, reinforcing that NLR evo-
lution is constrained by their interaction with the products of other genes [108]. In the
case of under-utilised species, trait pangenomes can help dissect the genetic variability
associated with drought tolerance in the moth bean [109,110] and lablab bean [111,112],
as well as potentially increase crop productivity by comparing yield-related genes with
higher performing relatives. The functional analysis of the genetic diversity uncovered by
pangenome studies is still largely unexplored but can be improved through the use of trait
pangenomes, providing a foundation to accelerate breeding of under-utilised crop species
that support food security globally.
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4. The Breeding Potential of Under-Utilised Crop Species

Structural variation represented in pangenomes has been linked with pathogen resis-
tance and tolerance to abiotic stress [32,113,114]. Identifying advantageous genes and
alleles relies on associating pangenome SVs with phenotypic traits through genome-
wide association studies (GWAS), quantitative trait loci (QTL) mapping or genomic selec-
tion [36,115,116]. As an example of pangenome-assisted GWAS analysis in major crops,
a soybean graph-based pangenome with 29 assemblies identified a previously unknown
PAV associated with seed luster [9]. Pangenome GWAS studies in other species detected
124 PAVs associated with yield and fibre quality in cotton [38], genes associated with seed
traits and early leaf senescence in rice [6,117], PAVs associated with seed and flowering traits
in canola [11], and 398 SNPs associated with agronomic traits in sorghum [12]. Pangenome
GWAS and other functional comparisons support the linking of genomic variation with
beneficial traits with an accuracy that linear single reference genomes are unable to provide.
A functional pangenome analysis for under-utilised crops may uncover novel alleles related
to agronomic traits in the variable genome that may be used for introgression into major
crops or be used as genetic markers to improve traits of under-utilised crops.

Characterising the relationship between SVs and differences in plant function requires
integrating other data types, such as phenotype, metabolite and gene expression data, with
the pangenome [82,118]. For example, SVs identified in a cotton pangenome with 890 ac-
cessions were compared through meta-GWAS and gene expression analysis to identify
candidate genes related to yield and fibre quality. Genes identified include the previously
uncharacterised gene GhIDD7 that was subsequently shown to control fibre length by
using gene knockout with CRISPR-Cas9 [38]. Meta-GWAS was also employed in a soybean
study using 17,556 accessions and associated phenotypic data to identify candidate genes
related to agronomic traits, reporting several new loci, some of which were associated
with multiple traits suggesting pleiotropic effects [119]. Leveraging previously published
studies with biochemical analysis may help bridge the understanding of the effect of SVs
on plant morphology. For example, although there are limited genomic resources for guava,
a few studies have been conducted to investigate fruit and leaf metabolites [120,121] and
fruit aroma volatiles of 27 guava accessions [122]. These datasets could be used to scan a
guava pangenome for fruit related traits. A super-pangenome of yam bean species (P. ero-
sus, P. ahipa and P. tuberosus) would provide a basis for integrating associated phenotype
data. Multiple studies using agro-morphological traits collected for the yam bean varieties
grown in Brazil, West Africa and Costa Rica have found significant variation between the
genotypes employed in each study [123–125]. Integrating rich phenotype data with a yam
bean super-pangenome could be used to infer the effects of SVs on phenotype, including
traits directly related to plant performance such as day to flowering and maturity, plant
height, and root biomass [125].

Previously identified genomic markers can be mapped to a pangenome reference
to support the discovery of novel alleles. A recent pangenome study in tomato mapped
359 QTLs associated with volatile organic compounds [36,126]. These QTL regions were
compared across diverse tomato populations, allowing the identification of alleles that can
be used to improve fruit aroma [126]. Another study examined a tomato super-pangenome
with 166 accessions from the wild ancestor S. pimpinellifolium, the semi-domesticated species
S. lycopersicum var cerasiforme, and early domesticated S. lycopersicum var lycopersicum.
They identified functional polymorphisms in the LIN5, ALMT9, AAT1, CXE1, and LoxC
genes associated with fruit flavour. Beneficial haplotypes were identified that could be
introgressed through conventional breeding [127]. These studies demonstrate the use of
pangenomes to build on previous studies.

Although there are limited genetic data for under-utilised crops, collating previous
studies from closely related species may present encouraging results. For example, a study
with finger millet (Eleusine coracana) used genotyping by sequence data to identify 109 SNPs,
with five of these located in genes involved in flowering, maturity and grain yield [128].
Another study on finger millet identified 418 SNPs related to mineral micronutrient density
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that could be employed to improve grain nutrient quality [129]. Mapping previously
reported markers onto a millet pangenome could improve our understanding of the genes
related to agro-morphological traits in this under-utilised crop, thus supporting millet
performance in the field.

Advances in bioinformatics tools and data analysis will help accelerate under-utilised
crop improvement using currently available genomic data. Machine Learning (ML) is
a computational technology used to predict outcomes for specific problems based upon
previous data. In bioinformatics, ML is becoming increasingly applied and optimised for
crop-related advances in genomics and phenomics [118,130–132]. A recent study used
random forest classification in conjunction with linkage disequilibrium mapping to identify
pangenome PAV tags in domesticated barley with 83.6% accuracy, and in wild barley with
88.6% accuracy [133]. These barley PAV tags will help construct future barley pangenomes
and can be applied to association analysis. Pangenomics ML has also been applied to
understand gene loss mechanisms in Brassica [134]. It was demonstrated that gene loss
was mainly associated with transposable elements in the diploid B. oleracea and B. rapa,
while in the polyploid B. napus, the loss of genes was mostly associated with homoeologous
recombination. ML can also be used for trait association in pangenomes, as seen in B. napus,
where PAV associations were identified for disease resistance [135], and in pigeon pea for
seed weight [37]. Here, using PAVs and SNPs from a pangenome rather than just SNPs
derived from a single reference genome sequence as input when training ML models will
increase the efficiency and reliability of prediction of traits in these crops. As the application
of ML in crop science increases, these methods will become more common for the translation
of pangenomic and crop trait data for under-utilised crop variety improvement.

5. The Future of Pangenomics in Breeding Under-Utilised Crops

Many of the advances in genomics and pangenomics have been driven by improve-
ments in DNA sequencing technology. More accurate non-fragmented assemblies can now
be generated using long-read sequencing methods such as Pacific Biosciences (PacBio)
single-molecule real-time (SMRT) sequencing [136] or Oxford Nanopore Technologies
(ONT) sequencing [137]. Long-read sequencing can now generate data with low error rates
(between <1% and <5%, depending on the sequencer used) and span repetitive sequences,
leading to pangenomes that contain fewer gaps and the ability to resolve placements of
homeologous scaffolds [138,139]. Long-read sequencing also allows base modifications in
complex repetitive regions to be analysed and for large SVs (>500 bp) to be assessed [140].
Improved sequencing and assembly methods have also allowed the capture of repetitive
elements and complex inversions and translocations, allowing detection of SVs that would
be missed in fragmented low-quality assemblies [81,141].

The additional SV data produced by these technologies can be translated to high-
throughput and flexible molecular genetic markers for under-utilised crops. These mark-
ers can be used in breeding projects to maximise the efficiency of genomic selection for
agronomically valuable traits [142]. However, the relatively high cost of generating long-
read sequence data means that these high-throughput markers are not feasible for many
genotyping applications. Furthermore, long-read sequencing has a large computational
requirement in the analysis stage [143]. While software packages that analyse pangenomes
and identify core and variable SNPs do exist, such as PanSeq [144], database systems for
interpreting complicated SVs are rare. This rarity makes the use of long-read sequencing a
challenge [145]. Nevertheless, the benefits of long-read sequencing for the construction of
high-quality pangenomes makes it the approach of choice for future pangenomes, while
the lower cost of short-read Illumina sequencing makes it more amenable for larger scale
genotyping approaches.

As larger and more accurate genome assemblies are being produced, tools are be-
ing developed to annotate them more quickly and accurately [146]. Genome annotation
tools such as BRAKER2 [147] and MAKER [148] combine ab initio (statistical model) and
evidence-based gene predictions to produce higher quality annotations while still being
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relatively easy to use. However, annotation remains a bottleneck for large-scale genome
and pangenome analysis, because gene prediction and functional annotation still lags
behind assembly approaches [149–151]. In general, current gene prediction is complex.
Most functional annotation tools draw from functional annotation databases that are either
relatively small and manually curated, and therefore accurate, such as Swiss-Prot [152], or
large and non-curated, and therefore potentially containing errors, such as the National
Center for Biotechnology Information (NCBI) non-redundant database [153]. More accu-
rate annotation methods are required to study differences in genetic architecture, because
the detection of complex traits can be confounded when SVs and PAVs are incorrectly
positioned. Future high-quality functional annotation will likely use transcriptomic, pro-
teomic, phenomic, and metabolomic data with pangenomics together with approaches
such as machine learning (ML) to increase accuracy. Currently, there are no universal ab
initio methods or homology-based methods capable of aligning variations found in plant
genomes with a reference pangenome [154]. To address this problem, research is underway
to efficiently index, store and interrogate graphical representations of pangenomes that will
lead to more accurate annotation [155] (Figure 2).

Figure 2. Predicted benefits to plant breeding from future developments in pangenomics. Improve-
ments in pangenome assembly and annotation combined with machine learning (ML) technology will
increase the accuracy of analyses on gene presence/absence variation (PAV) and structural variation
(SV) in different individuals of crop species. These analyses will be available to plant breeders through
new tools and browsers, allowing easier selection of traits and genetic diversity in crop plants.

The full genetic potential of many under-utilised crops has yet to be fully realised,
primarily due to a lack of resources that can be used to aid identification and selection of
agronomically valuable traits. With the decreasing cost of sequencing, pangenomes for
many under-utilised crop species can be assembled. These pangenomes can be used to
identify genomic variation that can be studied with trait mapping tools such as GWAS and
QTL, allowing the prediction of desirable crop traits using molecular markers [9,36]. By
developing resources for under-utilised crops, novel genes related to agro-morphological
traits can be detected and used to inform breeding programs or used for introgression
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into related major crop species. Furthermore, advancements in sequencing technologies
will likely see pangenomes constructed with long-read DNA sequencing methods and
chromosome-scale assemblies overtake single reference genomes for use in plant breeding
research. The implementation of these pangenome assemblies in graph-based pangenomes
and improvements in the accuracy of assembly and annotation tools will allow for more
detailed analyses of the genetic constitution of under-utilised crops, and more efficient
improvement of traits [88,92,131,156]. With pangenomes, existing genomic data and ML
tools informing genetic breeding and gene editing, some of these climate-resilient and
nutritious under-utilised crops show the potential to become alternative food sources or
safety nets to major crops, supporting future increased agriculture system diversity and
food security.

Table 1. Plant pangenomes constructed to date and method of assembly.

Species Name # of Individual Genomes Assembly Method References

Amborella trichopoda 10 Iterative mapping and assembly [76,77]

Arabidopsis thaliana 7 De novo assembly [157]

Brachypodium distachyon 54 De novo assembly [33,158]

Brachypodium hybridum 4 De novo assembly [158]

Brassica napus 53 Iterative mapping and assembly [34]

Brassica napus 8 De novo assembly [11]

Brassica oleracea 10 Iterative mapping and assembly [32]

Cajanus cajan 89 Iterative mapping and assembly [37]

Capsicum 5 Iterative mapping and assembly [156]

Glycine max 29 Graph-based de novo assembly [9]

Glycine max 1110 Iterative mapping and assembly [10]

Gossypium 1961 De novo assembly [38]

Hordeum vulgare 20 De novo assembly [8]

Helianthus annuus 287 De novo assembly [159]

Malus domestica 91 De novo assembly [160]

Manihot esculenta 57 Practical haplotype graphs [161]

Medicago truncatula 15 De novo assembly [162]

Oryza sativa 3 De novo assembly [31]

Oryza 31 De novo assembly [6]

Poplar 10 De novo assembly [163]

Sesamum indicum 5 De novo assembly [35]

Solanum lycopersicum 725 De novo assembly [36]

Sorghum bicolor 398 Practical haplotype graphs [92]

Sorghum bicolor 176 Iterative mapping and assembly [12]

Triticum aestivum 18 Iterative mapping and assembly [20]

Zea mays 4705 Practical haplotype graphs [96]
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Table 2. Research involving underutilised crops without genomic references.

Scientific Names Common Names Type of Resource References

Basella alba Malabar spinach Reports of viruses infecting Malbar spinach [164,165]
Chromosome counts/Nuclear DNA
quantification [166]

Calathea allouia Guinea arrowroot Future prospects for underutilised
medicinally valuable plants [167]

Couma utilis Milk tree Identifying pollinators in edible Amazon
fruit plants [168]

Crambe cordifolia Greater sea-kale Ancestral chromosomal blocks in
Brassiceae species [169]

Leopoldia comosa Tassel grape hyacinth Identifying physiological responses [170]
Mineral content and chemical analysis [171]

Schinziophyton rautanenii Mongongo tree Sustainability review [172]
Chemical composition of oil [173]

Ullucus tuberosus Ulluco
Viruses detected in ulluco [174]
High throughput sequencing to detect novel
viruses in ulluco [175]

Table 3. Underutilised crops with genetic resources.

Scientific Names Common Names Type of Genomic Resources References

Cereal grains

Canna edulis African arrowroot Chloroplast genome sequence [68]

Digitaria exilis White fonio
Genome assembly and annotation [17,47]
Genotype-by-sequencing and SNP data [48]

Panicum sumatrense Little Millet
Chloroplast genome sequences [43]
De novo transcriptome assembly [44]

Vegetable/Pulse crops

Lablab purpureus Hyacinth bean/Lablab bean

Chloroplast genome assembly [61]
Draft genome assembly [60]
Upregulation of drought tolerant genes [58]
RFLP markers [176]

Solanum nigrum Black nightshade plant Transcriptome sequence [177,178]
Chloroplast genome sequence [179,180]

Vigna aconitifolia Moth bean
Genetic linkage map [54]
Novel Vigna genetic resources [53]

Tuberous crops

Pachyrhizus erosus Yam bean Draft genome assembly [15]

Vigna vexillata Zombi pea or Wild cowpea

Anti-inflammatory bioactivity [181]
QTL analysis [182]
Molecular linkage analysis [183]
Hybridisation accession analysis [184]

Industrial Crops

Carthamus tinctorius Safflowers

Transcriptome sequencing [185,186]
Chromosome-scale reference genome [73]
Chloroplast genome sequence [187]
Genetic mapping of SNPs [71]
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Table 3. Cont.

Scientific Names Common Names Type of Genomic Resources References

Hibiscus cannabinus Kenaf
Mitochondrial genome assembly [70]
Genome assembly and annotation [16]
De novo transcriptome assembly [69]

Fruit/Nuts

Bactris gasipaes Peach palm

Chloroplast DNA for phylogenetic study [188]
Macaúba palm transcriptome sequencing [189]
RNA-seq of tropical palms [190]
Plastome sequence [191]

Citrullus colocynthis Desert Watermelon or Wild
watermelon

Gene markers [192]
Transcriptome assembly [193]
Genome Resequencing [194]

Elaeagnus angustifolia Russian olive or wild olive

Geographic study using machine learning [195]
Hi-C assembly [196]
Transciptome profiling [197]
Plant signalling regarding salt [198]

Ensete ventricosum Ethiopian Banana

Genome assembly [199,200]
Pangenome assembly [80]
Markers/Microsatellites [201]
Metabolite data [202]

Euterpe oleracea Açaí Chemical genomic profiling [203]
Karyotype and genome size [204]

Psidium guajava Guava
Genome assembly [76,77]
Genome Markers [76]
RNA-seq/transcriptome assembly [78]

Vaccinium meridionale Agraz or Colombian Berry

Phylogenetic relationships within the
Vaccinieae tribe [205]

Chemical, antimicrobial and molecular
characterisation [206]

Characterisation of phenotypic plasticity [207]
Antiproliferative potential of Agraz juice [208]
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