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Abstract

Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding
many cellular biological processes. For example, PINs may include information on the type and directionality of interaction
(e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of
deriving context-specific PINs for conducting exploratory analysis.

Results: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives
context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed
query system. CPNM reports enriched information on protein interactions (with type and directionality), their network
topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-
pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of
the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time,
user-queried, up-to-date PubMed document processing, and prediction of PIN directionality.

Conclusions: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/
CPNM/.
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Introduction

Information about protein-interaction (PI) networks (PINs) is

crucial for understanding many cellular biological processes [1].

Such networks are particularly useful in elucidating cellular

mechanisms that may be activated in response to, for example,

environmental stimuli in normal or diseased conditions. Much of

the pertinent PI information is buried in the scientific literature

and cannot be retrieved in a simple and convenient manner.

Moreover, much of the information relevant for PINs, e.g. type

and directionality of interactions, usually is not retrieved. Recently,

significant amounts of work have gone into building databases that

store manually curated information on PIs from the literature.

Examples of these resources include HPRD [2], MINT [3],

BioGRID [4], MIPS [5], PDZBase [6], IntAct [7], STITCH [8],

and others. Although the information contained in these databases

is useful, the overall coverage is low, the information is not up-to-

date and generally lags behind the rapidly growing literature. A

complimentary approach relies on automated text-mining meth-

ods for PI extraction. These have achieved significant progress in

recent years (see [9–12] detailing BioCreative I, II, III). These

automated text-mining methods include protein name recognition

[13,14], normalized protein name extraction [15–25]), protein

name mention normalization [26], PI-pair/triplet detection [27–

38], and PI-sentence/abstract/method detection [39–46]. To-

gether, these methods make up the foundation for integrated text-

mining systems for biological applications. Some of the very few

initiatives towards developing integrated text-mining based PIN

extraction applications include STRING [47] and iHOP [48].

While STRING integrates information from various PI databases

with PI information mined from a local, static, periodically

updated copy of the PubMed database, iHOP uses a local, daily

updated PubMed database.

Here we report the development of a web application we name

‘Context-specific Protein Network Miner (CPNM)’, which gener-

ates PINs in real time from the current version of the PubMed

database based on a specific set of keywords provided by the user.

The keywords in conjunction with the operators (AND/OR/

NOT) define the specific biological context of user interest. For

example, if the user wishes to generate a PIN that is specific to

asthma but not diabetes, the query could be formulated as ‘asthma

NOT diabetes.’ To our knowledge, there exists no other PIN

generating system currently available with similar context-search

capability. Compared to the existing systems, CPNM provides a
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combination of several unique features, making it a useful tool for

biomedical research: (1) CPNM provides PI information specific to

the biological context that may include interaction types and

direction, related gene ontology (GO)-terms, related diseases and

tissues, and other related concepts provided as input by the user;

(2) CPNM’s ontology-based expansion of query terms provides

better coverage of the search results and an enhancement of the

PubMed query capabilities; (3) online-processing of PubMed

abstracts ensures consistently up-to-date search results; and (4)

CPNM outputs PINs containing type and directionality of protein

interactions, along with summary statistics of the interaction

network, making identified PINs more useful. With CPNM, our

goal is to provide a platform for researchers to gain insights into

the mechanisms responsible for the functioning of cellular systems

based on the identified PINs.

Methods

Design and Implementation
The architecture of the CPNM system is shown in Figure 1.

CPNM consists of the following modules:

1. Search query formulation and retrieval of abstracts
from the PubMed system [49]

1.1 Query building. CPNM provides a web interface that

allows the user to build search queries. Search queries may contain

keywords or concepts belonging to one of the following categories

that are frequently used in research: diseases, proteins, GO-terms,

and tissues. In addition, the user can input keywords that do not

belong to any of these four categories by entering them as ‘free-

text’ in the interface. The user also has the option to input species

names. The query builder allows the user to separate the

individual keywords in these different categories by using AND/

OR/NOT operators. The interface is shown in Figure 2.

1.2 Query keyword expansion. CPNM expands query

keywords submitted by the user that belong to the categories of

gene/protein names, diseases, GO-terms and tissues. This is done

by retrieving all synonyms and other related terms that lie below

the query keyword node (i.e. from the node up to all leaves at the

first level down) in the ontology tree network provided by the

Open Biological and Biomedical Ontologies (OBO) foundry [50].

The ontology trees for our target categories can be found in the

following OBO foundry files: HumanDO.obo [51] for diseases,

pro.obo [52] for proteins, gene_ontology_ext.obo [53] for GO-

terms, and BrendaTissueOBO [54] for tissues. For proteins, we

also use synonyms given in the Entrez Gene database [55]. Query

keywords input to the system as ‘free-text’ are not expanded. A

sample query expansion by CPNM is shown in Figure 3. Query

expansion is a novel aspect of CPNM that enhances the search

function of the PubMed system in our case for the purpose of PIN

generation.

1.3 Querying PubMed and abstract retrieval. The

expanded user query is passed by CPNM to the Entrez PubMed

system in real-time using their webservice to retrieve a set of

abstracts that satisfy the query. CPNM searches the PubMed

database using the Text Fields word tag [tw], which allows

searching of most sections of an abstract, including the title,

abstract body, MeSH terms, subheadings, and others. The

retrieved abstracts are then processed by CPNM for PIN

generation.

2. Sentence splitter and pre-processing
The abstracts that are retrieved from PubMed are processed

locally and split into individual sentences. Further processing is

done on sentences by placing the ‘space’ character before/after

delimiters, such as, comma, colon, and semicolon. This is

performed in CPNM by PIMiner [56].

3. Tagger module
The name tagger in PIMiner [56] is used for tagging

occurrences of protein names and other terms (e.g. interaction

words) in sentences.

3.1 Protein name tagging. The PIMiner tagger uses an

exhaustive dictionary containing over eight million of proteins

names and their variants. The protein name dictionary was

compiled by extracting data from various sources including

BioThesaurus [57], UniProtKB/Swiss-Prot database [58] and

NCBI Entrez Gene database. The dictionary was cleaned by

filtering out commonly occurring English words and one letter/

digit acronyms/short-forms.

The PIMiner tagger attempts to ‘soft’ match the maximum

length substring in a sentence with the protein names in the

dictionary and is optimized for processing large volumes of text in

reasonable time. We convert all non-word characters in a sentence

to spaces e.g. ‘$’, ‘2’, ‘+’. This enables us to match, for example,

protein ‘CD2+’ in a sentence using protein name ‘CD2’. We also

use general terms in soft matching of protein name, e.g. ‘beta’,

‘alpha’. If there is no ‘TGF2 beta’ but only ‘TGF2’ in our

dictionary, we are still able to match ‘TGF2 beta’ as protein name

in the sentence. The tagger also attempts to detect some variations

in protein names by recognizing certain types of domain-specific

bag-of-words ahead of the detected protein name in the sentence.

For example, the tagger will be able to detect protein ‘X receptor’

in a sentence if protein ‘X receptor’ does not exist in the

dictionary, but protein ‘X’ does. The tagger handles case-sensitive

variations of protein names by matching single word protein

names in a sentence in a case-sensitive manner and multiple-word

protein names in case-insensitive manner. This is done to avoid

the matching of commonly occurring single non-protein words

that are most frequently written in lower case. Case-insensitivity is

retained for matching protein names composed of multiple words,

because there is a smaller chance of erroneously matching non-

protein multiple word concepts in the text.

3.2 Interaction word tagging. Our tagger uses an

interaction word list that contains over 2000 unique terms,

including variant forms that contain hyphens and those that

represent American/British English language variations. These

interaction terms describe the potential nature or type of the

interaction between two interacting proteins identified in the text.

Interaction words are tagged in sentences by case-insensitive string

matching.
3.3 User context-term tagging. All expanded user input

context-terms are tagged in the text by case-insensitive string

matching.

4. PI relationship detection/extraction module
The PI extraction module retains each tagged query sentence

that contains at least one triplet, which consists of two normalized

protein names and one interaction word. Feature vectors are then

extracted for each triplet in the sentence and submitted to a

Bayesian Network (BN) model that is trained on a dataset of

manually curated triplets (for details refer to [27,56]). The model

then estimates the probability of each triplet being a true

interaction.

5. PI direction prediction module
For predicting the directionality of interaction, the interaction

words in our list are first separated into two groups, i.e. ‘with-

Context-Specific Protein Interaction Networks
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Figure 1. Architecture of CPNM system.
doi:10.1371/journal.pone.0034480.g001
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Figure 2. CPNM web interface with query builder.
doi:10.1371/journal.pone.0034480.g002

Figure 3. Sample query formulation by CPNM.
doi:10.1371/journal.pone.0034480.g003
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direction’ and ‘without-direction.’ For example, words such as

‘methylates’ imply direction, while words such as ‘interacts’ imply

no direction. Triplets predicted to be true interactions by the PI

extraction module are assessed for any implicit direction based on

the interaction words they contain. The triplets that show implicit

direction are then processed to determine their actual direction.

We define the direction between the two proteins in a triplet as

follows: i) leftRright direction means that the interaction word

relationship ‘flows’ from the protein in the triplet that appears first

in the sentence to the protein that appears second in the sentence

while ii) leftrright direction means that the interaction word

relationship ‘flows’ from the protein in the triplet that appears

second in the sentence to the protein that appears first in the

sentence. Using the features employed in the PI extraction module

(refer to [27], [56]), feature vectors are extracted for each query

triplet (two proteins+interaction word) in the sentence and parsed

to the BN model that is trained on a dataset of manually curated

triplets/interactions with direction information. The model then

estimates the probability of either of the two directions of protein

interaction relationship being true. We provide online the list of

interaction words ‘with-direction’ and the training data used for

this step. The dataset we used for directionality prediction was

randomly selected and curated by three domain experts; we went

with the majority decision on the direction annotation. Interaction

directionality prediction is one of the novel aspects of the present

study.

6. Protein name mention normalization to official
symbols

The protein names tagged by CPNM are normalized to their

official symbols given in the Entrez Gene database. We analyze

the title, body and MeSH term sections of an abstract to see if any

scientific/common names of species from NCBI Taxonomy are

mentioned in the text. If any species is mentioned in these sections,

we associate and save the taxonomy ID of the detected species

(using names.dmp file of NCBI Taxonomy FTP site) with the

corresponding PubMed ID. We map (using gene_info file) protein

name mentions that we recognize in the PubMed abstract to their

corresponding Entrez Gene IDs using taxonomy ID that we

associated with the abstract. We do case-sensitive exact match of a

protein name mention against the following fields in the NCBI’s

gene_info file in the order: official symbol, synonym, full name,

other symbol and locus tag. If a name is found in a field, the

associated official gene symbol and Entrez Gene ID are retrieved,

and the normalization task is completed. If, however, we cannot

find protein name in any of the five fields with exact string match,

we do a case-insensitive exact match and repeat the above steps.

Finally, if we still cannot match a protein name, we perform

the following transformation steps on protein name mentions

(common variants):

N ‘XXX 1’ to ‘XXX1’

N ‘XXX receptor’ to ‘XXXR’

N ‘XXX gene’ to ‘XXX’ - remove common domain specific

general phrase endings, such as, protein, gene, chain, delta,

alpha, beta, gamma, epsilon from recognized protein names.

We then repeat the case-sensitive and case-insensitive string

matching steps as above. Ambiguous names that we are unable to

resolve using our pipeline are displayed with their gene IDs in the

output (e.g. one name mapped to two gene IDs). If the protein

name cannot be found, we retain the recognized protein name and

show its Entrez Gene ID as blank in output. The normalization

module of CPNM is a new feature that is not present in PIMiner.

7. PIN reporting module
PIs extracted from the text are presented to the user by CPNM

in both tabular and graphical format with several different

functions provided for easy navigation, viewing and exploration.

PIs are reported at two levels of granularity: i) PIs that co-occur

with the input keywords at the document level, and ii) PIs that co-

occur with the input keywords at the sentence level. The former

option is provided to increase the coverage of the results, while the

latter option is provided to increase the specificity of the results.

CPNM also has an option for the user to view interactions directly

related to a given input protein.

7.1 Individual PI reporting module. The system reports

individual PIs and these are tabulated in the CPNM output along

with a likelihood score, interaction type, and direction of

interaction, if available. The table has sortable columns. In the

table, CPNM also reports the evidence sentence and highlights the

extracted PI triplet terms therein. The user-input context-terms

are also shown highlighted in the reported sentence and

additionally in the corresponding abstract. The output allows the

user to look at the association evidence between PIs and the

corresponding context-terms in the abstract. We also provide

select/check boxes in the output table to allow manual selection of

PIs for diagram if necessary.

In order to provide further information for the user, CPNM

links protein names with associated Entrez Gene IDs reported in

the output table and network graph to their corresponding pages

in the Entrez Gene database. The Entrez database provides gene-

centric information that may provide the user with more specific

details about the target protein.

7.2 PIN diagram module. CPNM reports PINs (generated

from extracted PIs) in an interactive graphical form. For drawing

protein network diagrams, CPNM uses a Cytoscape Web plugin

[59]. By following an edge direction the user can view all proteins

that are connected in the network and how they are connected.

Additionally, the user can view the topology of the network and

proteins forming hubs or spokes in the network. The user is also

provided with the option to save or export the network diagram as

an image or PDF file.

7.3 PIN summary module. The protein network summary

module of CPNM calculates summary statistics from the reported

protein interaction network. It summarizes the PIN diagram in

three different tables as follows: i) a ranked list of proteins based on

the number of other proteins to which they are directly connected

in the network (neighbors), indicating the hub-property of the

protein; ii) a ranked list of the most directly connected protein

pairs, which could be the pairs that are most well studied in

literature, for example; and iii) a ranked list of proteins with the

number of outbound and inbound directed edges and the number

of undirected edges for each node in the network, as edge direction

may give some indication about a protein’s regulatory function.

7.4 Filter function module. CPNM provides fine control to

users by allowing them to generate PINs while applying filter

functions on the date to control how recent the retrieved abstracts

are, the number of relevant abstracts returned by the PubMed

system, and type of interactions (e.g. methylation, phosphorylation)

of interest. In addition, the user can limit the number of interactions

in the PIN graph by selecting a stricter probability threshold (e.g.

selecting top predictions with probability values higher than 0.95).

Availability and requirements
Project name: CPNM web tool

Project home page: http://www.biotextminer.com/CPNM/

Operating system(s): Platform independent

Context-Specific Protein Interaction Networks
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Programming languages used to develop CPNM: Perl, Java,

JavaScript, Cytoscape web library, NCBI E-utilities

Other requirements: Apache Webserver

Browser requirements: IE 8, Firefox 4, Safari 5, Chrome 10,

Opera 11, or higher versions of these

License: Webserver is free for use for non-profit purposes

Any restrictions to use by non-academics: Contact correspond-

ing author

Online Help pages: Provided at http://biotextminer.com/

CPNM/files/CPNM-Help.pdf

Results and Discussion

Here we describe the development of an application to mine

and explore PINs related to a particular biological context. The

context is defined by the user query, which is a combination of

keywords and the operators that separate them. For each user

query, CPNM generates a PIN based on the literature. The idea of

combining a user-specific context search involving multiple

biological concepts with PIN generation makes biological sense

since any cellular biological-context may represent a different PIN.

To our knowledge, no application with the set of features as

provided by CPNM is currently available for researchers that can

generate PINs from the literature. Most available PIN-generating

systems allow a single named entity (most often a gene or protein

name) to be input by the user, which is restrictive.

CPNM possesses several features that together make the system

unique compared to similar web services. These include:

i) Context-specificity of PINs: Each PIN generated by CPNM

corresponds to a biological-context of interest that is

defined by a specific set of keywords provided by the user.

For example, one may be interested in extracting PINs

from PubMed abstracts associated with the following set of

keywords: {asthma (disease), 4790 (GeneID for NF-

kappaB), human (species), epithelium (tissue), allergen

(condition/event as free-text), and signalling (GO-term)}.

The retrieved documents based on this set of keywords will

be context-specific. Consequently, protein interactions and

their network that CPNM attempts to extract from the

retrieved documents are also likely to be related to the user-

context. The output of CPNM includes the evidence

sentence along with the associated abstract with tagged

keywords for user validation.

ii) Flexible ontology-based query system: CPNM expands

query terms using ontology that ensures higher coverage of

retrieved abstracts thereby enhancing the PubMed search

function.

iii) Real-time processing of up-to-date information: CPNM

queries and processes PubMed data ‘on-the-fly’ so that

results are always based on the most up-to-date version of

PubMed.

iv) Directionality of interaction: CPNM predicts directionality

of protein interactions based on interaction words, which

may give some more insight into the cellular mechanisms.

v) PIN reporting system and information filtering system: As

detailed above, we have provided various functions in

CPNM for easy exploration of PINs by the user. The user

has the option to filter PIs that co-occur with the input

terms at the document level for more coverage or those that

co-occur only at the sentence level to be more specific.

Additionally, if the user inputs a protein name, CPNM

optionally allows the user to view only direct interactions

involving the input protein.

The CPNM application pipeline uses various software modules

related to different sub-tasks of PIN extraction and presentation.

For example, CPNM uses the functionality of our previously

designed system, PIMiner [56] internally for protein name tagging

and protein interaction relationship prediction. Though CPNM

may share some common features with PIMiner, there are marked

differences in their purposes, functionality and objectives. PIMiner

uses raw text as input and predicts PI-triplets and may be suitable

for biocuration type of work, while CPNM uses context-indicating

keywords as input and predicts protein interaction networks and

may be suitable to researchers in biology and biomedical field who

wish to quickly study/explore protein networks specific to a

biological condition. Overall, CPNM can be thought of as a real-

time plugin/extended-app to the PubMed system; though we also

modify/enhance the basic search functionality provided by

PubMed system. CPNM uses various previously published

modules in its architecture in addition to some new modules that

might be novel in their own sense (e.g. for directionality prediction,

protein name normalization and protein network generation with

provision of various filter/summary functions), its overall end-to-

end functionality is also novel.

Tables 1, 2 and 3 summarize the performance of some of the

CPNM modules. The performance of different modules appears

satisfactory. It is worthwhile to note that the performance figures

Table 1. Accuracy of CPNM on gene/protein name tagging
task using holdout test datasets from AIMed and BioCreative.

Recall
(%)

Precision
(%)

F-measure
(%)

On AIMed data (recognition) 79 68.8 73.6

On BioCreative II GN task dataset
(normalization)

81 54.5 65.2

doi:10.1371/journal.pone.0034480.t001

Table 2. Accuracy of CPNM on PI triplet prediction task based
on 10-fold cross validation on a gold-standard dataset.

With training data class distribution as: 668 true triplet samples and
1882 false triplet samples

Class
Precision
(%)

Recall
(%)

F-Measure
(%)

ROC Area
(%)

for true triplet class 72.7 75.4 74.1 91

doi:10.1371/journal.pone.0034480.t002

Table 3. Accuracy of CPNM on PI directionality prediction
task based on 10-fold cross validation on a gold-standard
dataset.

With training data class distribution as: 116 samples with leftRright
direction and 29 samples with leftrright direction

Class
Precision
(%)

Recall
(%)

F-Measure
(%)

ROC Area
(%)

leftRright 95.7 96.6 96.1 93.3

leftrright 86.2 83.3 84.7 93.3

doi:10.1371/journal.pone.0034480.t003
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for the three individual modules shown in the table are based on

different datasets. The performance of protein name recognition

module was evaluated based on an AIMed dataset [60] while the

performance of the PI-triplet recognition module was based on a

manually curated dataset used in a previous study [56]. To test the

performance of the module for predicting the directionality of PIs,

we used data-samples from our earlier study [56] that contained

true PI-triplets with direction and added to the set a few more

manually curated samples chosen randomly from the literature.

For protein name recognition and normalization task, we

evaluated our system on AIMED and BioCreative II GN task

datasets, the results of this evaluation are presented in Table 1. In

our experience, AIMed appears to be more accurately annotated

dataset for protein names compared to the BioCreative II dataset.

We show in Table S1, a small sample of protein name mentions

that CPNM detected which were not annotated as proteins in the

BioCreative II dataset key. Such cases lead to lower precision for

our system. It is worthwhile to note that CPNM attempts to

normalize each protein name mention recognized by it in the

input text. Therefore it may not be appropriate to evaluate its

performance on BioCreative II GN task since this task is about

reporting only the normalized forms of protein names present in

an abstract with no consideration given to recognition of actual

name mentions. For example, if a protein is mentioned several

times in an abstract possibly in variant forms, BioCreative II GN

task in its evaluation only focusses on detection of any one of these

variants in normalized form, not all. In Tables S2, S3, S4 and

Figure S1 respectively, we show that CPNM functionality/

performance compares favourably with some of the state of

the art programs (NLProt [26], GNAT [25], LAITOR [38]) in

protein name recognition/normalization and protein interaction

detection.

Figure 4. CPNM output showing protein interactions extracted from literature for Case Study I.
doi:10.1371/journal.pone.0034480.g004

Figure 5. PIN generated by CPNM for Case Study I.
doi:10.1371/journal.pone.0034480.g005
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Regarding efficiency of the entire CPNM pipeline, we found in

our internal tests that CPNM takes about 104 sec to process 500

abstracts and generate a PIN for a specific query; similarly CPNM

takes about 43 sec to process 50 abstracts. This time includes time

required to retrieve abstracts in real-time from PubMed and the

time required to process the data. Therefore, time taken for

processing may vary depending on the user-query and number of

abstracts selected for analysis. In general, the larger the number of

abstracts requested from PubMed the longer the time CPNM

requires to download PubMed abstracts and process the text;

where time for retrieving abstracts is generally much more than

the actual processing.

CPNM usage examples: In this section we describe two sample

case studies illustrating the use of CPNM:

a. Case Study I: To extract a PIN from literature associated

with IL13 gene in human asthma, we pass the following query

to CPNM: (IL13{human} [gene]) AND (human [Species])

AND (asthma [Disease]). We restrict the number of abstracts

to 500. The extracted PIs are shown in Figure 4 (with

probability threshold of 0.99 being used). The PIN generated

by CPNM for this query is shown in Figure 5 and the related

statistics are presented in Tables 4, 5 and 6. Using the

generated PIN, we collected and analyzed all hub node

proteins in the network. We define hub nodes as those that

had two or more neighbors in the network. Since hub-node

proteins potentially could carry important information about

the target context, we investigated further their membership

in terms of their pathway interaction/membership.

The proteins that satisfied the hub-protein criteria of having

more than two neighbors in the PIN included: IL13, IL4,

FLG, GRP, IL10, STAT6, and TSLP. We then selected these

hub node proteins and queried them against the pathway

database, hiPathDB [61]. This database integrates several

well-known pathway databases, such as, KEGG [62],

NCI-nature [63], BioCarta (http://www.biocarta.com) and

Reactome [64]. The pathway involvement of these hub node

proteins that we obtained from hiPathDB database is

presented in Table 7.

From the retrieved pathway information involving our hub-

proteins, we found through manual verification of individual

pathway sources in hiPathDB that there were some pathways

in our list that were previously associated with our context

disease term, asthma. These include Jak-STAT signaling

pathway, Cytokine-cytokine receptor signaling pathway,

Calcineurin-regulated NFAT pathway, GATA3 related th2

cytokine pathway (refer Table 7). Thus, using CPNM we were

able to connect the context with the pathway information via

information derived from the generated PIN. We also found

several other pathways, however, their association with

asthma could not be verified. Such novel candidate

associations between query context and pathways may be

interesting candidate hypotheses worth exploring further

using other methods.

Table 4. Node neighbour (hub-protein) statistics in the network diagram (Figure 5).

Protein Neighbours Percent coverage (#neighbours/#total network nodes)

IL13 6 20.00%

IL4 3 10.00%

FLG 2 6.67%

GRP 2 6.67%

IL10 2 6.67%

STAT6 2 6.67%

TSLP 2 6.67%

This table shows that IL13, IL4, FLG, GRP, IL10, STAT6, and TSLP may be important hub-proteins in the network for the target biological context (IL13, asthma, human).
Only nodes with two or more neighbours are shown.
doi:10.1371/journal.pone.0034480.t004

Table 5. Evidence (edge) strength between network protein
pairs shown in Figure 5 (more links/edges between two nodes
typically would mean more support in the literature).

Protein Name 1 Protein Name 2 # links

IL17A IL13 2

IL4 MAPK21 1

IL4 STAT6 1

IL4 FLG 1

AHR GRP 1

FOXRED1 IL13 1

GRPR GRP 1

IL13 TSLP 1

IL13 STAT6 1

Only links associated with hub-node proteins (refer Table 4) are shown.
doi:10.1371/journal.pone.0034480.t005

Table 6. Outbound, inbound, and undirected edge
connectivity for a node.

Protein Outward Inward Undirected

IL13 4 1 2

IL4 1 1 1

FLG 2 0 0

GRP 2 0 0

IL10 1 1 0

TSLP 1 1 0

STAT6 0 0 2

This table shows the distribution of direction information for a given protein in
the network diagram shown in Figure 5. Only links associated with hub-node
proteins (refer Table 4) are shown.
doi:10.1371/journal.pone.0034480.t006
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In our analysis all our hub-proteins, except FLG (Filaggrin),

show up as a part of some pathway (refer Table 7). FLG is a

protein that shows up in our target PIN as associated with

input gene IL13. We searched PubMed to see if FLG has been

implicated in asthma and we found that FLG gene has been

associated with the risk of asthma [65–68] although we also

found some evidence that pointed otherwise [69]. Another

hub-protein, GRP, in our network appears to be undergoing

investigation [70] as an anti-inflammatory therapeutic agent

for asthma (currently investigated in mice). Since CPNM

operates real time, it is able to capture such current

information from PubMed.

Overall, CPNM can be explored by users as a complimentary

tool for validating known hypothesis or to generate novel ones

related to a biological context (e.g. gene, disease) to have

further insights into associated molecular mechanisms.

b. Case Study II: In this case study we use CPNM to a

generate context specific PIN associated with differentially

expressed genes (up/down regulated genes) in a gene

expression experiment.

Gene expression experiments generate a lot of valuable data

in a high throughput manner. One typical challenging

problem interesting to researchers is how to elucidate and

explore PINs and their topologies associated with gene

Table 7. Pathway involvement of the hub-node proteins in the context specific network generated by CPNM in Case Study I using
pathway information given in hiPathDB database [61].

Pathway ID Pathway Name
Total
Interactions Source

Participating
proteins from
CPNM

Asthma association
based on references
provided in pathway
annotation in the sources.

pid_p_200014_il4_2pathway IL4-mediated signaling events 62 Nci-Nature IL4,IL10,STAT6 No documented association.

path:hsa04630 Jak-STAT signaling pathway 9 KEGG STAT6 Part of KEGG asthma pathway.

pid_p_200036_nfat_tfpathway Calcineurin-regulated NFAT-
dependent transcription in
lymphocytes

8 Nci-Nature IL4 PMID: 12452838

pid_p_100157_gata3pathway gata3 participate in activating
the th2 cytokine genes
expression

7 BioCarta IL4,IL13 Association with asthma
documented in pathway
annotation.

path:hsa04060 Cytokine-cytokine receptor
interaction

5 KEGG IL4,IL13,IL10,TSLP Part of KEGG asthma
pathway.

pid_p_200070_reg gr_pathway Glucocorticoid receptor regulatory
network

5 Nci-Nature IL4,IL13 No documented association.

path:hsa05140 Leishmaniasis 4 KEGG IL4,IL10 No documented association.

pid_p_200031_l12_2pathway IL12-mediated signaling events 3 Nci-Nature STAT6,IL4 No documented association.

path:hsa05142 Chagas disease 2 KEGG IL10 No documented association.

pid_p_100134_il10pathway il-10 anti-inflammatory signaling
pathway

2 BioCarta IL10 No documented association.

pid_p_200027_cd40_pathway CD40/CD40L signaling 2 Nci-Nature IL4 No documented association.

pid_p_200182_il_2_stat4pathway IL12 signaling mediated by STAT4 2 Nci-Nature IL4,STAT6 No documented association.

pid_p_200002_smad2_3nuclearpathway Regulation of nuclear SMAD2/3
signaling

1 Nci-Nature IL10 No documented association.

pid_p_200148_il2_stat5pathway IL2 signaling events mediated by
STAT5

1 Nci-Nature IL4 No documented association.

pid_p_200149_tcrcalciumpathway Calcium signaling in the CD4+ TCR
pathway

1 Nci-Nature IL4 No documented association.

Downstream_signal_transduction Downstream signal transduction 1 Reactome STAT6 No documented association.

Peptide_ligand_binding_receptors Peptide ligand-binding receptors 1 Reactome GRP No documented association.

Highlighted in bold are the pathways that are known to be associated with asthma as per annotation provided in the source databases in hiPathDB.
doi:10.1371/journal.pone.0034480.t007

Table 8. List of differentially expressed genes with fold change .3 selected for Case Study II.

Gene IDs Regulation

A2M,LAMP1,MYBL2,HLA-DQA1,MMP12,LIPA,HG1723-HT1729,GSTM4,CDA,HG4069-HT4339,SPP1 Up regulated
with fold
change .3

RPE65,SLC14A1,CXCL6,LAMB1,DNAH14,CNTF,D14822,M64936,IFI27,PFDN4,COL4A5,PDE3A,HG3934-HT4204,HTN1,BAMBI,MAP2,HG2260-HT2349 Down regulated
with fold
change .3

doi:10.1371/journal.pone.0034480.t008
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expression data. In this example we show how CPNM could

be used for the purpose.

We select a gene expression experiment data (GSE3212) from

our in-house collection of GEO datasets for common

respiratory diseases; the database can be accessed at http://

www.respiratorygenomics.com/GeneExpression/. This series

(GSE3212) compares gene expression in alveolar macrophag-

es of smokers and non-smokers in patients with chronic

Figure 6. PIN generated by CPNM for Case Study II.
doi:10.1371/journal.pone.0034480.g006

Figure 7. Hub nodes in PIN generated by CPNM for Case Study II.
doi:10.1371/journal.pone.0034480.g007
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obstructive pulmonary disease (COPD) [71]. In this case study

we selected genes in this dataset that were either up (11 genes)

or down (17) regulated with a fold change of three or more.

Table 8 lists genes qualifying this criterion.

We then formulated a query by using context specific

information from this series such as COPD (disease name),

smokers and non-smokers along with 28 differentially

expressed genes. The formulated query was: {(gene names

separated by OR) AND (COPD[Disease]) AND (smokers OR

non-smokers OR nonsmokers[FreeText]). We passed the

query to CPNM that extracted a PIN (using a threshold of

0.85). Snapshot of the query and the results returned are

shown in Figures 6 and 7.

In the generated PIN, we found two hub node proteins that

might be worth investigating further in the context of the

experiment. These were ITGAM and SERPINE2, which

were not part of the gene set input to CPNM. This example

shows how using CPNM we were able to elucidate PIN/hub-

proteins associated with a target gene expression experiment.

The PINs generated this way are literature based and thus

may include genes that are not part of the input differentially

expressed gene set. Thus CPNM may provide a broader/

bigger picture that might be associated with the target gene

expression experiment. Such information can prove valuable

to researchers performing gene expression experiments for

investigating underlying biological mechanisms associated

with diseases/drugs for example.

In summary, we developed a versatile PubMed plugin

application for real-time extraction of context-specific PINs from

PubMed abstracts. We hope that CPNM will serve as a useful

complimentary resource to existing PI resources. In future, to

improve CPNM’s functionality further, we plan to explore the

following: i) integrate other third party tools (e.g. gene taggers and

pathway databases) with CPNM pipeline; ii) develop automatic

method for easy summarization and interpretation of the PI type

and directionality information at the network level; and iii) work

with a local daily-updated copy of PubMed database with good

search functions and unlimited number of PubMed abstracts

retrieval.
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