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A B S T R A C T   

Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, 
leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the 
creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macro-
molecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme 
amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic 
parameter information and subunit composition details, making it rather user-unfriendly. In this work, we’ve enhanced the ECMpy toolbox to version 2.0, broad-
ening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs 
machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and 
visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms 
that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a pip package (htt 
ps://pypi.org/project/ECMpy/).   

1. Introduction 

Genome-scale metabolic models (GEMs), a class of mathematical 
constructs, elucidate the intricate interplay among cellular genes, pro-
teins, and reactions, effectively guiding and enhancing industrial 
chemical and biofuel production [1]. Current approaches for predicting 
microbial phenotypes and yields using GEMs primarily rely on con-
ventional techniques like constraining carbon source uptake rates and 
adjusting the toggling of metabolic reactions. Unfortunately, these 
methods overlook the significant impact of enzyme concentrations, ki-
netic parameters, and pathway thermodynamics on reaction fluxes, 

resulting in substantial discrepancies between predictions and experi-
mental results [2]. In an effort to overcome these limitations, the 
concept of enzymatic constraints on metabolic reactions has been 
skillfully integrated into various constraint-based methodologies. 
Notably, this integration is evident in frameworks such as GECKO (If no 
version is specified, the default is GECKO 3.0) [3] and AutoPACMEN [4]. 
These sophisticated models have significantly expanded the scope of 
classical flux balance analysis (FBA), providing insights into overflow 
metabolism and cellular growth across diverse environments for a range 
of organisms, including Escherichia coli [5,6], Saccharomyces cerevisiae 
[7], Yarrowia lipolytica [8], Aspergillus niger [9], Corynebacterium 
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glutamicum [10], and Bacillus subtilis [11]. 
ECMpy, a simplified Python-based workflow developed in 2021 [6], 

has been applied to construct ecGEMs for E. coli [6], C. glutamicum [10], 
and B. subtilis [11]. In contrast to the methodologies of GECKO and 
AutoPACMEN, ECMpy introduces constraints on the total enzyme 
amount without adding pseudo metabolites or reactions to the stoi-
chiometric matrix (S-matrix). It also reveals and emphasizes the influ-
ence of protein subunit composition within reactions on model 
simulation outcomes, along with presenting an automated calibration 
approach for enzyme kinetic parameters. As ECMpy avoids modifying 
the foundational S-matrix, it seamlessly integrates multiple algorithms 
already incorporated into COBRApy [12], including flux variability 
analysis (FVA), FASTCC [13], and minimization of metabolic adjust-
ment (MOMA). This integration is achieved without the need to rewrite 
algorithms based on new S-matrix features, unlike GECKO and Auto-
PACMEN. However, it’s important to note that within ECMpy, the 
enzymatic kinetic parameters and protein subunit composition data 
required for model construction must be acquired and curated manually, 
resulting in a user experience that is notably user-unfriendly. 

In this study, we have advanced the ECMpy toolbox to its enhanced 
version, ECMpy 2.0, thereby expanding its capabilities to automatically 
construct ecGEMs for a wider range of organisms. Specifically, the 
integration of AutoPACMEN and DLKcat [14] enhances ECMpy 2.0’s 
capacity to provide proficient support for both model and non-model 
organisms, ensuring a comprehensive incorporation of kinetic con-
straints, even for organisms that have received limited attention. Addi-
tionally, an automated procedure has been established within the realm 
of protein molecular mass calculation to parse the UniProt database 
[15], providing precise protein subunit composition information and 
reinforcing the accuracy of corresponding reaction-associated protein 
molecular masses. To broaden the functionality of ECMpy 2.0, a 
comprehensive set of simulation utility functions has been seamlessly 
integrated, covering model parameter analysis [5,7–11], phenotypic 
phase plane (PhPP) analysis [9–11], metabolic overflow simulation [6,7, 
10,11], and trade-off phenomena simulation [6,10,11]. Finally, ECMpy 
2.0 integrates three prominent algorithms, each notably effective in 
predicting target for metabolic engineering. These include an enzyme 
cost-based sorting method [5,11], the flux scanning based on enforced 
objective flux (FSEOF) method [16,17], and an approach based on 
protein cost discrepancies across reactions in distinct scenarios: high 
growth low product generation (HGLP) and low growth high product 
generation (LGHP) [10]. The enzyme cost-based sorting method, known 
for its simplicity and widespread application, has the capacity to reveal 
pivotal enzymes within a pathway. It has demonstrated success in 
various contexts, such as enhancing lysine production in E. coli [5] and 
synthesizing riboflavin and menaquinone 7 in B. subtilis [11]. However, 
this method excels primarily in identifying overexpressed targets, 
leading to the development of an approach rooted in the disparities of 
protein costs within reactions (HGLP and LGHP). This innovative 
methodology distinguishes overexpression and attenuation targets 
within a pathway and has been effectively applied in scenarios such as 
enhancing lysine production in C. glutamicum [10]. Furthermore, ECMpy 
2.0 incorporates the FSEOF algorithm, an innovation introduced in 2010 
and primarily designed for identifying targets within GEMs [17]. 
Recently, Ishchuk et al. refined and applied this algorithm to the yeast 
ecModel, ecYeast8. By predicting combinations of targets, they managed 
to amplify heme production within cells by an impressive 70-fold [16]. 
To the best of our knowledge, ECMpy 2.0 stands as a pioneering auto-
mated toolkit seamlessly integrating data acquisition, model construc-
tion, model refinement, model analysis and visualization, along with the 
prediction of metabolic engineering targets. 

2. Materials and methods 

2.1. Model parsing 

ECMpy requires the retrieval of protein molecular weight informa-
tion from UniProt using UniProt IDs, in conjunction with the allocation 
of enzyme kinetic data through substrate (BiGG ID) and EC matching. 
Recognizing the existing variability in the quality of GEMs, we have 
introduced a preliminary step in ecModel construction that involves 
evaluating gene coverage (UniProt ID coverage), reactions coverage (EC 
number coverage excluding exchange reactions), and metabolites 
coverage (BiGG ID coverage). During this assessment, we have estab-
lished that models with coverage below 33 % are not recommended for 
direct ecModel construction. Users are required to augment these 
annotation details within the model to proceed with subsequent 
processes. 

2.2. Parameter acquisition 

The total enzyme amount constraint (
∑n

i
vi∗MWi
σi∗kcat,i

≤ Ptotal ∗ f) is pri-
marily composed of the following elements: molecular weight (MW), 
saturation coefficient (σ), enzyme kinetic parameters (kcat), the total 
protein fraction (Ptotal), and the mass fraction of enzymes (f). Notably, 
the saturation coefficient typically adopts a uniform average of 0.5 
across all enzymes [7,10,11], while Ptotal of 0.56 g total cellular prote-
in/g DCW represents the average protein content in most microbial cells 
[18]. The f value can be derived from protein composition data, such as 
for E. coli with 0.406 g enzyme/g total cellular protein [6], C. glutamicum 
with 0.46 g enzyme/g total cellular protein [10], B. subtilis with 0.588 g 
enzyme/g total cellular protein [11], and S. cerevisiae with 0.446 g 
enzyme/g total cellular protein [7]. In ECMpy 2.0, we furnish a function 
to compute the f value (see 02.get_ecModel_using_ECMpy.ipynb), 
whereby users need only provide GEM files and protein abundance data 
to automate the acquisition of f values. 

ECMpy 2.0 offers two approaches for accessing enzyme kinetic 
parameter information, ensuring comprehensive coverage for both 
model organisms and non-model organisms. The first method utilizes 
the AutoPACMEN process to extract enzyme kinetic parameter infor-
mation from the BRENDA [19] and SABIO-RK [20] databases. Using 
substrate and EC number, the enzyme kinetic parameter information 
associated with the model is parsed in 9 steps (detailed in 01.get_reac-
tion_kcat_using_AutoPACMEN.ipynb). If a perfect match for organism, 
substrate, and EC number is not found, AutoPACMEN facilitates kcat 
matches by querying the BRENDA and SABIO-RK databases using a set 
of hierarchical matching criteria as summarized in the literature [4]. 
Furthermore, to augment the number of experimental sources for kcat 
data, we extended the AutoPACMEN workflow in ECMpy 2.0, intro-
ducing a transformation for enzyme specific activity data (Eq. (1)). This 
method is suitable for cases with high annotation quality in the species’ 
GEM and a database rich in enzyme kinetic parameter data. For 
non-model organisms, there is a scarcity of enzyme kinetic parameter 
data in the BRENDA and SABIO-RK databases, which is insufficient for 
constructing ecModels. The second method integrates the DLKcat [14] 
approach, which predicts enzyme kinetic parameters based on the 
sequence information of enzymes catalyzing reactions and substrate 
information. This method involves seven steps outlined in 01.get_reac-
tiion_kcat_using_DLKcat.ipynb. While this approach can provide kinetic 
parameter information for nearly all enzymes in the model, there is a 
discrepancy between predicted values and experimental data. It is 
particularly useful for cases with poor GEM annotation quality and 
limited database coverage of kinetic parameters for that species. 
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kcat
[
s− 1]=

SA
[
umol ∗ mg− 1 ∗ min− 1] ∗MW

[
mg ∗ umol− 1

]

60
[
s ∗ min− 1] (1) 

Molecular weight (MW) is a critical factor influencing the predictive 
accuracy of ecModels. Two key factors impact the final MW assigned to a 
specific reaction’s enzyme: whether the protein is constituted by sub-
units (‘and’ relationship in the GPR) and the quantity of each subunit. 
Previous ecModel construction workflows, such as GECKO and Auto-
PACMEN, have overlooked subunit composition information (typically 
set to 1 or provided by the user). In ECMpy 2.0, we have introduced an 
automated process for acquiring protein subunit composition, stream-
lining the process for users who only need to provide species information 
to retrieve quantitative subunit information extracted from the ‘Inter-
action’ section in UniProt. Initially, we retrieve all UniProt IDs and 
‘Interaction’ section for the specified species based on species name or 
ID. Subsequently, we developed a word list to analyze the descriptive 
information within the ‘Interaction’ section (e.g., Homodimer; Hetero-
trimer; Tetramer of two alpha and two beta chains) and converted it into 
corresponding subunit numbers [10]. For instance, P0A796 is described 
in UniProt as ‘Homotetramer’, indicating a subunit number of 4. 

2.3. ecModel construction 

The process of constructing an ecModel can be outlined through the 
following steps (as detailed in 02.get_ecModel_using_ECMpy.ipynb). 
Initially, reversible reactions in the GEM were divided into pairs of 
irreversible reactions. Additionally, reactions governed by multiple 
isoenzymes were segmented into distinct reactions, appending a nu-
merical identifier to the reaction ID, such as GLCpts_num1. This 
approach ensures that each reaction is uniquely associated with a cor-
responding enzyme entity. Following this clarification, we calculated 
the MW for each individual enzyme entity. For reactions catalyzed by 
enzyme complexes, we aggregated the cumulative sum of proteins 
constituting the complex (as in Eq. (6)). Furthermore, we proceeded to 
determine the kinetic parameters for the enzymes, a task accomplished 
through the AutoPACMEN or DLKcat methodologies. Concurrently, we 
quantified the mass fraction of total cellular enzymes (Eq. (7)), a process 
facilitated by proteomic or RNA-Seq data. Ultimately, the ECMpy pro-
cess was used to construct the ecGEM, and the mathematical represen-
tation of this method is as follows: 

Z=max
{
CT ∗ v

}
(2)  

S ∗ v= 0 (3)  

lb≤ v ≤ ub (4)  

∑n

i=1

vi ∗MWi

σi ∗ kcat,i
≤ Ptotal ∗ f (5)  

MW=
∑m

j=1
Nj ∗MWj (6)  

f =
∑n(genemodel)

i=1
AiMWi

/
∑n(genetotal)

j=1
AjMWj (7)  

Where CT is the transposed vector of the integer coefficient of each flux 
in the objective function Z; S is the stoichiometric matrix; lb and ub are 
the lower and upper bounds of the reaction fluxes in the system, 
respectively; kcat,i is the turnover number of enzymes that catalyze re-
action i; MWi denotes the molecular weight of enzyme i; m is the number 

of different subunits in the enzyme complex; Nj is the number of jth 
subunits in the complex; σi is the saturation coefficient for enzyme i; 
Ptotal is the average protein content in most microbial cells ; f is the total 
mass fraction of all cellular enzymes in our ecGEM. 

2.4. Parameter calibration 

The initial ecGEM exhibited discrepancies in predicting the experi-
mental phenotype, necessitating a correction of the kcat values. In the 
context of ECMpy 2.0, we have implemented an automated parameter 
calibration process for the ecModel, by identifying the reaction with the 
highest enzyme cost in the pathway and substituting its kcat values with 
the highest value (as detailed in 03.ecModel_calibration.ipynb). The 
calibration procedure aligns with the coherent approaches of ECMpy 
and GECKO, with a comprehensive blueprint elaborated in the ecBSU1 
[11]. Initially, our effort involved quantifying the enzyme cost attrib-
uted to each specific reaction in the pathway, focusing on biomass 
maximization as the primary objective. Subsequently, reactions exhib-
iting the most substantial enzyme costs were identified as candidates for 
recalibration. Following this identification, adjustments were made to 
the reaction’s kcat value, aligning it with the highest corresponding kcat 
value extracted from the BRENDA and SABIO-RK databases. In deter-
mining the highest corresponding kcat value, the current process does 
not distinguish between different experimental conditions or species. 
Instead, it relies solely on identifying the maximum value associated 
with the same EC number in the two databases. This iterative refinement 
process continued until convergence with experimental data was ach-
ieved or the specified threshold of iterations was reached. 

2.5. ecModel analysis and visualization 

ECMpy 2.0 introduces a suite of analytical functionalities, com-
plemented by visual representations, to comprehensively dissect 
ecModels. For instance, we have incorporated cumulative distribution 
plots to showcase the complexity of ecModel parameters, spanning di-
mensions such as kcat and MW. Additionally, we utilize Phenotypic 
Phase Plane (PhPP) analysis to reveal trends in the model solution space. 
Various analyses related to metabolic overflow are integrated, enabling 
the effortless capture of overflow metabolites and presenting the reasons 
behind overflow metabolism occurrences. Lastly, simulations are pro-
vided to illustrate the trade-off between enzyme usage efficiency and 
biomass yield. 

2.6. Metabolic engineering target prediction 

Within the context of ECMpy 2.0, we offer three distinct methodol-
ogies for predicting metabolic engineering targets using ecModels. 
These methodologies include the enzyme cost-based sorting method [5, 
11], the FSEOF algorithm-based method [16], and the HGLP/LGHP 
method [10]. The enzyme cost-based sorting method, utilized for 
product computation, focuses on the product, setting the lower 
threshold of the biomass reaction at 10 % of the maximal growth rate. By 
analyzing flux values, it examines the enzyme cost of each reaction, 
pinpointing kinetic bottleneck reactions characterized by the most 
substantial enzyme costs (Eq. (8)). The HGLP/LGHP method calculates 
the cost of each reaction within two pathways, namely HGLP and LGHP. 
It subsequently scrutinizes fold changes in enzyme costs, selecting those 
with a fold change exceeding 1.5 as potential targets for metabolic en-
gineering (Eqs. (9) and (10)). For the FSEOF method, we have success-
fully reproduced and translated this methodology from MATLAB code to 
Python. During each simulation, the core objective was to maximize 
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product production, a pursuit undertaken across ten distinct 
biomass-yield conditions (0.5* wild-type biomass - 0.9* wild-type 
biomass). Scores were generated for each reaction in the network, 
discerning fluxes that consistently increased or decreased as biomass 
requirements diminished. Thus, the flux scores meticulously highlighted 
reactions that exhibited consistent upregulation (score >1), down-
regulation (0 < score <0.95), or stability (0.95 < score <1). 

Enzyme costi =
vi ∗MWi

σi ∗ kcat,i
(8)  

Enhance target=
{

Enzyme
⃒
⃒
⃒
⃒
Enzyme costLGHP
Enzyme costHGLP

≥ 1.5
}

(9)  

Weaken target=
{

Enzyme
⃒
⃒
⃒
⃒
Enzyme costHGLP
Enzyme costLGHP

≥ 1.5
}

(10)  

2.7. Configuration of operating environment 

ECMpy 2.0 is implemented in Python 3.7 and utilizes Python’s 
standardized library along with additional modules such as Biopython, 
COBRApy (version = 0.21.0) [12], openpyxl, requests, xlsxwriter, 
scikit-learn [21], RDKit, pubchempy, plotly, among others, as detailed 
on the project’s GitHub page (https://github.com/tibbdc/ECMpy). 
Users can access the ECMpy 2.0 codebase and documentation via two 
methods:  

(1) Installing ECMpy 2.0 using pip: 

pip install ECMpy.  

(2) Acquiring ECMpy 2.0 via git clone: 

git clone https://github.com/tibbdc/ECMpy.git. 
Furthermore, detailed documentation on the functionalities of all 

ECMpy 2.0 functions is available at https://ecmpy.readthedocs.io/e 
n/latest/. 

3. Results and discussion 

3.1. An overview of ECMpy 2.0 

ECMpy 2.0 comprises four major modules: model parsing, parameter 
acquisition, model construction, and model analysis (Fig. 1). The quality 
of GEMs significantly impacts the construction of ecModels, especially 
regarding the acquisition of kinetic parameters. In the initial phase of 
ecModel construction, we implement model parsing rules, which involve 
a straightforward evaluation of metabolite BiGG IDs, gene UniProt IDs, 
and reaction EC number annotations coverage within the model to 
determine the feasibility of ecModel construction. We propose that future 
GEMs should adhere to the standard-GEM guidelines [22], explicitly 
incorporating support for diverse database IDs within the annotations of 
genes, metabolites, and reactions. This enhancement facilitates the con-
struction of multi-constraint models (mcModels), encompassing enzyme 
constraints, thermodynamic constraints, and others. 

The construction of ecModels involves critical parameters such as 
enzyme kinetic parameters (kcat), enzyme molecular weight (MW), and 
the mass fraction of enzymes (f). To acquire enzyme kinetic parameters, 
we currently support two methods: one based on AutoPACMEN for 
parsing the BRENDA and SABIO-RK databases, and another based on 
DLKcat for direct prediction. We have expanded the capabilities of 
AutoPACMEN to utilize specific activity [5] (Eq. (1)) data from 
BRENDA, thereby broadening the coverage of enzyme kinetic parame-
ters. However, AutoPACMEN is more suitable for organisms with 

Fig. 1. The framework of ECMpy 2.0. The framework comprises four main modules: firstly, the model parsing module parses the model to assess the coverage of 
UniProt ID, BiGG ID, and EC numbers; secondly, the parameter acquisition module retrieves the required f, MW, and kcat data from various data sources for modeling; 
thirdly, the model construction module adds enzyme constraints directly by incorporating total enzyme equations and performs parameter calibration; finally, the 
model analysis module allows users to conduct mechanistic analysis and predict metabolic engineering targets. 
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abundant enzyme kinetic parameters in databases, such as model or-
ganisms (e.g., E. coli, C. glutamicum, and S. cerevisiae). For most 
non-model organisms, this approach often yields unreliable kcat. Hence, 
in ECMpy 2.0, we have integrated the DLKcat method, providing 
enhanced enzyme kinetic parameters, particularly for non-model or-
ganisms. In terms of obtaining enzyme molecular weight data, inspired 
by GPRuler [23], we have developed a method that automatically parses 
UniProt annotations to retrieve protein subunit composition informa-
tion, facilitating the subsequent computation of molecular weights for 
corresponding reactions [10,11]. For proteins not record on UniProt, 
ECMpy 2.0 defaults to considering it as a monomer, similar to the 
approach taken by AutoPACMEN and GECKO. To calculate the f value, 
we provide a computational function that takes the model and protein 
abundance data (accessible from PAXdb [24] or determined through 
experimentation) as inputs, enabling direct computation of the f value. 

The model construction module in ECMpy employs a streamlined 
process, introducing enzyme constraints by directly incorporating the 
total enzyme amount constraint and enabling automated calibration of 
enzyme kinetic parameters based on enzyme utilization. Regarding the 
model analysis module, commonly used analysis methods for ecModels 
have been integrated, including model parameter analysis, PhPP anal-
ysis, metabolic overflow simulation, and trade-off phenomenon simu-
lation. A notable achievement is the seamless integration of three 
distinct metabolic engineering target prediction methodologies: an 
enzyme cost-based sorting approach, the FSEOF-based method, and the 
HGLP/LGHP method. 

3.2. Comparison of enzyme-constrained model construction and analysis 
tools 

Currently, three primary workflows exist for constructing ecModels: 
AutoPACMEN, GECKO, and ECMpy. These methods, originating from 
FBAwMC (flux balance analysis with molecular crowding) [25], share a 
common principle focusing on enzyme selection and quantification for 
synthesis, emphasizing pathways with enzymes combining low molec-
ular weight and high catalytic capacity. The key distinction lies in the 

approach to introducing total enzyme amount constraint. AutoPACMEN 
and GECKO utilize pseudo-metabolites and pseudo-exchange reactions, 
while ECMpy imposes a total protein constraint outside the S-matrix, 
resulting in varying model complexities. 

For acquiring enzyme kinetic parameters, all three processes extract 
data from authoritative enzyme databases, BRENDA and/or SABIO-RK 
(Table 1). ECMpy 2.0 and GECKO enhances coverage by integrating 
the DLKcat method, a machine learning approach for predicting enzyme 
kinetic parameters, extending applicability to non-model organisms. 
Recognizing the influence of molecular weight on reaction fluxes, 
GECKO, AutoPACMEN, and ECMpy require users to manually organize 
protein subunit composition data; otherwise, it defaults to monomers 
(with a subunit count of 1). ECMpy 2.0 introduces automated parsing of 
UniProt annotations for this purpose, enhancing the accuracy of mo-
lecular weight calculations for enzyme-constrained models. 

In terms of model analysis and metabolic engineering target pre-
diction, GECKO incorporates FVA and FSEOF algorithms. ECMpy 2.0, by 
not modifying the S-matrix, accommodates diverse analytical methods 
within the COBRApy toolkit. In contrast, GECKO and AutoPACMEN 
necessitate the rewriting of analysis functions within COBRApy to align 
with the new S-matrix structure. It introduces ecModel analysis and 
visualization tools, including model parameter analysis, PhPP analysis, 
metabolic overflow simulation, and trade-off phenomenon simulation. 
Additionally, three published ecModel methods for metabolic engi-
neering target prediction—enzyme cost, HGLP/LGHP, and FSEOF—are 
integrated. ECMpy2.0 is subject to limitations and currently lacks inte-
gration with proteomic data, unlike GECKO. 

AutoPACMEN and ECMpy 2.0 are solely written in Python, ensuring 
universality and extensibility. GECKO supports both MATLAB and Py-
thon versions through geckopy [26] but lags in development, not fully 
incorporating all GECKO analysis methods (e.g., FSEOF). 

3.3. ecModel construction and analysis 

ECMpy 2.0 provides two methodologies for ecModel construction. 
The first involves a step-by-step process through specific notebook files 

Table 1 
Recent workflow for constructing and analyzing ecModels.  

Method AutoPACMEN GECKO ECMpy 

kcat source BRENDA and SABIO-RK BRENDA; Deep learning (DLKcat) BRENDA and SABIO-RK; Deep learning (DLKcat) 
Protein Subunit 

composition 
source 

– – Automatic parsing of UniProt 

Method of adding 
enzyme 
constraints 

To each enzyme catalyzed reaction, add 
enzyme usage as substrate to the S-matrix, 
and one total protein exchange reaction. 

For each enzyme-catalyzed reaction, add enzyme 
usage as a substrate to the S-matrix, and include 
an equal number of protein exchange reactions in 
the S-matrix. 

no metabolites or reactions added, only a total protein 
constraint outside the S-matrix. 

Model complexity Medium High Low 
Simulation utilities – Flux variability analysis; Model parameter 

analysis 
The S-matrix remains unchanged, ensuring compatibility 
with any GEM analysis method. Additionally, ECMpy 2.0 
integrates model parameter analysis, phenotype phase 
plane Analysis, metabolic overflow simulation, and trade- 
off phenomenon simulation. 

Prediction of 
metabolic 
engineering 
targets 

– FSEOF Three methods: enzyme cost, the enzyme cost differences 
in different conditions, and FSEOF 

Year 2020 2017, 2022, 2024 2021 
Reference [4] [3,7,8] [6] 
Platform Python MATLAB/Python Python  
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(00.Model_preview.ipynb, 01.get_reaction_kcat_using_DLKcat.ipynb/, 
01.get_reaction_kcat_using_AutoPACMEN.ipynb, 02.get_ecModel_u-
sing_ECMpy.ipynb, and 03.ecModel_calibration.ipynb). Alternatively, a 
one-click model construction is possible via the command line (06.One- 
click_modeling.ipynb). This notebook offers four one-click modeling 
options that can be combined in various ways:  

(1) Direct utilization of user-provided kcat, MW, and f.  
(2) Utilization of user-provided kcat and MW, with f values calculated 

from protein abundance data.  
(3) Calculation of kcat, MW, and f values, with kcat data parsed using 

AutoPACMEN.  
(4) Calculation of kcat, MW, and f values, with kcat data predicted 

using DLKcat. 

As of now, the one-click modeling process for Method 4 takes 
approximately 3–4 h to complete. The primary bottleneck is the auto-
mated acquisition of kcat and MW data, where tasks like parsing protein 
subunit composition data take around 1–1.5 h, and metabolite ID con-
version takes around 1–2 h. The data retrieval speed depends on internet 
speed, suggesting potential improvements like caching such data in 
future ECMpy. For instance, pre-parsing protein subunit composition 
data for all species to create a dedicated matching file and pre-arranging 
a metabolite ID conversion file. Addressing these data matching and ID 
conversion challenges is anticipated to reduce ecModel construction 
time to within 0.5 h. 

To validate the feasibility of ECMpy 2.0, we constructed ecGEMs 
using 108 models stored in the BiGG database [27], with the majority 
being Escherichia coli (58 models). During the modeling process, we 
excluded five models whose genes could not be mapped to UniProt, as 
well as five mammalian models (of limited utility for ecGEMs), including 
four Homo sapiens models and one Mus musculus model. Additionally, for 
cases with more than two models per species, only one model was 
retained. Consequently, a total of 20 models were ultimately selected for 
the construction of ecGEMs, encompassing diverse species such as bac-
teria (including 16 species like E. coli, Pseudomonas putida, Bacillus 
subtilis, etc.), fungi (Saccharomyces cerevisiae), protozoa (Plasmodium 
falciparum and Trypanosoma cruzi), and algae (Phaeodactylum tricornu-
tum) (detailed in 07.BiGG_to_ecGEM.ipynb). The ecGEMs mentioned 
above can be directly accessed through GitHub at the following link: 
https://github.com/tibbdc/ECMpy/tree/master/model/BiGG/. How-
ever, it is worth noting that these models are still in their preliminary 
stages. To be used effectively, they require further kinetic parameter 
corrections based on experimental results. 

To demonstrate how ECMpy 2.0 constructs ecModels, we use E. coli 
as an example and employ the first method described above to build an 
ecModel for E. coli. The initial model utilized iML1515R [6] and protein 
abundance data from PAXdb. After the initial model construction, 
automated calibration was performed based on the experimentally 
determined E. coli growth rate (0.66 h− 1 [18]). Following 49 rounds of 
calibration (adjustable threshold; set here to fewer than 50 iterations of 
calibration), the simulated growth rate was adjusted to 0.401 h⁻1. It’s 
important to note that the growth rate has not been iterated here to 
match the experimental growth rate. Additionally, it is advisable to 
perform manual corrections using C13 flux data [6] or protein abun-
dance data, as the flux distribution results from the automated calibra-
tion process may differ from experimental values. 

Afterwards, we utilized the manually corrected ecModel of E. coli 
(eciML1515 [6]) to showcase the analysis capabilities of ECMpy2.0. 
Initially, ECMpy 2.0’s model parameter analysis module was employed 

to clearly illustrate distinct features of kcat and MW (Fig. 2 A and B). 
Further analysis using PhPP visualization provided a global perspective 
on how changes in two environmental variables, such as carbon and 
oxygen uptake rates, impact optimal growth rates (Fig. 2C and D). The 
introduction of enzyme constraints significantly reduced the solution 
space (Fig. 2 D). Utilizing ECMpy 2.0’s overflow simulation module, an 
analysis of E. coli metabolic overflow was conducted, and a visualization 
graph illustrated the stages of overflow occurrence and overflow 
byproducts (Fig. 2E). Moreover, the integration of the trade-off phe-
nomenon simulation module revealed a distinct trade-off between yield 
and enzyme usage efficiency in E. coli’s metabolic process (Fig. 2F). 
Additionally, the metabolic processes were categorized into the 
substrate-limited stage (less than 6 mmol/gDCW/h), overflow switching 
stage (between 6 and 6.5 mmol/gDCW/h), and overflow stage (greater 
than 6.5 mmol/gDCW/h) (Fig. 2 E and F). Finally, the phenotype 
simulation module allows for the simulation and comparison of 
phenotype outcomes under different experimental conditions. It’s 
important to note that the comparative functionality of phenotype re-
sults may not be applicable to all models and requires supporting 
phenotype data. Here, we demonstrate the phenotype simulation and 
comparison capabilities of ECMpy2.0 using the example of the 
maximum growth rates of E. coli on 24 different carbon sources [18]. 
The predicted results showed good agreement with previously reported 
experimental data [18], as illustrated in Fig. 2G), and outperformed 
non-enzyme-constrained models (Fig. 2H). This indicates that the 
introduction of enzyme constraint conditions enables the model to 
simulate phenotypes more accurately. Moreover, we conducted a com-
parison of computational time for calculating the maximum growth 
rates of ecGEMs constructed using three methods (ECMpy 2.0, GECKO, 
and AutoPACMEN) under these 24 carbon source conditions. Our 
analysis revealed that models built with the GECKO method demon-
strated slightly slower computational times (all exceeding 0.8 s) 
compared to the other two models, primarily attributed to the larger 
number of metabolites and reactions in the GECKO model (Supple-
mentary Table S1). Nevertheless, for users, the discrepancy in compu-
tational speed may not be substantial. 

3.4. Applications in metabolic engineering 

GEMs provide fundamental insights for predicting targets in meta-
bolic engineering. In contrast to GEMs, ecModels possess the capability 
to compute enzyme costs alongside reaction fluxes, allowing for the 
identification of pivotal enzymes within pathways. ECMpy 2.0 in-
troduces three algorithms for pinpointing metabolic engineering targets, 
demonstrated through a case study focused on tryptophan production in 
E. coli (utilizing eciML1515 [6]), showcasing the effectiveness of each 
approach. Firstly, we evaluated the enzyme cost of each reaction to 
identify kinetic bottleneck reactions, categorized as reactions with the 
highest enzyme costs. In this analysis, glucose served as the substrate, 
tryptophan as the objective, and the lower bound of the biomass reac-
tion was set at 10 % of the maximal growth rate [11]. Subsequently, 
reactions with the greatest enzyme costs (exceeding 1 % of total enzyme 
capacity) were identified as potential targets for metabolic engineering 
(Supplementary Table S2). Following that, we computed the cost of 
reactions across two pathways: HGLP (growth rate set at 0.6 h⁻1) and 
LGHP (growth rate set at 0.1 h⁻1). Reactions exhibiting fold changes in 
enzyme cost greater than 1.5 were selected as candidates for metabolic 
engineering [10]. This method not only identifies overexpression targets 
but also reveals potential targets for attenuation (Supplementary 
Table S2). Lastly, the FSEOF method was employed to scan relevant 
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Fig. 2. Construction and Analysis of ecModel. (A) Cumulative distribution of kcat values. (B) Cumulative distribution of molecular weights. Changes in the maximal 
growth rate with the increase of glucose and oxygen uptake rates in iML1515 (C) and eciML1515 (D). Comparison of in silico overflow between iML1515 and 
eciML1515. (F) Trade-off phenomenon simulated by eciML1515. (G) Predicted E. coli growth rates on different carbon sources using eciML1515. (H) Distribution of 
prediction errors of internal fluxes from different models. 
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targets within the tryptophan synthesis pathway. In each simulation, the 
objective function aimed to maximize tryptophan production while 
determining an optimum solution for each biomass-yield condition. 

Upon comparing the target predictions generated by these three 
methods, we identified eight reactions (ANPRT, ANS, CHORS, IGPS, 
PRAIi, PRPPS, SHK3Dr, and TRPS3) predicted simultaneously by all 
three algorithms (Fig. 3 and Supplementary Table S2). Notably, five of 
these reactions were corroborated by existing literature [28]. Further-
more, comparing HGLP/LGHP and FSEOF revealed 13 consistent over-
expression targets. Almost half of these targets were already 
documented in the existing literature [28] (refer to Table 2). Both of 
these methods also identified a significant number of attenuation targets 
(refer to Supplementary Table S2). 

4. Conclusions 

In summary, we have introduced ECMpy 2.0, the first comprehensive 
automated toolkit that integrates data acquisition, model construction, 
model refinement, model analysis and visualization, and predictive 
targeting for metabolic engineering. This advanced toolkit not only 
streamlines the extraction and acquisition of enzyme kinetic parameters 
and protein subunit composition data but also introduces a machine 
learning approach for predicting enzyme kinetic parameters. This 
innovation enables the construction of ecModels even for species with 
limited kinetic annotations. 

ECMpy 2.0 represents a groundbreaking integration of model anal-
ysis and visualization capabilities within the domain of ecModel con-
struction tools. This enhancement not only enables users to interact with 
the model-generated results but also facilitates in-depth exploration. 
Moreover, ECMpy 2.0 seamlessly incorporates three established algo-
rithms utilizing ecModels to identify targets for metabolic engineering, 
thereby lowering barriers to ecModel application. 

The integration of enzyme constraints significantly improves the 
predictive accuracy of GEMs, aligning model predictions more closely 
with experimental measurements. However, given the inherent 
complexity of biological systems, relying solely on enzymatic constraints 
proves insufficient for a comprehensive description. Hence, there is a 
necessity to incorporate additional biological data into novel composite 
constraints, such as thermodynamics [29] and regulatory networks [30], 
or to construct a whole-cell GEM [31]. Furthermore, in terms of visu-
alization of results, there is a lack of pathway visualization functionality 
similar to what CAVE [32] provides. This feature is crucial for users to 
assess pathways, make model adjustments, and showcase results. This 
functionality will be updated in future versions of ECMpy. 

5. Availability of data and materials 

ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a 
pip package (https://pypi.org/project/ECMpy). The repository provides 
a detailed notebook that thoroughly documents data acquisition, model 
construction, model analysis and visualization, as well as how to apply it 
to metabolic engineering. The documentation for the code can be found 
at https://ecmpy.readthedocs.io/en/latest/. 
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Fig. 3. Comparative Analysis of Predicted Overexpression Targets. Dark blue: 
targets predicted only by the FSEOF method. Light red: targets predicted only 
by the Enzyme cost method. Light green: targets predicted only by the HGLP/ 
LGHP method. Lavender: targets predicted by all three methods. Light blue: 
targets predicted by both the HGLP/LGHP and FSEOF methods. Light brown: 
targets predicted by both the HGLP/LGHP and Enzyme cost methods. Mauve: 
targets predicted by both the FSEOF and Enzyme cost methods. 

Table 2 
Metabolic engineering target prediction.   

Enzyme cost HGLP/LGHP FSEOF 

Overexpression 
targets 

ANS [28], 
TRPAS2_reverse, 
ANPRT [28], 
TRPS3 [28], PRAIi 
[28], IGPS [28], 
GLCDpp, PRPPS, 
GNK, PDH, 
CHORS, 
PGK_reverse, 
PGM_reverse, 
SHK3Dr, 
KARA1_reverse 

SHK3Dr, DHQTi, 
IGPS [28], TRPS3 
[28], PRAIi [28], 
PRPPS, SHKK, 
CHORS, DHQS, 
PSCVT, 
TRPAS2_reverse, 
ANS [28], ANPRT 
[28], DDPA [28] 

H2Otpp_reverse, 
H2Otex_reverse, 
CO2tex_reverse, 
Htex_reverse, 
ACtex_reverse, 
TRPtex_reverse, 
TRPt2rpp_reverse, 
ANS [28], TRPS3 
[28], ANPRT [28] 
IGPS [28], PRAIi 
[28], SHKK, 
DHQTi, CHORS, 
DHQS, DDPA [28], 
PSCVT, SHK3Dr, 
NH4tpp, NH4tex, 
PGI, PRPPS, 
RPI_reverse, GLNS, 
PPA, ADK1 

Attenuation 
targets 

– 78 reactions 340 reactions 

Knockout 
targets 

– – 12 reactions  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.synbio.2024.04.005. 
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