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Abstract: Silver nanowires (AgNWs), having excellent electrical conductivity, transparency, and
flexibility in polymer composites, are reliable options for developing various sensors. As transparent
conductive electrodes (TCEs), AgNWs are applied in optoelectronics, organic electronics, energy
devices, and flexible electronics. In recent times, research groups across the globe have been concen-
trating on developing flexible and stretchable strain sensors with a specific focus on material combi-
nations, fabrication methods, and performance characteristics. Such sensors are gaining attention in
human motion monitoring, wearable electronics, advanced healthcare, human-machine interfaces,
soft robotics, etc. AgNWs, as a conducting network, enhance the sensing characteristics of stretchable
strain-sensing polymer composites. This review article presents the recent developments in resistive
stretchable strain sensors with AgNWs as a single or additional filler material in substrates such
as polydimethylsiloxane (PDMS), thermoplastic polyurethane (TPU), polyurethane (PU), and other
substrates. The focus is on the material combinations, fabrication methods, working principles, spe-
cific applications, and performance metrics such as sensitivity, stretchability, durability, transparency,
hysteresis, linearity, and additional features, including self-healing multifunctional capabilities.

Keywords: AgNW; silver nanowires; stretchable strain sensors; wearable sensors; metal nanowires;
human motion monitoring

1. Introduction

Flexible and stretchable strain-sensing composites are gaining popularity in human
motion monitoring, healthcare, intelligent textiles, robotics, and structural health monitor-
ing [1]. Since conventional strain gauges made of metal foils and semiconductor materials
have limitations in terms of sensitivity and stretchability, alternative flexible and stretch-
able materials are continuously explored. To this end, various polymer composites have
been developed to make flexible and stretchable strain sensors [2], which are classified
into piezoresistive, capacitive [3], piezoelectric [4], triboelectric [5], optical [6], and fiber
Bragg grating [7] strain sensors based on the principle of operation. Piezoresistive sens-
ing has the advantages of simple fabrication methods, low power consumption, and a
wide sensing range. Stretchable piezoresistive (or resistive) strain sensors are often real-
ized using electrically conductive polymer composites with sensing elements deposited
on flexible and stretchable support materials [8]. Sensing elements or functional materi-
als, or fillers are electrically conductive. They are classified into carbonaceous materials
(e.g., graphene variants and carbon nanotube (CNT) variants (single-walled and multi-
walled), carbon nanofibers (CNFs), carbon black (CB, etc.), metal nanostructures (e.g., silver
nanowires (AgNWs), silver nanoparticles (AgNPs), gold nanowires (AuNWs), copper
nanowires (CuNWs, etc.), intrinsically conducting polymers (e.g., polyaniline, polypyrrole,
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), etc.), ionic liquids,
liquid metals, and MXenes (e.g., Ti3C2Tx) [9]. Metal nanowires such as AgNWs have high
electrical conductivity, flexibility, solution processability, and transparency, facilitating the
superior sensing performance of sensors [10].
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As for flexible and stretchable strain sensors, many review articles can be found in
the literature. For example, Amir Servati et al. presented a review on novel flexible and
wearable electronic materials and sensors suitable for monitoring vital human signs [11].
Yan Liu et al. [12] and Fei Han et al. [13] reviewed the advances in flexible strain sensors,
focusing on materials, mechanisms, applications, and manufacturing strategies. Few other
reviews elucidate the progress in this type of sensor from the angle of filling elements,
i.e., carbon-based nanomaterials [14], metal nanowires [15], and conducting polymers [16].
Further, there are review articles giving insights into AgNW-based composites, with a
focus on fabrication methods and typical applications [17,18], properties [19], and specific
applications, such as optoelectronics [20], energy devices [21], organic electronics [22], and
flexible electronics [23]. Recently, Amit Kumar et al. [24] reported a detailed review of
synthesis methods and strategies for AgNW-based transparent conductive electrodes and
various treatment methods to improve their optoelectronic properties. A review by Neha
Sharma et al. [25] focused on recent developments in AgNW-based composites used in
various sensors, displays, and energy devices. However, to the best of our knowledge, no
review article reported to date exclusively focuses on stretchable strain sensors based on
AgNW fillers.

This review article discusses the recent developments in AgNW-based stretchable
strain sensors grouped according to their substrates. A brief introduction and applica-
tions of resistive stretchable strain sensors and AgNW–polymer composites are given
in Sections 2 and 3, respectively. Then, a substrate-wise analysis is presented in the fol-
lowing sections. Polydimethylsiloxane (PDMS), thermoplastic polyurethane (TPU), and
polyurethane (PU) are widely used substrates to form polymer composites with AgNWs. In
Section 4, an update on AgNWs as a single filler (Section 4.1) or additional filler (Section 4.2)
in PDMS-based stretchable strain sensors is given. Sections 5 and 6 cover the developments
in AgNW/TPU- and AgNW/PU-based stretchable strain sensors, respectively. Section 7
details stretchable strain sensors made of AgNWs and other substrates, such as cellu-
lose film, Ecoflex, Dragon Skin (DS), and natural rubber. In each section, the conducting
element/polymer combination, fabrication methods, sensitivity, working strain range
(stretchability), durability, applications, and additional features are tabulated.

2. Stretchable Resistive Strain Sensors

Stretchable resistance-based strain sensors work on the principle of change in resis-
tance to physical deformation. Resistance changes are based on disconnections, crack
propagations, and tunneling effects [26]. They, in general, consist of one or more layers
of stretchable polymer matrix or a fibrous material consisting of one or more electrically
conducting nanomaterials. These types of sensors display superior performance com-
pared to conventional strain gauges. The list of substrates includes PDMS [27], PU [28],
TPU [29], Ecoflex [30], poly(styrene-butadiene-styrene) (PSBS) [31], Dragon Skin [32], cot-
ton/spandex [33], etc. The conducting elements can be carbon-based nanomaterials, metal
nanoparticles, metal nanowires, conducting polymers, MXenes, liquid metals, ionic liq-
uids, etc. Fabrication methods such as drop casting, spin coating, dip coating, vacuum
filtration, inkjet printing, and spray coating are widely used to prepare stretchable resistive
conducting composites [34].

2.1. Operation Mechanisms

The three primary mechanisms by which the increase in resistance upon the application
of strain is achieved are crack propagation, disconnection/reconnection, and tunneling
effects [13]. In the case of strain sensors with a nanomaterial thin film coated on a flexible
substrate, the principal mechanism of the increase in resistance is based on the propagation
of cracks [35]. When the conducting materials form a thin layer on a flexible substrate,
cracks are generated in stress-concentrated areas. As shown in Figure 1a, the opening and
enlargement of the cracks limit the electrical conduction paths in the film and increase the
resistance of the strain sensor under strain. Cracks gradually propagate perpendicular to
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the stretching direction, breaking the nanowire–nanowire junction in the composite. Most
of the generated cracks close when the applied strain is removed, and the initial morphology
is almost recovered [36]. In a few sensors, controlled crack propagation has been used to
realize the enhanced sensitivity of stretchable strain sensors [37,38]. The microcrack-based
sensors’ sensitivity is generally high, as the resistance variation is high during stretching
compared to other sensors without microcracks [39]. Crack-based sensors with high
sensitivity can be applied to feeble strains, such as muscle motions and vital activity [12].
Pre-straining is a method for installing cracks [40]. The crack density decreases with
increasing pre-strain. A sensor with more cracks generates a larger resistance variation [41].
The dimensions, depth, and position of cracks influence the sensing performance and the
working range of crack-based sensors. In most cases, the crack propagation mechanism
is accompanied by the tunneling mechanism because few carriers can still hop through
adjacent points [35].
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Figure 1. (a) Atomic force microscope image of crack formation on Au thin-film-coated PU cord.
Reprinted with permission from Ref. [40]. Copyright 2017, Royal Society of Chemistry. (b) The
transition of free carriers among conducting materials through the non-conducting barrier. (c) A
schematic to illustrate disconnection and reconnection of nanowires in conductive fibers on stretch
and release, respectively. Reprinted with permission from Ref. [27]. Copyright 2021, Elsevier.

Another mechanism involved in the resistance variation is the disconnection, as shown
in Figure 1c, among nanomaterials forming conducting paths. Electrons pass through
conduction paths formed by the overlapping of nanomaterials within the percolation
network. With large strains, overlapping nanomaterials tend to disconnect, as they have
a lower elongation at break and a higher Young’s modulus than the elastomer [26]. The
slippage phenomenon is prevalent in nanowires and flake-based conducting networks. In
the case of AgNW networks, adjacent nanowires also slip and separate from each other,
resulting in partial disconnection, leading to increased resistance [27]. Tunneling is the
crossing of electrons through non-conductive barriers, as shown in Figure 1b. Within a
certain cut-off distance between nanomaterials, electrons can hop between them through
non-conductive thin layers forming quantum tunneling junctions and direct electrical
conduction paths [1]. According to Simmon’s theory, the tunneling resistance between
nanomaterials depends on the distance between nanomaterials, the cross-sectional area of
the tunnel, and the height of the energy barrier. When strain is applied, the cut-off distance
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and hence the tunneling resistance change [35]. Repeated static and cyclic loadings or
overstretching can cause permanent disconnection and the irreversible loss of conduction
paths, which inhibit the reliability and accuracy of the strain sensor [26].

2.2. Characteristics and Applications

The performance of a resistive-type strain sensor is evaluated by the sensitivity (gauge
factor (GF)), strain range (stretchability), durability, low detection limit (resolution), re-
sponse time, linearity, and hysteresis [42]. Sensitivity or GF is the ratio of the change in
resistance to the change in the length of the sensing element. The low detection limit is the
minimum strain that the sensor can detect, and stretchability is the highest strain that it
can measure. It is often challenging to obtain high sensitivity and a wide strain range in
the same sensing element. Durability is the number of stretch/release cycles in which the
sensor’s electromechanical response is the same as the initial response. High sensitivity,
high stretchability, low resolution, fast response time, high linearity, and low hysteresis
are the desired features of any stretchable strain sensors. In recent times, self-healing
ability [43], biocompatibility [44], and multifunctional sensing [45] have become a few
additional features realized with these sensors.

Due to their flexibility and stretchability, resistive-type electrically conductive polymer
composites show great potential in motion monitoring, artificial muscles, human–machine
interfaces (HMIs), soft robotics, etc. [46]. These resistive-type sensors can sense vital
signals, such as pulse and respiration rate [47]. Minor strains detected by these sensors
include facial expressions, coughing information, saliva swallowing motion, and vocal
cord vibrations [48]. Body part movements such as finger bending are suitable in sign
language recognition [49], and joint movements such as the knee, ankle, elbow, wrist, etc.,
are used in elderly care, gait analysis, rehabilitation processes, and sports performance
analysis [50]. Besides biomedical applications, stretchable strain sensors are widely used
in stress monitoring and crack detection in structures like buildings, bridges, airplanes,
parachute canopies, windmill blades, engines, etc.

3. AgNWs in Polymer Composites

Metal nanowire networks can be prepared using fast, facile, and solution-processed
approaches. They possess high intrinsic electrical and thermal conductivity and are flex-
ible, mechanically robust, and low-cost. Ag is one of the most electrically conductive
bulk materials at room temperature (15.87 × 10−9 Ω·m at 20 ◦C) [51]. Silver has many
nanomaterial forms, which include Ag powder [52], Ag nanoparticles [53], Ag ink [54], Ag
nanosheets [55], and Ag nanowires [56]. Silver nanowires are prepared using UV irradi-
ation, hydrothermal, photoreduction, template-based, wet chemical, and solution-based
synthesis methods [57]. Compared to other categories of fillers, AgNWs are more flexible,
transparent, electrically conducting, solution-processable, and compatible with a variety
of substrates. Silver nanoparticles and silver nanowires are other potential elements for
enhancing the sensitivity of strain sensors [58]. The length and diameter of the AgNW de-
cide the aspect ratio, which impacts the stability of the strain sensor. It is desirable that the
aspect ratio of the AgNW is higher, and it can vary from a few hundred to a few thousand.
A typical scanning electron microscopic (SEM) view of AgNWs is shown in Figure 2.
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Figure 2. Microlevel images of long AgNWs prepared by the one-step polyol method (a) at 50 µm
scale and (b) at 500 nm scale. Reprinted with permission from Ref. [59]. Copyright 2019, Royal
Society of Chemistry.

Due to their transparency, low sheet resistance, low cost, solution processability,
and compatibility with different substrates, AgNWs are emerging as an alternative to
indium-doped tin oxide (ITO) in new-generation photovoltaics [51]. Silver nanowire
networks show enhanced performance in organic electronics that cover light-emitting
diodes, photovoltaic cells, transistors, and memory devices [22]. As transparent conducting
electrodes (TCEs), they are part of several applications, such as optoelectronic devices [20],
electrochemical devices [60], and energy devices [21]. They are applied in surface-enhanced
Raman scattering (SERS) [61] and EMI shielding [62] as well. As conducting elements in
stretchable strain sensors, they are used only as conducting elements or as additional filler
in the matrix to enhance the sensitivity and the sensing range. The AgNW networks of the
composite form electrically conducting paths in the relaxed state. Upon stretching, the gap
between the nanowires gradually increases, reducing the connections and increasing the
resistance in the path. The bendability and stretchability of AgNW composites (Figure 3a,b)
enable applications such as human motion monitoring (Figure 3c).
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4. AgNW/PDMS-Based Stretchable Strain Sensors

PDMS is the mainstream substrate often used to prepare stretchable strain sensors. In
preparing the PDMS elastomer, the base monomer is added with the curing agent in the
10:1 ratio. Silver nanowires have been paired with PDMS to implement stretchable strain
sensors with varied strain ranges and sensitivity. This section describes the recent develop-
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ments in preparing stretchable strain sensors using AgNWs as a single filler (Section 4.1)
and additional filler (Section 4.2) in the PDMS composite.

4.1. AgNWs as a Single Filler in Strain-Sensing PDMS Composites

In a few research works, AgNWs were used as the only filler in the PDMS substrate,
but the novelty was introduced via fabrication steps. In the early stages, Morteza Amjadi
et al. reported a sandwich model nanocomposite with AgNW thin film in between two
layers of PDMS using the drop-casting method [63]. The composite displayed a stable
response, good linearity, low hysteresis, and response to bending. The resistance change is
based on the disconnection mechanism between AgNWs and topological changes in the
network. In another instance, micropatterned electrodes were fabricated by Hyungdong
Lee et al. using dispensing nozzle printing of an AgNW/PDMS composite. The number
of fillers was related to the liquid ejection time, and the electrical resistance varied with
printing speed [64]. With stretchability of up to 60%, the electrodes obtained by this printing
method were suitable for electronic skin. In another work, tunable strain sensors based on
2D AgNW networks were implemented by Xinning Ho et al. The sensitivity depends on
the surface coverage, which is determined by the volume of the AgNW solution and the
waviness of the AgNWs [65]. Waviness is established in the nanowire network when the
PDMS substrate is transfer-printed with vacuum-filtered AgNWs.

AgNW patterns can be directly formed on various substrates on a wafer-scale using
a parylene stencil process. In the work of Namsun Chou et al., parylene was coated on
surface-treated PDMS first and patterned using lithography and reactive ion etching. Then,
AgNWs were spray-coated, and the parylene was peeled off. Using the as-prepared AgNW
electrodes, resistive strain sensors to measure deformation and capacitive tactile sensors
to gauge pressure can be realized. The fabricated sensors can sense various minute and
large strain signals [66]. Crack-based strain sensors are highly sensitive but, at the same
time, limited by stretchability. In Chan-Jae Lee et al., AgNWs dispersed in isopropanol
were spin-coated on a PDMS film, and then the sensor was stretched and released at a
particular strain to form cracks in the structure, as shown in Figure 4 [67]. Polyurethane
urea (PUU) encapsulates the AgNW/PDMS composite for mechanical stability. PUU
enhances AgNW and PDMS adhesion to attain high sensitivity and stretchability. The PUU
layer is transparent and stretchable, and it helps the percolated Ag network with ample
conducting paths in response to stretching.
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The conventional 2D mask method for making AgNW patterns has limitations in
preparing complex patterns. A 3D mask, in combination with a filtration system, as
shown in Figure 5, allows efficient manufacturing of complex AgNW patterns with precise
edges [68]. The applied vacuum aids in the adherence of the 3D mask’s bottom surface
to the membrane layer. The AgNW solution is deposited solely on the desired area of the
membrane filter after flowing through channels inside the 3D mask. AgNW patterns of
various grid shapes with defined borders were manufactured with high efficiency. A strain
range of over 80% and tunable gauge factors ranging from 0.07 to 520 were achieved by
adjusting the AgNW deposition density and the PDMS peel-off direction. The electrical
resistance decreased as the AgNW deposition density increased.
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An ordered AgNW array on PDMS substrate achieves higher sensitivity and trans-
parency. Strain sensors fabricated using an ordered AgNW array/PDMS composite and a
simple water-bath pulling method displayed a GF of 84.6 and a transparency of 86.3% [69].
AgNW ohmic contacts are formed when the PDMS surface is pulled out of the solution in
two orthogonal directions, as shown in Figure 6.
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The alignment of AgNWs also impacts the strain sensor performance, and it can be
controlled. As reported in the works of Jae Hyuk Choi et al., longitudinally aligned strain
sensors demonstrate a narrow strain range (ε < 25%) and high GF (89.99). In comparison,
laterally aligned strain sensors exhibit relatively low sensitivity (GF < 22.10) and a high
strain range (ε < 60%) [70].

AgNWs were prepared using the modified polyol method in most of the research
works reported. An improved polyol method to prepare AgNWs in 30 min is described
in the work of Wei Li et al. [58]. The reaction temperature, the molecular weight of
polyvinyl pyrrolidone (PVP), the ratio of silver nitrate (AgNO3), and PVP affect the sensing
characteristics. The flexible, stretchable AgNW@PDMS sensor prepared by this semi-dry
method had good stability and sensitivity and low hysteresis and was tested for joint
movements. Wei-Wei Kong et al. reported a fibrous strain sensor made of a rolled-up
PDMS sheet spray-coated with AgNWs [27]. The fiber’s cross-section contained spirals (or
rings) similar to the growth rings of a tree. The AgNW/IPA dispersion is spray-coated onto
an O2 plasma-treated PDMS film. Copper foils are connected as electrodes to the film by
silver coating paint. Finally, the AgNW/PDMS composite film is rolled up manually, and a
liquid PDMS mixture seals the edge. Increasing the spray volume reduces the electrical
resistance as the overlapping AgNWs increase. Upon stretching, the adjacent AgNWs slip
and separate from each other, resulting in partial disconnection of the conducting network
and increased resistance. Table 1 shows the overview of strain sensors made using AgNWs
as the only filler in the PDMS composite.
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Table 1. An overview of stretchable strain sensors fabricated using AgNWs as the only filler in the PDMS composite.

Author and Year
Materials

(Conducting
Elements/Polymer)

Max.
Sensitivity Fabrication Method Stretchability

(%)
Durability

(No. of Cycles) Features

Morteza Amjadi et al., 2014 [63] AgNW/PDMS 14 Drop casting 70 1000
â Bending angle sensitivity: 0.63 rad−1

â Linearity: R2 = 0.96

Kyun Kyu Kim et al., 2015 [71] AgNW/PDMS 20 Vacuum filtration and transfer 35 1000
â Bi-directional sensing
â Simultaneous measurement of spatial strain

distribution

Xinqin Liao et al., 2017 [72] AgNW/PDMS 150,000 Coating
Pre-stretching Drying 60 30,000

â Microcrack-assisted resistive strain sensor
â Low creep
â Useful in smart wearable systems

Chan-Jae Lee et al., 2017 [67] AgNW/PDMS 30 Spin coating 100 2500 â Transparency: >90% at 550 nm wavelength

Yi Du et al., 2018 [73] AgNW/PDMS 536.98 Drop casting 9 -
â Stable over a wide temperature range
â Useful in pulse sensing

Ji Hwan Cho et al., 2018 [36] AgNW microwire grid/PDMS 41.1

Dip coating
Spin coating

Mesh-template-assisted
contact transfer printing

35 1000
â Useful in human motion monitoring
â Optical transparency: 77.1 ± 1.5%
â Negligible hysteresis

Wei Li et al., 2019 [58] AgNW/PDMS 4.11 Semi-dry method - 200
â Useful in elderly care applications
â Low hysteresis
â Optimized parameters for rapid polyol method

Zhihui Wang et al., 2019 [48] AgNW/PDMS 846 Laser cutting
Drop coating 150 1000

â Transparency: 88.3%
â Tested for monitoring subtle and large motions

Fanqi Yin et al., 2019 [69] AgNW/PDMS 84.6 Water-bath pulling method 40 10,000 â Transparency: 86.3%

Pegah Hashemi et al., 2020 [56] AgNW/PDMS 8.32 Casting 54 -
â Medical applications
â Sandwich-like structure

Jae Hyuk Choi et al., 2020 [70] AgNW/PDMS 89.99 Dip coating 60 1000
â Sandwich structure
â Negligible hysteresis

Wei-Wei Kong et al., 2021 [27] AgNW/PDMS 3 Spray coating plus rolling 100 6000
â Negligible hysteresis
â Linearity: 0.99
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4.2. AgNWs as Additional Fillers in PDMS Composites

To obtain superior sensing characteristics, more than one filler is added to the sub-
strates. Hybrid fillers contribute to the performance through the synergy between them.
For instance, strain sensors using Ag nanomaterial samples containing AgNWs and AgNPs
synthesized using FeCl3 solution as the growth control agent via the heat polyols thermal
method exhibit a high sensitivity of 547.8 [74]. Percolating networks of thin gold nanowires
(AuNWs) and rigid silver nanowires were employed to fabricate transparent wearable sen-
sors [75]. The combination of soft AuNWs and more rigid AgNWs enables the production
of strain sensors suitable for biometric information collection, facial expression detection,
and respiration and apexcardiogram monitoring.

Similarly, Shasha Duan et al. [76] reported a binary hybrid network of small-sized
AgNWs and a continuous AuNW backbone. The schematic illustration of fabrication steps
is given in Figure 7. In the low strain range, the AgNW percolation network provides
considerable sensitivity via the disconnection mechanism, whereas the AuNWs serve as
connectors between isolated AgNW regions in the increased strain range. These invisible,
wearable, and stretchable electrodes successfully recorded activities such as smiling, finger
bending, and knee bending.
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A combination of Ag film and AgNWs as fillers in PDMS film was experimented
with by Jinjin Luan et al. [77]. In the fabrication process, as shown in Figure 8, PDMS film
is dip-coated in a dispersion of AgNWs, followed by a 100 nm thick Ag film deposition
by vacuum thermal evaporation. While most AgNWs are well inside the Ag film, the
junctions of intersecting nanowires pop out of the Ag film. The film’s Ag particles around
the exposed AgNWs improve the conductivity by increasing the contact surface area. A
spin-coated PDMS film on top of the Ag film prevents the oxidation of the same and
improves the lifetime of the sensor.
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In a different attempt, Shahid Aziz et al. [78] reported a stretchable strain sensor using
3D zinc stannate (ZnSnO3) nanocubes and 1D AgNWs in a PDMS elastomer. The perfor-
mance characteristics were determined by mixing ratios of the nanocubes and nanowires.
The high-aspect-ratio Ag-NWs increased the distribution of ZnSnO3 nanocubes in the
PDMS matrix and reduced the total internal resistance of the ZnSnO3/PDMS composite.
The sensor demonstrated a sensitivity of 26.7 kΩ/ε and stretchability of 100% with durabil-
ity of more than 10,000 cycles. Multifunctional wearable devices containing strain-sensing
elements have attracted the attention of researchers. Ge Shi et al. developed a strain-sensing
and drug-delivering system on an elastic dry-adhesive substrate [45]. The strain sensor had
graphene nanoplatelets (GnPs) and an AgNW composite as the sensing materials, which
were deposited layer by layer through vacuum filtration. An AgNW composite-based strain
sensor developed via different ultrasonication-based patterning showed high transparency
and high sensitivity with a broad strain range [79]. The AgNW acrylate composite is UV
cross-linked to produce a brittle layer for crack development at tiny strains, and the AgNWs
form hydrogen bonds with the substrate for improved stability.

Carbon fillers have also been additionally paired with AgNWs. Combining the su-
perior conductivity of AgNWs and brittle layers provided by graphene for sensing, a
stretchable sensing film embedded in two PDMS layers was fabricated. AgNWs, graphene,
and AgNWs were vacuum-filtered in sequence, followed by the injection of liquid metal
as electrodes [80]. The inner graphene slips under tiny strains, and the outer AgNWs
disconnect under larger strains, enabling a sensing range of 0–35% and a GF of 111.5 at 1%
strain. The volume and timing of each filtration can tune the attributes of the sandwich-
based strain sensor. Incorporating the Ag nanowire/graphene (AgNW/G) composite
into the PDMS polymer allows strain sensor flexibility even at low temperatures and low
hysteresis [81]. The sensor showed anti-interference ability against temperature in the
0−24% strain range. In the fabrication process, graphene nanosheets are dispersed in
an AgNW ethanol solution to obtain the suspension of AgNW/G. Then, the AgNW/G
suspension is drop-coated three times onto the surface of semi-solidified PDMS to obtain a
uniform distribution of the AgNW/G composite on the PDMS surface. An overview of re-
cent research works where AgNWs are the additional filler in the strain-sensing composite
is shown in Table 2.
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Table 2. An overview of recent research works relating to AgNWs as an additional filler in the strain-sensing PDMS composite.

Author and Year

Materials
(Conducting

Elements/
Polymer)

Max.
Sensitivity Fabrication Method Stretchability (%) Durability

(No. of Cycles) Features

Wei Hu et al., 2016 [82] AgNW and
PEDOT:PSS/PDMS 15 Spin coating 20 1000

â Transparency: 80%
â Useful in real-time monitoring of

neck-posture
â Thickness: 20 µm
â Response time: 20 ms
â Recovery time: 40 ms

Lihua Liu et al., 2017 [74] AgNW and AgNP/PDMS 547.8 Heat polyols thermal method 7.26 -
â Useful in flexible electronics
â Low production cost
â Sandwich structure

My Duyen Ho et al., 2017 [75] AgNW and AuNW/PDMS 236
Drop casting

Langmuir–Blodgett transfer
technique

70 1000
â Transparency: 58.7 to 66.7%
â Low detection limit: 0.05%
â Operating voltage: 0.1 V

Shengbo Sang et al., 2018 [53] AgNP and AgNW/PDMS 3766 Drop casting in template
method 28.1 - â Useful in body movement testing

â Linear region: 0–28.1%

Shasha Duan et al. [76] 2018 AuNW and AgNW/PDMS 2370 Electrospinning
Spin coating 90 1000

â Useful in transparent and stretchable
electrodes

â Transmittance: 86%

Xi Fan et al., 2018 [83] AgNW and
PEDOT:PSS/PDMS 8 Spin coating 50 300 â Electrical conductivity: 3100 S/cm

â Tested for monitoring finger motions

Jinjin Luan et al., 2019 [77] Ag film and AgNW/PDMS 21.1 Dip coating,
Vacuum thermal evaporation 30 1000 â Tested for monitoring joint movements and

subtle motions of the mouth

Gui-Shi Liu et al., 2020 [79] AgNW-acrylate/PDMS 10,486 Spin coating, UV exposure,
ultra-sonication 20 10,000 â Transparency: 90.3%

â Accurate monitoring of pulses and motions

Guishan Wang et al., 2020 [80] AgNW and
graphene/PDMS 1403.7 Vacuum filtration 35 500

â Response time: <10 ms
â Potential applications in wearable devices

and soft robotics

Gengzhe Shen et al., 2020 [84] AgNW and PEDOT:PSS/
PDMS 10.2 Near-field electrospinning 100 2000

â Useful in sensing temperature, HMI, e-skin,
and wearable devices

â Transparency: 68.3–61.4%

Shicong Niu et al., 2021 [81] AgNW and
graphene/PDMS 9156 Drop coating 60 500 â Low hysteresis and resilience above 94%

Meng Yang Liu et al., 2022 [85] AgNW and CNT/PDMS 6.7 Spray coating
Spin coating 50 1000 â Response time: 420 ms

â Recovery time: 600 ms
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5. AgNW/TPU-Based Stretchable Strain Sensors

Thermoplastic polyurethane is dissolved in solvents such as dimethylformamide
(DMF) and anhydrous tetrahydrofuran (THF) before forming an elastomeric base by casting
or a fibrous substrate by electrospinning. Research works relating to AgNWs as fillers
in a TPU substrate are summarized in this section. For detecting microstrains, such as
pulse beat detection, and sounds, a cracking-assisted AgNW/graphene hybrid/TPU sensor
was fabricated by Song Chen et al. [86] using simple co-precipitation, reduction, vacuum
filtration, and casting. The crack and overlap structure are formed by pre-stretching, and
the sensor exhibits GFs as high as 20 (for strain ε < 0.3%), 1000 (0.3% < ε < 0.5%), and 4000
(0.8% < ε < 1%). M M Ali et al. implemented strain sensors by screen printing AgNW/Ag
flakes onto the TPU substrate in two configurations (straight line and wavy), as shown in
Figure 9. The strain range was only 0 to 10%. Still, they achieved gauge factors of 22 and 33
for straight-line and wavy configurations, respectively [87].
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Reprinted with permission from Ref. [87]. Copyright 2018, Elsevier.

Highly stretchable, electrically conductive, and transparent films suited for wear-
able electronics and health monitoring were developed by Runfei Wang et al. by using
AgNW/TPU [88]. The AgNW solution was rod-coated onto a glass slide, and TPU solution
was poured onto the AgNW film. Then, the AgNW/TPU layer was detached from the
glass substrate. As the thickness of the film increased, transparency decreased.

A thermoplastic polyurethane electrospun membrane (TPUEM) vacuum filtered with
an AgNW conductive network, followed by spin-coating PDMS, could function as a
flexible and stretchable strain sensor [89]. In another instance, an electrospun porous
TPU membrane was immersed in the AgNW solution to develop an AgNW/TPU-based
stretchable strain sensor [29]. By varying dip-coating cycles, the content of AgNWs and
the conductivity of the nanomembrane are adjusted. A spring-like configuration with neat
loops obtained using a rotating device enhances the stretchability to 900%. By layer-by-
layer spray coating of the AgNW solution and GO solution onto flexible electrospun TPU
fibrous mats, a flexible and stretchable strain sensor was developed by Yan Li et al. [90].
With the lowest value of 450, the GF varied depending on the strain range of strains sensed.
Due to the synergistic effect of AgNWs and rGO, high stretchability and sensitivity were
achieved. The sensitivity and sensing strain range can be varied by regulating the volume
ratio of AgNWs and rGO.

In an attempt to achieve low-resistance, mechanically stable, and breathable compos-
ites, a network of AgNWs was sandwiched between two highly porous electrospun TPU
membranes [91]. The membranes were robust to both bending and stretching, and they
had an elongation at break of 700%. Dispersing short fibers of polycaprolactone (PCL)
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in the AgNW network improved the interface stability. The membranes were breathable,
allowing the exchange of gases for human comfort. Stretchability as high as 565% and a GF
as good as 6886 were made possible by the aid of materials such as tannic acid (TA) and
hydrolyzable 3-aminopropyltriethoxysilane (APTES) hybrid coating in depositing AgNPs
onto the TPU substrate [92]. Table 3 summarizes recent works relating to stretchable strain
sensors made of AgNW/TPU composite.

Table 3. An overview of recent stretchable strain sensors made of AgNW/TPU composite.

Author and Year

Materials
(Conducting

Elements/
Polymer)

Max.
Sensitivity

Fabrication
Method Stretchability (%) Durability

(No. of Cycles) Features

Lijun Lu et al.,
2017 [89]

AgNW/TPU and
PDMS 12.9

Electrospinning
Vacuum filtration

Spin coating
50 1600

â Tested for human
motion detection

â Electrical
conductivity:
50 S cm−1

Runfei Wang
et al., 2019 [88] AgNW/TPU 337 Rod coating

Dip coating 85 2000 â Response time: 10 ms
â Transparency: 91%

Wei Pan et al.,
2020 [29] AgNW/TPU 44.43 Electrospinning

Dip Coating 900 20,000

â A conductivity of
3990 S/cm

â Spring-like
configuration

â Useful in finger
motion and knee
motion sensing, etc.

Pegah Hashemi
et al., 2020 [56] AgNW/TPU 6.78 Casting 372 -

â It can be used in
medical applications

â Sandwich-like
structure

Yan Li et al.,
2020 [90] AgNW/TPU 4.4 × 107 Spray coating 100 1000

â Tunable sensitivity
and stretchability

â Tested for human
motion monitoring

6. AgNW/PU-Based Stretchable Strain Sensors

Composite films can be prepared with PU as the stretchable substrate and AgNWs
as the conducting element [28,59]. PU fibers are also part of the latest electronic sensors
and intelligent fabrics, as they are lightweight, flexible, and knittable. The fibers’ electrical
conductivity increases with the number of coating cycles [28]. At the same time, the
percolation threshold of the composite can be reduced by improving the dispersion of
fillers. In a study by Yong Wei et al. [49], a paper-based bending sensor with AgNWs and
2D Co−Al layered double hydroxide (LDH) nanosheets in waterborne polyurethane was
reported. The 2D LDH nanosheets were embedded into the AgNW network to assist the
dispersion of AgNWs. The conductive composites had a low percolation threshold and can
be manufactured via various printing methods. The bending sensor from this composite
showed durability of more than 3000 cycles, a sensitivity of 0.16 rad−1, a response time of
120 ms, and a relaxation time of 105 ms.

Pre-straining is a method to extend the stretchability of the AgNW conductive-
networked PU cord [40] without adding other structural materials such as cotton yarns.
Optimized pre-strain conditions and nanowire density yield the cord with the best stretch-
ing performance. AgNWs can be embedded in PU fibers by the capillary tube method to
form completely conductive networks [28]. A capillary glass tube (CGT) is first immersed
in an AgNW suspension in the fabrication process. AgNW networks are formed in the
CGT as the suspension moves inside to the other end. After drying, polyurethane is drawn
into the CGT by the negative pressure. The glass is removed by etching using HF, and
the PU/AgNW fiber is obtained. AgNW-treated PU nanofibers can also be coated with a
PDMS layer to enhance durability to function as sensors for joint flexion monitoring [93].
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As an additional filler in PU-based stretchable strain-sensing composites, AgNWs
enhance the performance metrics obtained with other fillers. In Jun-Hong Pu et al.,
AgNW/WPU and MXene layers were alternatively and firmly coated onto a hydrophilic
polyurethane-based commercial fiber (HPUF) utilizing a water solution-based layer-by-
layer dip-coating process to create homogeneous and stable sensing layers. AgNW/WPU
layers in the structure preserve the sensing layer’s integrity at high strain, whereas MXene
layers efficiently encourage fracture development across the whole operating range [94].
A dual-parameter sensor that can transduce both temperature and strain into electrically
isolated signals was developed by Fengchao Li et al. using printable titanium carbide
(MXene)-silver nanowire (AgNW)-PEDOT:PSS-tellurium nanowire (TeNW) nanocomposite
in a multi-level hierarchical architecture. The sensing devices were fabricated by depositing
nanocomposite gel onto an O3 plasma-treated polyurethane substrate [95]. The synergistic
effects between all nanomaterials enhance the stretchability and sensitivity. The crack
propagation effect of the conductive MXene-AgNW network and thermoelectric effect of
the TeNW-PEDOT:PSS network can sense the strain and thermal stimulus, respectively.
With the inclusion of PEDOT:PSS, the strain range is expanded to over 60% from 40% at
the expense of sensitivity. However, the amalgamation of MXene, AgNWs, PEDOT:PSS,
and TeNW improves both the sensitivity and stretchability. An overview of a few research
works relating to AgNW/PU strain-sensing composites is given in Table 4.

Table 4. Overview of a few research works on AgNW/PU-based stretchable strain sensors.

Author and Year

Materials
(Conducting

Elements/
Polymer)

Max.
Sensitivity

Fabrication
Method Stretchability (%) Durability

(No. of Cycles) Features

Byeong-Ung
Hwang et al.,

2015 [96]

AgNW and
PEDOT:PSS/PU 12.4 Blending

Spin coating 100 1000

â A self-powered
patchable strain-sensing
platform

â Transmittance: 75.3%

Conor S. Boland
et al., 2017 [97] AgNW/PU 70

Layer-by-layer
vacuum
filtration

250 500
â Thickness: 50 µm
â Electrical conductivity:

104 Sm−1

Guan-Jun Zhu
et al., 2019 [28] AgNW/PU 87.6 Capillary tube

method 43 2500

â Response time: 49 ms
â Conductivity: 3.1 S/cm
â Fiber strain sensor with

a millimeter diameter
â High elongation at

break: 265%

Yi Xi Song et al.,
2019 [59] AgNW/PU 11.2

Spray coating
Plasma

treatment
500 5000

â Response time: 200 ms
â Self-healability and

transparency

Jun Hong Pu
et al., 2019 [94] AgNW/WPU 1.6 × 107 Layer-by-layer

dip coating 100 1000

â Response time: 344 ms
â Relaxation time: 344 ms
â Negligible hysteresis
â Tensile strength: 15 MPa
â Elongation at break:

800%

Fengchao Li et al.,
2020 [95]

MXene, AgNW
and

PEDOT:PSS/PU
1933.33 Screen printing 60 1000

â Temperature-sensing
ability with a resolution
of 0.2 ◦C

â Four linear regions with
linearities above 0.972

Yu Jiang et al.,
2021 [98]

AgNW and
PANI/PU 59

Electrospinning
Vacuum
filtration

35 300

â Electrical conductivity:
32.09 S/m

â Tested for human
motion monitoring
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7. AgNW/Other Substrate-Based Stretchable Strain Sensors

This section discusses the methods of AgNW incorporation into substrates other
than PDMS and TPU and the resulting composites’ performance characteristics. First,
composites with AgNWs as the only filler are discussed, and then composites with AgNWs
as the additional filler are discussed.

7.1. AgNWs as the Only Filler in Other Substrate-Based Strain Sensors

Recent developments in stretchable strain sensors using various other substrates are
described in this section. A microprism-structure-based strain sensor using AgNW/Dragon
Skin composite was reported by K H Kim et al. [32]. A silicon master micropatterned by
soft lithography is coated with AgNWs using the drop-casting process. Then, a liquid pre-
polymer of Dragon Skin (DS) mixed with a curing agent is poured onto the AgNW-coated
silicon master. While the metal nanowire percolation network forms the current paths under
high strains, the microprism structures enhance sensitivity by concentrating strains in the
valley regions. Using one-dimensional self-assembled π-conjugated poly(3-hexylthiophene-
2,5-diyl) nanofibrils (P3HT-NFs) percolated in a PDMS elastomer matrix (P3HT-NF/PDMS)
as the rubbery semiconductor nanocomposite in one layer and AgNW/PDMS as the
interconnection in another layer, a rubbery strain sensor was constructed, as shown in
Figure 10a,b [99]. The AgNW/PDMS composite acts as a stretchable conductor prepared by
drop-casting AgNWs on a glass and then spin-coating with PDMS solution. A 3 × 3 strain
sensor array, as shown in Figure 10c, was developed to verify its strain-sensing capabilities.
There is a change in electrical resistance depending on the strain, as shown in Figure 10d.
By incorporating the sensors into a rubber glove, as shown in Figure 10e, various hand
gestures can be detected, including finger and wrist bending.
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from Ref. [99]. Copyright 2018, American Chemical Society.

Xin Jing et al. [100] formed a hydrogel composite of AgNWs and gelatin, where
AgNWs form electrically conductive pathways and reinforce the hydrogel. The thiol groups
introduced to the gelatin molecular chain further establish better interactions between the
reinforcing AgNWs and the gelatin molecules. By soaking in Na2SO4 solution, additional
physical cross-links are induced by the salting-out effect to produce a stretchable and
conductive composite hydrogel. Conventional foam substrates (CFSs) and porous auxetic
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foams have also been used to prepare stretchable and compressible sensors with AgNWs as
conducting elements [101]. The vacuum-dried foams are dip-coated multiple times in the
AgNW suspension, as shown in Figure 11. The AgNW/auxetic foam improved by up to
290% and 165% compared to AgNW/CFS in tension and compression modes. Such porous
piezoresistive sensors can potentially be used in sportswear, flow detection media, smart
healthcare foams, etc. The AgNW concentration impacted the piezoresistive sensitivity,
and the sensors were stable for at least 1000 cycles. They could measure strain in all three
orthogonal directions, and the sensor could detect pressure as low as 1.5 kPa. Air pressure
detection and underwater sensing are the additional features.
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Figure 11. Schematic of the AgNW foam sensor fabrication process. Reprinted with permission from
Ref. [101]. Copyright 2019, Elsevier.

With a high concentration of PVA as a substrate, a conductive hybrid layer of PVA/AgNWs
is deposited on it so that the designed bilayer functions as a hydrogel strain sensor [102].
In this new bilayer design, the bottom layer is made of highly concentrated PVA, and the
top layer is made of dilute PVA so that AgNWs can be dispersed to form conducting paths.
The PVA and AgNW concentrations determine the mechanical properties and the sensing
performance. High stability, low hysteresis, and biocompatibility make them suitable for
wearable biomedical applications. A mixture of polyacrylic acid, phytic acid solution,
aniline, AgNW solution, and ammonium persulfate solution (APS) is molded into a strain
sensor using a PTFE mold, as shown in Figure 12. This new variety of polymer increases
the stretchability by up to 500% [103].
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Among other substrates to pair with AgNWs, cellulose nanofibril (CNF) paper was
also tested to prepare stretchable strain sensors [41]. Solution blending and filtration
techniques were used to prepare nanofibril solutions and the AgNW/CNF hybrid paper.
AgNW homogeneously disperses in the CNF owing to the latter’s amphiphilic property and
effectively constructs electrically conductive networks. A TPU-sandwiched AgNW/CNF
hybrid paper tensile strain sensor with a microcrack structure displayed a GF of 34.06. A
tunable biaxial strain sensor with the ability to respond to structural vibrations and impacts
was reported by Robert Herbert et al. using aerosol jet printing of polyimide and silver
nanowires [104]. The resistance change is due to the separation and alignment of individual
AgNWs, followed by a decrease in the number of junctions along the conductive pathways.
The multilayered structures enable better adhesion and lamination on different surfaces.
GFs of 1–7.5, stretchability of 4%, and stability of more than 100 cycles of stretching and
bending were observed. Aerosol jet printing is a better option for patterning miniaturized
stretchable strain sensors. The printing parameters and design variations determine the
initial resistance, sensitivity, and strain range.

Facile, low-cost, and scalable fabrication techniques are in great demand in addition
to the high stretchability and sensitivity of strain sensors. A biocompatible AgNW/Ecoflex-
based composite strain sensor was reported by R. Madhavan [30] using the inkjet printing
technique, where functional materials are precisely deposited in a rapid and non-contact
approach suitable for high-volume production. Silver nanomaterial deposition with inkjet
printing was attempted for the first time. Full contact, a conductive tunneling junction
within a cut-off distance, and the complete disconnection of AgNW particles are the
three possible situations among AgNW particles. In another instance, extrusion-based
3D printing was used to prepare a biocompatible electronic ink using a copolymer called
ω-pentadecalactone-co-ε-decalactone (PDL) and AgNWs [44]. The composite had a low
percolation threshold of 1% w/w AgNWs to PDL and low resistance and anti-microbial
properties. With an average gauge factor of 2.78 ± 0.22, the sensor could sense cyclic
physiological strains in a customized in vitro setup for more than three weeks.

Kirigami-like structures are applied to various stretchable devices, such as solar panels,
implantable and stretchable bioprobes, and tunable optical gratings. Using high-aspect-
ratio AgNWs in kirigami-like structures, highly linear strain sensors with reduced hysteresis
can be realized [105]. The vacuum-filtered AgNW film on filter paper was patterned using
a Silhouette Curio machine. Then, the Ecoflex precursor was spin-coated onto the patterned
AgNW film as a stretchable substrate. After curing, the AgNW–Ecoflex composite was
detached from the underlying filter paper. Kirigami-structured strain sensors with long
AgNWs show high stretchability, excellent linearity (R2 ~ 0.99), and up to 70% strain but
less sensitivity (GF~1.6). Furthermore, the kirigami-structured strain sensor shows no
cracking after strain testing.

In elastomer-based sandwich structures, the resistance increases after repeated stretch/release
cycles as the number of detached conductive nanoparticles increases. To overcome this
issue, Zhenhua Yang et al. [39] prepared a PDMS/poly(vinylidene fluoride) (PVDF) elec-
trospun membrane pumped with silver nanowire (AgNW) suspensions through a simple
filtration process. The PVDF/PDMS electrospun membranes form a mechanically inter-
locked structure and provide a supporting medium for the isolated AgNWs. Based on a
silver nanowire (AgNW) layer and a hydrogel substrate, a highly flexible skin-like strain
sensor was presented recently by Krithika Senthilkumar et al. [106]. As a simple production
approach, thermal annealing is used to adjust the gauge factor by producing multidimen-
sional wrinkles and a multilayer conductive network. The developed AgNW–hydrogel
(AGel) sensors have a stretchability of 200% and a max. GF of 70. Table 5 shows the details
of stretchable strain sensors based on AgNW/other substrate composites.
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Table 5. Overview of stretchable strain sensors using AgNWs as a single filler in other substrates.

Author and Year

Materials
(Conducting

Elements/
Polymer)

Max.
Sensitivity Fabrication Method Stretchability (%) Durability

(No. of Cycles) Features

Seongcheol Mun et al., 2016
[107] AgNW/cellulose film 4.3 Layer-by-layer spray coating 2 - â Transmittance: 70%

â Tested in stretching and bending modes

K H Kim et al., 2018 [32] AgNW/Dragon Skin 81 Soft lithography
Drop casting 150 10,000

â Useful in human motion monitoring
â Pressure sensitivity: 3 Pa−1

â Linearity: R2 = 0.993

Hae Jin Kim et al., 2018 [99] AgNW/PDMS/P3HT-
NF/PDMS 32 Drop casting

Spin coating 100 -
â Hysteresis: 12%
â Linearity: R2 > 0.996

Min Zhao et al., 2019 [108] AgNW/cotton yarn and PU
monofilament 4.2 Dip coating 200 1000

â Ability to serve as a heater
â Resistance: 36 Ωcm−1

Shohreh Azadi et al., 2019 [102] AgNW/PVA 0.58 Freezing thawing 500 2000

â Hysteresis: 7%
â Response time: 0.32 s
â Mechanical strength: 900 kPa
â Electrical conductivity: 1.85 Sm−1

Xin Jing et al., 2019 [100] AgNW/gelatin 2.4 Dispersion and solution
casting 200 -

â Conductivity: 0.1 S/cm
â Can be applied in biosensors, e-skin, and

health monitoring devices

Rui Yin et al., 2020 [41] AgNW/CNF 34.06 Solution blendingVacuum
filtration 2 500

â Low detection limit: 0.2%
â Temperature sensing ability
â Tension mode GF: 10.2
â Compression mode GF: 1.2

Yanjing Zhang et al., 2020 [103]
AgNW, aniline, phytic acid,
polyacrylic acid and APS

composite
2.2 Solution casting 500 1000

â Low detection limit: 1%
â Useful in human motion and healthcare

monitoring
â Conductivity: 1.3 S/m

R. Madhavan 2021 [30] AgNW/Ecoflex 13.7 Inkjet printing 30 1000
â Low detection limit: <5%
â High linearity (R2 > 0.98)
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7.2. AgNWs as Additional Filler in Other Substrates

AgNWs, along with other conducting materials, add to the sensing characteristics.
Highly stretchable conductive fibers consisting of AgNWs, AgNPs, and poly(styrene-block-
butadiene-block-styrene) (PSBS) polymer were reported by Seulah Lee et al. [31]. The
AgNW-mixed SBS fiber was made utilizing an AgNW-dispersed SBS solution dope and
a simple wet-spinning process. Wet-spun AgNW-mixed SBS fiber absorbed an AgNP
precursor, which was then transformed into AgNPs inside and on the fiber’s outermost
surface. The AgNWs aligned with the imposed uniaxial strain and were able to join the un-
connected AgNP networks. The implanted AgNWs operate as conducting bridges between
AgNPs during stretching, preserving electrical conductivity even under high strain. Silver
nanomaterials are mixed with 2D materials such as MXene to improve conductivity [109].
The 0D AgNPs are flexible and act as connections between 1D AgNWs and 2D MXene.
With 1D AgNWs significantly improving the conductivity of the strain sensor, 2D MXene
(Ti3C2Tx), a pliable, flexible graphene-like material, enhances the malleability of the strain
sensor. The composite yarn strain sensor with a considerable strain range and sensitivity
can effectively monitor various human body movements, as shown in Figure 13.
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Figure 13. Monitoring of human motion using the nanocomposite MXene Silver (NMS) yarn strain
sensor. (a) Speaking different words, (b) smiling, (c) bicep stretching, (d) finger bending, (e) leg
bending, and (f) wrist bending. Reprinted with permission from Ref. [109]. Copyright 2019, American
Chemical Society.

As shown in Figure 14, a multifunctional textile-based electronic device with cou-
pled strain-sensing and heating capabilities was produced using silver nanowire/wrap
yarn [108]. The wearable electronic device has potential applications in health tracking
and thermotherapy. Electroless silver plating is a low-cost and easy-to-process method for
metallization. A cotton/spandex blended fabric (95% cotton and 5% spandex) was electro-
less silver-plated in the work of Zhihua Ma et al. to fabricate a wearable and anti-bacterial
strain-sensing fabric that showed a gauge factor of 26.11, a response time of 0.04 s, and a
recovery time of about 0.08 s [33].
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The fabric is washed with sodium hydroxide solution, in situ polymerized with PANI,
and then electroless silver-plated using silver nitrate solution. The breaking strength
of the fabric after electroless silver plating is 8.42 MPa, and the elongation at break is
149.89%. PANI has been used to improve the strength between the silver layer and the
fabric. By sandwiching a layer of AgNW-decorated self-healing polymers between two
layers of PDMS, a flexible 3D architecture was fabricated [43]. Empol 1016 Dimer Acid and
diethylenetriamine were used to create the self-healing polymer, and chopped carbon fibers
were used to reinforce it. Drop casting was used as the fabrication method to obtain a GF
of 1.5 and a stretchability of 60%. The resulting polymer composite was tested for motion
monitoring of bending and recovering of various joints. In the work of Yang Liu et al. [110],
a self-healing strategy to boost both sensitivity and stretchability was discussed. A resistive-
type strain sensor was realized with graphene oxide (GO) nanosheets as the inorganic
matrix and AgNWs as the conductive networks on GO nanosheets. Both AgNWs and
GO form a conductive brittle nanocomposite with a multi-level nanostructure. Polyvinyl
alcohol (PVA)-Cyclo-dextrin (CD) and PVA-adamantane (AD) act as bridging materials
for in situ repairs of the cracks and damages induced by structural deformations. The
sensor was able to withstand more than a million stretch–release cycles in addition to a
stretchability of 58% and a gauge factor of 1591. In another instance, reduced graphene
flakes and AgNWs were used as fillers on a spandex fibrous substrate by Tan Thong Vo
et al. to realize a stretchable strain sensor [111]. It was identified that the increase in a
single filler alone results in reduced stretchability. Hence, an optimal ratio of fillers has to
be maintained for robust conductive paths.

Using a self-healing elastomer based on Diels–Alder (DA) bonds, an MXene/AgNW
electronic sensor with a multi-scale conductive layer structure was reported by Lun Zhang
et al. [112]. The elastomer displayed a self-healing efficiency of more than 88% through the
variable density of crosslinkers. Two self-healing elastomer layers sandwiched the conductive
MXene and AgNW layers. The AgNWs partially penetrated the elastomer substrate and
maintained the conductive paths, while the robust 2D MXene was tightly covered on the
AgNW network by the capillary effect. These two nanomaterials enhance the mechanical
strength and toughness and hence the stability of the strain sensor. Due to the brittle nature of
the layered structures formed by MXene and AgNWs, cracks form and propagate throughout
the sensing film, changing resistance to stretching. Further, the dynamic cross-linked network
of the elastomer heals the crack cuts upon heating. Nevertheless, the flexible sensors can
detect pressure in the range of 183–2260 kPa. The research findings of AgNWs as additional
filler in various other substrates are shown in Table 6.
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Table 6. Overview of stretchable sensors using AgNWs as additional filler in other substrates.

Author and Year

Materials
(Conducting

Elements/
Polymer)

Max.
Sensitivity Fabrication Method Stretchability (%) Durability

(No. of Cycles) Features

Seulah Lee et al., 2015 [31] AgNW and AgNP/PSBS 15 Wet spinning 220 1000 â Max. elongation at break: 900%
â Electrical conductivity: 2450 S/cm

Songjia Han et al., 2018 [113] AgNW and
PEDOT:PSS/Ecoflex 2000 Deposition, Spin coating,

Injection 420 3000
â Tested for human–machine interactive

systems
â Potential bionic ligaments in soft robotics

Zhihua Ma et al., 2019 [33] AgNW and
PANI/cotton/spandex 26.11 Electroless silver plating 4 >160 â Electrical conductivity: 15.7 S/m

â Low detection limit: 0.2%

Han Li and Zhaoqun Du 2019 [109] AgNP, AgNW, and
MXene/Dacron fibers 872.79 Mixing Dipping Drying 350 1500 â Useful in intelligent textiles

Tan Thong Vo et al., 2020 [111] AgNW and rGO/spandex 150.3 Dropcasting 120 1000 â Electrical conductivity: 8.06 S/m
â Low hysteresis

Kittiphong Thana et al., 2021 [114] AgNW and
PEDOT:PSS/natural rubber 418 Spin coating 50 750

â High stability for rapid bending
â Low limit of detection: 3.5%
â Electrical resistance: 74.72 ± 14.65 Ω

Yanqiang Cao et al., 2021 [115] AgNW and
MWCNT/hair band 416 Dipping 70 7500 â Facile, low-cost, and scalable production

Liangjun Chen et al., 2021 [116] AgNP and
AgNW/latex balloon 2.8 × 105 Spray coating 80 1000 â Tested for both microstrains and large strains

Lun Zhang et al., 2022 [112] AgNW and MXene/a
self-healing elastomer >29.4 Spraying 96 1200

â Self-healing efficiency: 88%
â Response time: ~71 ms
â Relaxation time: ~138 ms
â Pressure sensing ability
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8. Conclusions

AgNW composites, with their flexibility, electrical conductivity, transparency, solution
processability, and cost-effectiveness, offer equally satisfactory sensing characteristics
compared to other fillers. Variations in fabrication steps and novel substrate materials are
experimented with to achieve a balanced improvement of sensitivity and stretchability.
Hybrid fillers help in achieving an overall improvement in all metrics. Transparency
and surface resistance decrease with an increase in AgNW concentration. The intrinsic
piezoresistive effects, electron conduction mechanisms, materials selection, and structure
design determine the strain-sensing performance.

Specific trends can be noted when looking at recent developments in stretchable
resistive strain sensors using AgNW composites. Multifunctional sensors that measure
additional parameters such as temperature and pressure are actively explored. Biocom-
patibility is expected with other features of stretchable strain sensors. High sensitivity, an
extensive linearity range, a wide sensing range, high durability, greater tensile strength, and
more negligible hysteresis are the main requirements of any flexible and stretchable strain
sensor. Other expectations are straightforward preparation methods, cost-effectiveness,
large-scale manufacturing, and simpler attached sensor circuitry. Additional features such
as self-healing ability, hydrophobicity, transparency, and self-powering can be expected of
these sensors in the coming days. Using near-field communication with a mobile phone,
the sensor circuit can deliver information such as pulse rate, neck posture, and other hu-
man joint motions. Most of the reported strain sensors were tested for their applications
in human motion monitoring. Joint motions (wrist, elbow, and finger), respiration and
pulse monitoring, eye blinking, sign language through finger bending, and recognition of
phonetical expressions are made possible with strain sensors.
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