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Inter-sample comparisons of T-cell receptor (TCR) repertoires are crucial for gaining a 
better understanding of the immunological states determined by different collections of 
T cells from different donor sites, cell types, and genetic and pathological backgrounds. 
For quantitative comparison, most previous studies utilized conventional methods in 
ecology, which focus on TCR sequences that overlap between pairwise samples. Some 
recent studies attempted another approach that is categorized into Poisson abundance 
models using the abundance distribution of observed TCR sequences. However, these 
methods ignore the details of the measured sequences and are consequently unable 
to identify sub-repertoires that might have important contributions to the observed 
inter-sample differences. Moreover, the sparsity of sequence data due to the huge 
diversity of repertoires hampers the performance of these methods, especially when few 
overlapping sequences exist. In this paper, we propose a new approach for REpertoire 
COmparison in Low Dimensions (RECOLD) based on TCR sequence information, which 
can estimate the low-dimensional structure by embedding the pairwise sequence dis-
similarities in high-dimensional sequence space. The inter-sample differences between 
repertoires are then quantified by information-theoretic measures among the distributions 
of data estimated in the embedded space. Using datasets of mouse and human TCR 
repertoires, we demonstrate that RECOLD can accurately identify the inter-sample hier-
archical structures, which have a good correspondence with our intuitive understanding 
about sample conditions. Moreover, for the dataset of transgenic mice that have strong 
restrictions on the diversity of their repertoires, our estimated inter-sample structure 
was consistent with the structure estimated by previous methods based on abundance 
or overlapping sequence information. For the dataset of human healthy donors and 
Sézary syndrome patients, our method also showed robust estimation performance 
even under the condition of high sparsity in TCR sequences, while previous studies 
failed to estimate the structure. In addition, we identified the sequences that contribute 
to the pairwise-sample differences between the repertoires with the different genetic 
backgrounds of mice. Such identification of the sequences contributing to variation 
in immune cell repertoires may provide substantial insight for the development of new 
immunotherapies and vaccines.

Keywords: t  cell, tCR repertoire, inter-repertoire comparison, pairwise sequence alignment, sequence 
dissimilarity, manifold learning, Jensen–shannon divergence
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1. INtRodUCtIoN

The development of high-throughput sequencing with next-
generation sequencers has provided new opportunities to 
quantify T-cell receptor (TCR) repertoires and to compare their 
differences among different cell types, organisms, and pathologi-
cal samples. Such information is indispensable for quantitatively 
understanding the immunological state of organisms that is 
shaped by the collection of immune cells. Moreover, the detailed 
information of TCR repertoires, especially that of inter-sample 
differences, is anticipated to significantly promote the develop-
ment of immunotherapies and vaccines (1, 2). To this end, several 
statistical and computational methods have been proposed to 
quantify sample differences. One popular method is to quantify 
the fraction of overlapping sequences between two samples 
or among many samples such as the Bray–Curtis index (3–5). 
However, the possible sequence space of the TCR repertoire is at 
least as large as 1015 (6), and therefore the measured sequences 
can only sparsely cover the entire space. This sparsity substan-
tially reduces the chance to observe exactly the same sequences 
in two samples. Thus, by focusing on the overlaps, it is only pos-
sible to detect the public sequences that appear very frequently 
among the samples. Moreover, even if no overlapping among 
the sequences is detected, it is not possible to judge whether this 
occurs because the two repertoires cover quite different subspaces 
of the sequence space or because the repertoires cover the same 
subspace but show no overlapping by chance simply owing to the 
sparsity of the coverage.

Another approach focuses on the count (abundance) distribu-
tion of unique TCR sequences in the repertoires (7). The methods 
based on the abundance distribution typically estimate the 
parameters of models of abundance distributions from experi-
mental data and define the inter-sample difference according to 
the deviation of the estimated parameters. Poisson abundance 
(PA) models are among the recently developed methods based 
on the hierarchical Bayesian inference algorithm. This approach 
can overcome the substantial sampling fluctuations derived from 
the huge diversity in TCR repertoires and provides a stable result 
related to the inter-sample distances on the basis of statistical 
interpretations. Variations of PA models have also been proposed 
(8–10), and methods to combine both approaches were also devel-
oped recently. For example, Rempala et al. (11) used a bivariate 
Poisson log-normal (BPLN) distribution to model joint abun-
dance distributions for classifying eight different samples of the 
following sample conditions: donor sites, types of T cells, and the 
genetic backgrounds of different mouse lines. Guindani et al. (12) 
also used a Poisson–Dirichlet process to classify types of T cells  
(i.e., conventional and regulatory T cells).

Although these PA models can successfully quantify the inter-
sample distances, they are also associated with a major drawback 
in that some of the sequence information in the samples is lost 
since these models focus only on the count distribution. This 
loss of information has hampered the ability to determine the 
characteristic sequences of each sample, which is a requisite for 
further investigations of repertoires by, for example, evaluations 
of the interaction with microbial peptides (13) and the simulation 
of TCR crystal structures (14).

Moreover, the sparsity also affects some abundance-based 
methods in which the joint abundance distributions are employed.

To address these problems, we here propose a new dimen-
sionality-reduction-based method for REpertoire COmparison 
in Low Dimensions (RECOLD): we focus on the sequence 
information in all samples and estimate the low-dimensional 
representation (manifold) by projecting and embedding the 
high-dimensional inter-sequence relations, calculated from pair-
wise sequence alignments, onto a low-dimensional space. The 
methods for manifold learning have been successfully applied 
in previous studies of virus evolution (15) and relationships of 
16S rRNA gene sequences in bacterial genomes (16) to extract 
the evolutionary pathways and interconnections of bacteria. 
Recent studies in immunology have also employed embedding 
methods to visualize high-dimensional cytometry (17) and 
TCR repertoire (18, 19) data, although the embedding in these 
cases was mainly used only for visualization purposes. However, 
the low-dimensional embedding of the original sequences in 
repertoires contains information on how the repertoires from 
different samples cover the possible sequence space. Therefore, by 
employing such information, it may be possible to detect a subset 
of sequences in the repertoires that has a major contribution to 
the inter-sample difference.

To quantitatively compare the embedded sequences, we 
estimated a probability density function of the sequence distri-
bution in the low-dimensional space. This density estimation 
compensates for the sampling bias due to unseen sequences from 
the sparsity of the measured sequences. Finally, we quantified the 
inter-sample differences between the estimated density functions 
of the individual samples using the Jensen–Shannon divergence 
(JSD). This information-theoretic measure characterizes the dif-
ference between two distributions by the probability of observing 
either one by chance with random sampling from their average. 
Thus, this measure can effectively and quantitatively capture infor-
mation of two repertoires even with few overlapping sequences. 
By extracting the sequences that show a major contribution to the 
information-theoretic measures, the sequences most responsible 
for the inter-sample differences can be determined, which cannot 
be effectively identified with previous approaches.

The rest of the paper is organized as follows. We first describe 
the experimental data adopted to test our method and the step-
by-step data analysis procedure, including (i) quantification of 
sequence dissimilarity with the pairwise sequence alignment 
algorithm, (ii) evaluations of four different manifold learning 
methods for projecting the sequence distribution in low-
dimensional space, (iii) adoption of the kernel density estimation 
algorithm (KDE) to quantify the sequence distribution, and (iv) 
quantification of the inter-sample differences and identification of 
the major contributing sequences according to the JSD values of  
the distributions. To validate and demonstrate the applicability 
of our method, we adopt two datasets: one from mouse and the 
other from human TCR repertoires. In the dataset of transgenic 
mice, which has comparatively small diversity in TCR sequences, 
we verified that similar inter-sampling clustering can be obtained 
by both our method and previous methods despite their use of 
different modalities (sequence and count, respectively) of a 
repertoire. We further evaluated the statistical significance of 
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our results using a bootstrap algorithm to confirm the derived 
inter-sample difference. In the clinical dataset of human TCR 
repertoires of Sézary syndrome patients, we demonstrate that 
our method can efficiently identify an inter-sample clustering 
structure even with the high diversity in the TCR repertoires, 
which hinders the previous methods from working. Overall, our 
method shows advantages over previous approaches in capturing 
more complete and quantitative information on TCR reper-
toires. This method is expected to be of value for understanding 
variation of the immunological states to facilitate development of 
immunotherapies and vaccines.

2. MAteRIALs ANd Methods

2.1. sequence data
In this study, we used two public datasets. The first is a dataset on 
mouse repertoires, which was published in Ref. (11). This dataset 
includes information of eight different TCR populations, which 
are classified according to donor sites, types of CD4+ T cells, and 
the genetic backgrounds of mice. The CD4+ T cells were collected 
and isolated either from the thymus or peripheral lymph nodes, 
which are labeled as “Thy” and “Per,” respectively. In addition, 
these cells were categorized into either naive T cells (TN) or regu-
latory T cells (TR) in accordance with the presence or absence of 
Foxp3 expression. The two genetic backgrounds of mice, which 
were labeled as “wild type (Wt)” and “Ep” in Ref. (11), commonly 
had strong restriction on rearrangement of V(D)J genes (i.e., 
the two α-chain rearrangements between Jα2.6 and Jα2 with a 
fixed Vα2.9 segment and fixed β-chain Vβ14Dβ2Jβ2.6); this 
mouse line with TCR restriction was represented as TCRmini in  
Ref. (20). The main difference between these mice is that the Ep 
mice were produced from the TCRmini mice backcrossed with 
the mice that express transgenic class 2 major histocompatibility 
complex molecules bound to a single “Ep” peptide (20). Thus, 
Ep mice are expected to show a more restricted TCR repertoire 
than the TCRmini Wt mice. To evaluate the diversity of the TCR 
repertoires, the complementarity determining region 3 (CDR3) 
of TCRα chains were sequenced and amplified. Further details on 
this dataset are described in Section 4 of Ref. (11).

We also analyzed a human TCR dataset that was published 
in Ref. (21). This dataset includes human TCR repertoires of six 
healthy donors (HD) and ten patients with Sézary syndrome (P), 
the latter of which were classified into four groups according to 
disease severities. The severity of Sézary syndrome is assessed 
by the proportion of the inflamed area relative to the entire skin 
surface (20, 50, 80, and 100%). Here, we used a part of this dataset 
related to the CDR3 sequences of TCRα chains derived from the 
peripheral blood T  cells adopted from the two healthy donors 
and the ten patients. For the following two reasons, we used the 
data of only two healthy donors. One is that the TCR repertoires 
of three out of the six patients were sequenced using a different 
next-generation sequencing platform from that used on the other 
samples, including the patients. The other reason is the limitation 
of our computational resources. The more information about the 
donors is shown in Table S1 in Supplementary Material. The 
extraction of TCR clonotypes from raw FASTQ files was executed 
with MiXCR software (version 2.0) (22) using the default 

parameter values of functions. Since the number of sequenced 
reads correlates with the number of observed unique sequences, 
the bias in the numbers of “in-frame” reads among individual 
samples seriously affects the difference in their TCR repertoires. 
Therefore, we equalized the numbers of “in-frame” reads of 
individual samples to their minimum value using subsampling 
with a bootstrap algorithm. The procedure of this subsampling 
and further details on this dataset are described in Section 2.2.5 
below and in the Methods of Ref. (21), respectively.

2.2. data Analysis Procedure
To exploit detailed sequence information in repertoires and to 
circumvent the problem of diversity and sparsity, we focus on 
the sequence similarity among repertoires and derive its low-
dimensional representation. Our method consists of five steps:  
(i) calculate a dissimilarity matrix of observed TCR sequences in all 
samples using the Smith–Waterman (SW) algorithm with a scor-
ing matrix (Figure 1); (ii) embed the data in a low-dimensional 
Euclidian space by dimensionality-reduction methods while 
preserving the inter-sequence relations quantified by the dissimi-
larity matrix (Figure 2); (iii) estimate the sequence distributions 
in the low-dimensional space by the KDE algorithm (Figure 2); 
(iv) quantify the sample differences and cluster the samples by 
calculating the JSD value between the probabilistic density functi-
ons of different samples (Figure 3); and (v) identify subsequences 
that contribute to the differences (Figure 6; Table 1). Each of the 
above steps is described in detail in the following subsections.

2.2.1. Quantification of Sequence Dissimilarity
The first step of our method is the quantification of similarity for 
each pair of TCR sequences in all samples. The SW algorithm 
remains the most popular among pairwise local sequence align-
ment algorithms for quantifying the similarity of amino acid 
sequences (23). In recent years, improved versions of the SW 
algorithm have been proposed to resolve the problems related to 
the increase in computational costs along with the rapidly increa-
sing size of datasets that are now possible from high-throughput 
sequencing. Here, we used the striped SW algorithm (24). This is 
one of the SW algorithm using a single-instruction-multiple-data 
(SIMD) system, which allows for multiple units to simultaneously 
execute the same operation. The algorithm was implemented with 
Parasail, an open-source software for sequence alignment (25).

The SW algorithm requires amino acid substitution matrices, 
which determine the cost of the replacement of a single amino 
acid residue by another (26). Although the SW algorithm has 
already been applied to TCR sequences as a mapping tool for 
CDR3 sequences (27), no study has yet established the best choice 
of substitution matrices for comparison of TCR data. Therefore, 
to clarify the effect of the type of substitution matrix employed 
and determine the optimal choice for our method, we tested 
10 different matrices: five different point-accepted mutation 
matrices (PAM; 30, 100, 120, 160, and 250) (28) and five different 
blocks substitution matrices (BLOSUM; 45, 50, 62, 80, and 100) 
(26). The gap opening and extension penalties were set to 10 and 
1, respectively (24).

Since the substitution matrices give non-zero values for replace-
ments between the same amino acid residues, the total score  
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of the alignment between two identical sequences depends on 
their sequence lengths. Thus, the diagonal elements of a pairwise 
distance matrix will have different values even when they are 
calculated from the alignments of two identical sequences. In other 
words, both the sequence similarity and the sequence length deter-
mine the values of the pairwise distance matrix. To adjust for this 
sequence-length effect, we converted the pairwise distance matrix 
into a dissimilarity matrix using the following equation:

 
S

D
D Di j

i j

i i j j
,

,

, ,

= −
+

,1
2

 
(1)

where Di,j and Si,j are a pairwise distance matrix and dissimilarity 
matrix between the two sequences i and j, respectively. At this 

step, we calculated the pairwise distances between all pairs of 
unique sequences observed in all samples with the striped SW 
algorithm. We then transformed the pairwise distance matrix 
into the dissimilarity matrix using equation (1).

2.2.2. Dimensionality Reduction with Manifold 
Learning Methods
To visualize the structure of the high-dimensional dissimilarity 
matrix in a low-dimensional space, we applied dimensionality-
reduction (manifold learning) techniques to the dissimilarity 
matrix described above that was constructed with BLOSUM62. 
Here, we compared the results calculated with four different meth-
ods: multidimensional scaling (MDS) (29), ISOMAP (30), spec-
tral embedding (SE) (31), and t-distributed stochastic neighbor  
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FIgURe 2 | Continued

embedding (t-SNE) (32). All of these methods transform and 
embed the dissimilarity matrix S with dimensionality N into a 
new dataset Y with a lower dimensionality d in such a way as to 
preserve the structure of the dissimilarity matrix by minimizing 

cost functions. The major difference among these methods is 
the cost function, which is determined according to the relative 
distances between all pairs of sequences. MDS with a SMACOF 
algorithm minimizes the sum of squared errors in the relative 
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FIgURe 2 | Dimensional reduction with four different dimensionality-reduction methods: (A) t-SNE, (B) MDS, (C) ISOMAP, and (d) SE. Panel (i) includes the points 
of the total unique sequences observed in all samples. Panel (ii) includes only the portions of sequences that were observed in each sample. “Ep” and “Wt” denote 
two different genetic backgrounds of mice. “TN” and “TR” denote naive and regulatory T cells. “Thy” and “Per” denote the thymus and peripheral lymph nodes, 
respectively. For example, EpTN-Thy denotes the naive T cells that were collected from the thymus in the “Ep” mice.
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distances of all sequence pairs before and after embedding (29). 
This cost function of MDS tends to preferentially retain the 
distances between more distant data points over those between 
more adjacent points (33). ISOMAP also minimizes the sum of 
squared errors, but rather than using the relative distances, it uses 
the geodesic distances, which are the distances along the shortest 
paths between two nodes on the neighborhood graph, calculated 
with a k-nearest neighbor algorithm (30). In the present study, 
we calculated the geodesic distances with the Warshall–Floyd 
algorithm (34). ISOMAP retains a neighborhood structure 
of data points lying on a curved manifold [e.g., the Swiss roll 
dataset (30)], which is collapsed in MDS. SE, also known as 
Laplacian eigenmaps, minimizes the cost function based on 
the neighborhood graph, which ensures that local neighbor-
hood relations in a high-dimensional space are preserved in 
an embedded low-dimensional space (31, 35). We regarded the 
adjacency matrix based on the k-nearest neighbor algorithm 
as the weighted graph matrix to construct the Laplacian graph 
of SE. Finally, t-SNE converts the relative distances to joint 
probabilities, and minimizes the Kullback–Leibler divergence 
between the joint probabilities of the high-dimensional space 
and those of an embedded low-dimensional space (32). For 
calculation of the joint probabilities, t-SNE uses different kernels 
for the high- and low-dimensional spaces: a Gaussian kernel 
and a Student’s t-distribution, respectively. Since the Student’s 
t-distribution results in heavier tails than the Gaussian kernel, 
the t-SNE method emphasizes the local distances between data 
points in the low-dimensional space.

In studies of sequence alignments for sequences with different 
lengths, it is impossible to know the precise coordinates and the 
dimension of the sequence space. Thus, we cannot directly use 
principal components analysis, which is the most widely used 

dimensionality reduction technique (36) but requires vector 
data with fixed dimensionality. The common advantage of the 
above four methods is that if the distances between all pairs of 
data points are known, then there is no need to know the specific 
coordinates of the sequence space (32, 33).

We implemented t-SNE, MDS, and SE with the Scikit-learn 
manifold learning library (version 0.18.1) with Python (version 
2.7.12) (37). ISOMAP was implemented with our custom-written 
code in Python, because the ISOMAP function of the Scikit-
learn toolbox does not support the dissimilarity matrix as an 
argument. The detailed parameters of all methods are described 
in Table S2 in Supplementary Material.

2.2.3. Estimation of the Probability Density  
Function with KDE
To compare the data points scattered in the embedded low-
dimensional space among different samples, the embedded 
discrete data can be interpolated with a probability density func-
tion (PDF). Here, we estimated the PDF with the KDE algorithm 
(38–40). The exponential function was used as the kernel of the 
KDE (41). The bandwidth parameter of the exponential kernel 
function was optimized by maximum-likelihood estimation with 
a cross-validation algorithm (38). To reduce the computational 
cost of this calculation, we utilized the Kd-tree algorithm, which 
is an N-body algorithm that divides all of the data into N clusters 
based on their relative Euclidean distances (42). KDE was imple-
mented with the parameter optimization toolbox in Scikit-learn 
(37). For application of the KDE, we discretized the embedded 
space with 400 bins along each axis with the following range: 
[min max min max max min ],x x x x x xi i i i i i− − / , + − /( ) ( )10 10  
where xi indicates the position of a data point (i.e., a sequence) in 
the embedded space and i indicates each axis of that space.
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tABLe 1 | Sequences with high local JSD between EpTN-Thy and WtTN-Thy.

Regions eptN-thy WttN-thy

1 CAASAYQLIWG CAARLYQLIWG 
CAASCYQLIWG
CAASRYQLIWG
CAASTYQLIWG
CAARNYQLIWG
CAAGNYQLIWG
CAAADYQLIWG
CAANNYQLIWG
CAASDYQLIWG
CAASNYQLIWG
CAATNYQLIWG
CAARDYQLIWG
CADSNYQLIWG
CAGSNYQLIWG
CAGGNYQLIWG
CASSNYQLIWG
CATSNYQLIWG
CAVSNYQLIWG
CGGSNYQLIWG
CVGSNYQLIWG

2 CAARNYQLIWG

3 CAAMDSNYQLIWG

4 CAAKDSNYQLIWG
CAARDSNYQLIWG
CAASDSNYQLIWG

5 CAASAWDSNYQLIWG

6 CAASNTGGLSGKLTFG
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2.2.4. Quantification of Sample Differences with JSD
The final step of our method involves quantification of the inter-
sample differences by calculating the JSD values between all pairs 
of the estimated PDFs (43). The JSD is defined as:

 

D P Q D d
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(2)

where P(x) and Q(x) are the estimated PDFs and DKL is the 
Kullback–Leibler divergence; M(x) is P Q( ) ( )x x+

2
 and DJS

local ( )x  is 
the “local JSD,” whose integration with respect to x gives the 
JSD. Thus, the “pairwise” JSDs provide an inter-sample distance 
matrix that quantifies the combinatorial differences between 
all pairs of the samples. To categorize all samples, we utilized 
hierarchical clustering, which converts the N  ×  N-dimension 
sample-distance matrix into a dendrogram. Specifically, we 
used an agglomerative hierarchical clustering technique; each 
sample is initially treated as a singleton cluster, and pairs of 
clusters are repetitively merged according to a criterion until 
only a single cluster remains (44). We here used Wards criterion 
(45) for agglomerative clustering, which was implemented using 
the linkage function of Matlab’s Statistics and Machine Learning 
Toolbox (The MathWorks Inc., Natick, MA, USA). To compare 
our clustering result of the observed sequences with those 

obtained using other count-based methods, we also quantified 
the inter-sample difference with the BPLN and Bray–Curtis 
methods. BPLN was applied according to the methods described 
in the original paper by Ref. (11).

To evaluate the goodness of fit of the clustering results, 
Rempala and colleagues (11) calculated the cophenetic correla-
tion coefficient (CCC), which quantifies the distortion due to 
the transformation from the distance matrix to the cophenetic 
matrix, from which the dendrogram was derived. However, the 
CCC does not always accurately reflect the goodness of fit of the 
results. Indeed, Wards method tends to produce lower CCC val-
ues than other methods such as average and centering methods, 
even though it was previously reported as the best agglomerative 
method (46, 47). Therefore, instead of the CCC, we verified the fit 
of the model based on the statistical significance of the distance 
between the nodes of the dendrogram, because the significance 
of the estimated value of JSD is unclear. Specifically, we used 
a bootstrap method to evaluate significance, resampled data 
points from the naive PDF according to the number of observed 
read counts, and then re-estimated the PDF from the resampled 
data points. We then calculated the JSDs between the naive and 
re-estimated PDFs. We repeated this process 100 times to obtain 
a histogram of the calculated JSDs. The 99th percentile of the 
histogram of the JSDs between the naive and each re-estimated 
PDF represents the one-sided confidence interval with 99% cov-
erage, where values outside of the interval indicate a significance 
level of over 1%.

Finally, to identify the sequences with the greatest contribu-
tions to the inter-sample distances, we selected square bins for 
the top 1% of the local JSDs. We next defined the sequences in 
these bins as those contributing to the observed pairwise-sample 
difference. Furthermore, to investigate the characteristics of the 
contributing sequences, we calculated the relative frequencies of 
the amino acid residues in all of the contributing sequences of 
EpTN-Thy. The graphics of the relative frequencies were obtained 
using WebLog 3 software (48).

2.2.5. Subsampling of CDR3 Sequences from  
Human TCR Repertoires
The following three steps were performed for subsampling 
CDR3 sequences of the human TCR repertoires in the dataset of 
Ref. (21). First, we calculated the cumulative relative frequency 
distribution P(s) of the observed unique sequences for each 
sample. Second, we generated random numbers from a uniform 
distribution between 0 and 1. The number of generated random 
numbers was equal to the minimum value of the “in-frame” reads 
among individual samples. Third, for each random number x, 
we selected a sequence s that corresponds to s = P−1(x). These 
selected sequences obtained from subsampling almost preserved 
the original relative frequency distribution, even though the 
number of “in-frame” reads are equalized among all samples. This 
subsampling procedure is indispensable for handling datasets that 
have a large bias in the number of observed sequences, because 
this bias will seriously affect the differences in TCR repertoires 
among samples.

All analyses were performed using custom-made codes written 
in Python (version 2.7.12), Matlab (R2015 a), and R (version 3.3.1).
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3. ResULts

3.1. evaluation of sequence dissimilarity 
for Pairwise sequence Alignment
Using the pairwise sequence alignment and equation  (1), 
which excludes the influence of the sequence lengths from the 
alignment results, we calculated the dissimilarity matrix of all 
pairwise sequences in the dataset of Ref. (11). The upper panels 
in Figures 1A,B show the dissimilarity matrices obtained with 
the 10 different substitution matrices, five of PAM and five of 
BLOSUM. As shown in these panels, the components of the dis-
similarity matrices are clearly separated into two distinct clusters, 
which might reflect the α-chain rearrangements between Jα2.6 
and Jα2 under the usage of the other fixed VJ genes. Moreover, the 
low-numbered PAMs and high-numbered BLOSUMs showed 
more gradual differences among the matrix elements than the 
others. This tendency was even more evident when viewing their 
embedded spaces for the separation of clusters. The lower panels 
in Figures 1A,B show the t-SNE projection maps of the corre-
sponding dissimilarity matrices in the upper panels. In this case, 
low-numbered PAMs and high-numbered BLOSUMs tended 
to have merged clusters. This may be attributed to the specific 
characteristics of these two substitution matrices, which show 
higher variation in the scores for replacements between pairs of 
amino acids. Based on these results, we used the BLOSUM62 dis-
similarity matrix for subsequent analyses for two main reasons. 
First, both the too high-numbered PAMs and too low-numbered 
BLOSUMs seemed to lose the intra-cluster structures by trying 
to compress the clusters into regions that were too small, while 
both the too low-numbered PAMs and too high-numbered 
BLOSUMs diminished any inter-cluster differences, resulting 
in indistinguishable clusters. Second, BLOSUM62 has been 
the most widely used matrix in analyses of TCRs and antigen 
peptides to date (13, 49–51).

3.2. dimensionality Reduction of the 
dissimilarity Matrix
To evaluate the applicability of dimensionality-reduction meth-
ods, we reduced the dimensionality of the dissimilarity matrix 
into a two-dimensional space using four different dimensionality-
reduction methods (t-SNE, MDS, ISOMAP, and SE). In Figure 2, 
each point in each panel corresponds to a unique sequence of 
TCRs, and the spatial distances between pairs of points reflect 
the dissimilarity of the sequences corresponding to the points. In 
Figures 2A–D, panels (i) show the projection results of the unique 
sequences obtained from all samples, and panels (ii) show the 
subset of points (sequences) in (i) that appeared in the indicated 
sample (labeled in each panel), respectively. The differences of 
repertoires could be clearly reflected according to the scattering 
patterns of the points. Moreover, the points derived from the 
t-SNE and MDS methods spread more widely over the two-
dimensional space than the others, whereas the points were more 
locally consolidated with the ISOMAP method, and especially 
with SE. This result suggests that t-SNE and MDS may be more 
appropriate than other reduction methods for larger datasets, 

because highly dense regions can cause difficulty in comparing 
the probabilistic distributions between samples. Furthermore, 
the two clear clusters in the dissimilarity matrix (the upper 
panel of BLOSUM62 in Figure  1B) were well reflected in the 
two clusters for the MDS and ISOMAP methods (Figures 2B,C), 
but were not represented clearly in the clusters of t-SNE. This 
result suggests that t-SNE emphasizes slight differences within 
clusters rather than large differences between the clusters of the 
dissimilarity matrix. Since it is unclear whether this visualization 
property of t-SNE works efficiently for comparisons between 
samples, we quantified and compared the distributions of data 
points at the next step and examined the method that would be 
most appropriate for this purpose.

3.3. hierarchical Clustering of the 
Pairwise-sample-distance Matrix
We applied the KDE algorithms to the spatial distributions of 
data points to estimate their probability density functions (color 
gradient in Figure 2), for which JSD was calculated to quantify 
pairwise differences of repertoires. The matrices of the pairwise-
sample differences are shown in Figure 3A, and the dendrograms 
in Figure 3B indicate the hierarchical clustering results with the 
agglomerative method. The clustering results can be categorized 
into two groups: ISOMAP and the others (MDS, t-SNE, and SE). 
The dendrograms of t-SNE, MDS, and SE showed a consistent 
hierarchical relation with the experimental conditions, in which 
the samples were ranked in order of donor sites, types of T cells, 
and genetic background with clear biological significance (11). 
By contrast, the dendrogram of ISOMAP showed a mismatch in 
the hierarchical order between the T-cell types and donor sites 
of Ep mice.

To verify the relevance of the hierarchical clustering obtained 
by our method, they were compared with those obtained with 
previous count-based methods, the BPLN method, and the Bray–
Curtis method. As shown in Figure  4, the sample differences 
and dendrograms estimated from the BPLN and Bray–Curtis 
methods were very similar to those obtained using our approach 
with MDS, t-SNE, and SE. Importantly, these similar results were 
obtained with different data modalities: sequence similarity in our 
method and observation counts in previous ones. Therefore, this 
consistency suggests that there is common information between 
sequence similarity and observation counts with respect to quan-
tifying the differences among samples. We should note that these 
two modalities can be combined simply by assigning the number 
of observed sequence counts as a weighting factor for each data 
point (i.e., a unique sequence) in the embedded space. Indeed, the 
counts-weighted PDFs using KDE (Figure S1 in Supplementary 
Material) showed no obvious change in the hierarchical clustering 
structure of the pairwise-sample differences. Taking these results 
together, the MDS or t-SNE appears to be the better choice as a 
dimensionality-reduction method for evaluation of differences in 
TCR repertories among samples, given that these methods show 
wide spatial distributions of the data points and also show the 
most consistent dendrogram structures with those of previous 
count-based methods.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FIgURe 4 | Sample-distance matrices constructed with two methods: (i) BPLN, (ii) Bray–Curtis. (A) Matrices of pairwise-sample distances and (B) the dendrogram 
constructed from the matrices.

10

Yokota et al. Sequence-Based Quantification of TCR-Repertoire Differences

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1500

3.4. significance test for Inter-sample 
differences
To verify the statistical significance of the calculated JSDs 
between all sample pairs, we calculated the JSDs between the 
naive and the re-estimated PDFs using a non-parametric 
bootstrap algorithm. Figure  5 shows the histograms of the 
JSD values between the naive PDF of Figure  2A, ii, and the 
re-estimated PDFs. In the figure, arrows indicate the naive JSD 
values between the sample designated on the top of the panel 
and the other samples. If the values indicated by the arrows 
are bigger than the light red region in the panel, the pairwise 
naive PDFs deriving the naive JSD are significantly different to 
each other. The arrows that indicate the JSD values between the 
pairs in proximity to the terminal nodes of the dendrogram in 
Figure 3A, i, were all within the light red regions, which means 
that these JSD values were not significantly bigger than those of 
the histogram. Since these pairs correspond to the difference of 
donor sites, this result suggests that the PDFs of these repertoires 
from different sites are so similar that they cannot be statisti-
cally distinguished from each other. By contrast, the arrows that 
indicate the naive JSD values between pairs in the upper parts of 
the clusters, above the terminal nodes, were outside of the light 
red regions, which means that the JSD values were significantly 
different from each other. This result indicates that the types of 

T cells and the genetic background can be discriminated with 
sufficient statistical significance.

3.5. spatial distribution of Local  
Jsd Values
The main advantage of our method compared to count-based 
methods is the ability to identify the major sequences contribut-
ing to inter-sample differences. To identify the sequences with 
the greatest contributions of local JSD to JSD values, we plotted 
the spatial distribution of the local JSDs between the WtTN-Thy 
and EpTN-Thy sequences. As shown in Figure  6, six regions 
were identified that were associated with the top 1% significance 
values. Table  1 lists the identified sequences in these regions 
with larger local JSDs than the others. In regions 1 and 2, there 
was only one sequence for WtTN-Thy, whereas EpTN-Thy had 
multiple sequences in these regions. By contrast, the regions  
3, 4, 5, and 6 had several sequences of EpTN-Thy, whereas they 
had no sequence of WtTN-Thy. This result suggests that these 
unilaterally observed sequences may contribute to the observed 
abnormality in the antigen presentation of Ep mice.

This type of sequence identification can provide further 
knowledge about the characteristics of the sequences. Figure 7 
shows the occupation probability (relative frequency) of amino 
acids at each position of the sequences, which were observed 
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only in EpTN-Thy and contribute to pairwise differences. This 
result suggests that a consensus sequence was determined 
from the 6th to 11th amino acid position. We note that these 
contributing sequences and their characteristics cannot be easily 

identified simply by examining the overlapping sequences in two 
samples, because there was almost no overlap between EpTN-
Thy and WtTN-Thy sequences (0.352%, 1/284) and because 
these contributing sequences account for only 7.39% (21/284) 
of the total unique sequences in the two samples.

3.6. Application to human tCR 
Repertoires
To validate the applicability of our approach to datasets with 
greater diversity and sparsity, which are typical of clinical 
human TCR repertoires, we applied the same procedure to the 
dataset of Ref. (21) for human TCR repertoires of patients with 
Sézary syndrome. Figure 8A shows the pairwise dissimilarity 
matrix of unique sequences among all samples. The number 
of “in-frame” reads of each sample was equalized by subsam-
pling. Since this dataset has no restriction in available V(D)J  
genes for recombination, it appears that there is no obvious 
cluster in the dissimilarity matrix. As shown in Figure  8B, 
the projection results of this dissimilarity matrix of Figure 8A 
indicate that the clusters observed in the point distributions 
of the healthy donors became less consolidated according to 
the severity of Sézary syndrome. The pairwise-sample differ-
ences in these point distributions were quantified and shown 
in Figure 8C, and the samples are hierarchically clustered in 
Figure 8D. These results indicate that our method almost suc-
cessfully captures a hierarchical relation among the samples 
with respect to the severity of Sézary syndrome. The failure 
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stated concerns related to BPLN because of this vulnerability 
in the face of the high diversity of normal TCR repertoires. 
Overall, these results suggest that our method can estimate 
the inter-sample hierarchical structure more robustly than 
the previous methods by overcoming the high diversity and 
sparsity problem in human TCR repertoires.

4. dIsCUssIoN

We quantified the difference in TCR repertoires among different 
samples based on amino acid sequence dissimilarity. Through 
a quantitative comparison of the sequence distributions in 
the low-dimensional-embedded spaces of the dissimilarity 
matrix, we estimated an inter-sample hierarchical structure. 
For the restricted TCR repertoires of the transgenic mice, we 
demonstrated that our estimated structure was almost identical 
to that estimated with previous count-based methods that did 
not incorporate detailed sequence information. Furthermore, 
we identified the sequences that contribute most strongly to 
the pairwise-sample difference using the local JSD distribution. 
To validate our method for human TCR repertoires with much 
higher diversity and sparsity in TCR sequences than those of the 
transgenic mice, we confirmed that the estimated hierarchical 

of the hierarchical clustering in the samples with 20% severity 
might be attributed to the abnormality of sample P3, which 
has an extremely low number of “in-frame” reads (Figure S3 
in Supplementary Material). Moreover, the methods based on 
observation counts (e.g., BPLN and Bray–Curtis methods) 
cannot estimate the plausible hierarchical structures (Figure 
S2B in Supplementary Material) because of the rareness of 
overlapping sequences due to the high diversity and sparsity 
of the normal repertoires. Indeed, Bolkhovskaya et al. (52) also 
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clustering structure has a good correspondence with the severity 
of Sézary syndrome.

Despite the fact that our method relies on sequence similarity 
and previous methods are based on observation counts, which 
are completely different features of the TCR repertoire, almost 
the same clustering structure among samples was obtained in 
the dataset of the transgenic mice. This suggests that there is 
a relationship between the observation counts and sequence 
similarities, which was further confirmed by the lack of obvi-
ous change in the structure of the hierarchical clustering when 
estimated by taking observed sequence counts into account as 
weights (Figure S1 in Supplementary Material). Further studies 
to understand this relation in greater depth and generality would 
allow for cross-checking the results of sample classification by 
investigating the consistency of the two methods. Moreover, more 
detailed classification of repertoires may be possible by clearly 
distinguishing the overlapping and non-overlapping information 
between counts and sequences.

Although our method and the counts-based methods provide 
similar classification results, there are three merits of our method. 
The first is the robustness against errors derived from polymerase 
chain reaction (PCR) amplification bias attributed to the vari-
ability in reproducibility for individual sequences (53). Previous 
studies have shown that the PCR efficiency is affected by sequence 
profiles such as the length and GC content (54, 55). Indeed, 
high-throughput sequencing with DNA barcoding has confirmed 
that the PCR amplification efficiency of TCR sequences is highly 
variable due to the differences in profiles of individual cDNA mol-
ecules (27, 56, 57). This fact suggests that the PCR process for TCR 
sequence amplification induces errors in the numbers of observed 
sequence counts, which may eventually lead to errors in the results 
of counts-based methods such as PA models. Alternatively, our 
method does not depend on the sequence counts, allowing for 
reliability against errors due to PCR bias. The second key merit of 
our method is the ability to identify the sequences with the great-
est contributions to pairwise-sample differences. This sequence 
identification allows for targeted analyses along with the results of 
other studies such as the simulation modeling for determining the 
crystal structures of the TCRs encoded by these sequences (14) or 
establishing alignments between CDR3 sequences and microbial 
genomes (13). Such a closed-loop experimental design may help 
to achieve a breakthrough in the development of vaccines or 
immunotherapies (1). The last merit is robustness to high diver-
sity and sparsity. As the diversity and sparsity of the repertoires 
increase, the overlapping sequences, which the multivariate PA 
models and conventional methods in ecology rely on, are less 
likely to be observed. This trend makes the behaviors of these 
methods unstable for highly diverse repertoires. By contrast, since 
our method does not focus on the overlapping of sequences but 
rather on the low-dimensional representation derived from the 
dissimilarity of observed sequences, the decrease in the number 
of overlapping sequences in highly diverse repertoires may have 
much less of an impact on the performance of our method. In 
summary, these results and advantages demonstrate the potential 
applicability of adopting a sequence-based method in repertoire 
analysis, which can compensate for the drawbacks of conventional 
count-based methods.

Nevertheless, there are several issues and problems that 
should be mentioned that are worthy of further investigation 
for the development and improvement of sequence-based 
approaches for the comparison of TCR repertoires.

One issue concerns the treatment of gap penalties. When we 
evaluated the differences of the score matrices shown in Figure 1, 
we fixed the gap opening and extension penalties to 10 and 1, 
respectively. Although the effects of the penalties have not been 
adequately investigated in previous studies (58), the gap opening 
penalty was found to affect estimations of the hierarchical cluster-
ing structure (data not shown). The CDR3 region of TCR is a 
much shorter sequence than peptide sequences and also shows 
frequent deletions and insertions from somatic recombination 
events. Considering these characteristics, further investigations 
about the effects of gap penalties are needed. In addition, in terms 
of sequence alignment, we should consider the introduction of 
recently proposed novel substitution matrices taking into account 
the affinity against MHC (59) and specific epitopes (18). Since 
these matrices are specialized for TCR properties, they may pro-
vide more clues into the differences in TCR repertoires among 
samples.

The second aspect worthy of further consideration is the 
dependency of the results on the random numbers used for 
optimization and the toolboxes used for implementation.  
As shown in Figures S4–S9 in Supplementary Material, the 
previous version (version 0.16.1) of the Scikit-learn toolbox 
showed subtly different results, although this difference did not 
affect our conclusions or arguments. The main cause of this dif-
ference may be the change of the stopping criteria of iterations 
for manifold learning methods. Moreover, even when using the 
same toolbox (with the same version), the calculated results can 
be slightly different depending on the random numbers used in 
optimization.

The third issue is the empirical nature of the cost functions 
used in the dimensionality-reduction methods. As demonstrated 
in Figure 2, the scattering patterns of the sequence data in the 
low-dimensional space depend on the cost functions of the 
method adopted. Using MDS and ISOMAP, we obtained two clear 
clusters reflecting two regions in the dissimilarity matrix. This 
is because the cost function of MDS preferentially preserves the 
distances between the distant points rather than those between 
nearby points (33). By contrast, t-SNE emphasizes the local struc-
tures of nearby points over global points by using the Student’s 
t-distribution as the kernel of the embedded space. These cost 
functions were empirically determined for visualization purposes 
in the original papers, without consideration of the subsequent 
quantitative inter-sample comparison of the embedded results. 
Although our results suggest that the empirical combination 
of dimensionality-reduction methods and comparison of the 
embedded results by JSDs may work well, both the projection 
method and comparison methods in the embedded space should 
be consistently designed so as to best reflect the inter-sample 
difference in the original sequence space. This method might be 
developed by choosing an information-theoretic measure for the 
cost function of projection that can preserve the relevant infor-
mation of repertoires in the original sequence space. Because 
the underlying high-dimensional structures of the repertoire are 
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