
Synthetic and Systems Biotechnology 9 (2024) 494–502

Available online 10 April 2024
2405-805X/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Research Article

ECMpy 2.0: A Python package for automated construction and analysis of
enzyme-constrained models

Zhitao Mao a,b,*, Jinhui Niu a,b, Jianxiao Zhao a,b,c, Yuanyuan Huang a,b,d, Ke Wu e, Liyuan Yun f,
Jirun Guan a,b, Qianqian Yuan a,b, Xiaoping Liao a,b,g, Zhiwen Wang c, Hongwu Ma a,b,**

a Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences,
Tianjin, 300308, China
b National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
c Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
d College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
e Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
f Tianjin Agricultural College, Tianjin, 300384, China
g Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China

A B S T R A C T

Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints,
leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the
creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macro-
molecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme
amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic
parameter information and subunit composition details, making it rather user-unfriendly. In this work, we’ve enhanced the ECMpy toolbox to version 2.0, broad-
ening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs
machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and
visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms
that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a pip package (htt
ps://pypi.org/project/ECMpy/).

1. Introduction

Genome-scale metabolic models (GEMs), a class of mathematical
constructs, elucidate the intricate interplay among cellular genes, pro-
teins, and reactions, effectively guiding and enhancing industrial
chemical and biofuel production [1]. Current approaches for predicting
microbial phenotypes and yields using GEMs primarily rely on con-
ventional techniques like constraining carbon source uptake rates and
adjusting the toggling of metabolic reactions. Unfortunately, these
methods overlook the significant impact of enzyme concentrations, ki-
netic parameters, and pathway thermodynamics on reaction fluxes,

resulting in substantial discrepancies between predictions and experi-
mental results [2]. In an effort to overcome these limitations, the
concept of enzymatic constraints on metabolic reactions has been
skillfully integrated into various constraint-based methodologies.
Notably, this integration is evident in frameworks such as GECKO (If no
version is specified, the default is GECKO 3.0) [3] and AutoPACMEN [4].
These sophisticated models have significantly expanded the scope of
classical flux balance analysis (FBA), providing insights into overflow
metabolism and cellular growth across diverse environments for a range
of organisms, including Escherichia coli [5,6], Saccharomyces cerevisiae
[7], Yarrowia lipolytica [8], Aspergillus niger [9], Corynebacterium

Peer review under responsibility of KeAi Communications Co., Ltd.
* Corresponding author. Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,

Chinese Academy of Sciences, Tianjin 300308, China.
** Corresponding author. Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,

Chinese Academy of Sciences, Tianjin 300308, China.
E-mail addresses: mao_zt@tib.cas.cn (Z. Mao), ma_hw@tib.cas.cn (H. Ma).

Contents lists available at ScienceDirect

Synthetic and Systems Biotechnology

journal homepage: www.keaipublishing.com/en/journals/synthetic-and-systems-biotechnology

https://doi.org/10.1016/j.synbio.2024.04.005
Received 22 January 2024; Received in revised form 13 March 2024; Accepted 7 April 2024

https://github.com/tibbdc/ECMpy
https://pypi.org/project/ECMpy/
https://pypi.org/project/ECMpy/
mailto:mao_zt@tib.cas.cn
mailto:ma_hw@tib.cas.cn
www.sciencedirect.com/science/journal/2405805X
http://www.keaipublishing.com/en/journals/synthetic-and-systems-biotechnology
https://doi.org/10.1016/j.synbio.2024.04.005
https://doi.org/10.1016/j.synbio.2024.04.005
https://doi.org/10.1016/j.synbio.2024.04.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.synbio.2024.04.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Synthetic and Systems Biotechnology 9 (2024) 494–502

495

glutamicum [10], and Bacillus subtilis [11].
ECMpy, a simplified Python-based workflow developed in 2021 [6],

has been applied to construct ecGEMs for E. coli [6], C. glutamicum [10],
and B. subtilis [11]. In contrast to the methodologies of GECKO and
AutoPACMEN, ECMpy introduces constraints on the total enzyme
amount without adding pseudo metabolites or reactions to the stoi-
chiometric matrix (S-matrix). It also reveals and emphasizes the influ-
ence of protein subunit composition within reactions on model
simulation outcomes, along with presenting an automated calibration
approach for enzyme kinetic parameters. As ECMpy avoids modifying
the foundational S-matrix, it seamlessly integrates multiple algorithms
already incorporated into COBRApy [12], including flux variability
analysis (FVA), FASTCC [13], and minimization of metabolic adjust-
ment (MOMA). This integration is achieved without the need to rewrite
algorithms based on new S-matrix features, unlike GECKO and Auto-
PACMEN. However, it’s important to note that within ECMpy, the
enzymatic kinetic parameters and protein subunit composition data
required for model construction must be acquired and curated manually,
resulting in a user experience that is notably user-unfriendly.

In this study, we have advanced the ECMpy toolbox to its enhanced
version, ECMpy 2.0, thereby expanding its capabilities to automatically
construct ecGEMs for a wider range of organisms. Specifically, the
integration of AutoPACMEN and DLKcat [14] enhances ECMpy 2.0’s
capacity to provide proficient support for both model and non-model
organisms, ensuring a comprehensive incorporation of kinetic con-
straints, even for organisms that have received limited attention. Addi-
tionally, an automated procedure has been established within the realm
of protein molecular mass calculation to parse the UniProt database
[15], providing precise protein subunit composition information and
reinforcing the accuracy of corresponding reaction-associated protein
molecular masses. To broaden the functionality of ECMpy 2.0, a
comprehensive set of simulation utility functions has been seamlessly
integrated, covering model parameter analysis [5,7–11], phenotypic
phase plane (PhPP) analysis [9–11], metabolic overflow simulation [6,7,
10,11], and trade-off phenomena simulation [6,10,11]. Finally, ECMpy
2.0 integrates three prominent algorithms, each notably effective in
predicting target for metabolic engineering. These include an enzyme
cost-based sorting method [5,11], the flux scanning based on enforced
objective flux (FSEOF) method [16,17], and an approach based on
protein cost discrepancies across reactions in distinct scenarios: high
growth low product generation (HGLP) and low growth high product
generation (LGHP) [10]. The enzyme cost-based sorting method, known
for its simplicity and widespread application, has the capacity to reveal
pivotal enzymes within a pathway. It has demonstrated success in
various contexts, such as enhancing lysine production in E. coli [5] and
synthesizing riboflavin and menaquinone 7 in B. subtilis [11]. However,
this method excels primarily in identifying overexpressed targets,
leading to the development of an approach rooted in the disparities of
protein costs within reactions (HGLP and LGHP). This innovative
methodology distinguishes overexpression and attenuation targets
within a pathway and has been effectively applied in scenarios such as
enhancing lysine production in C. glutamicum [10]. Furthermore, ECMpy
2.0 incorporates the FSEOF algorithm, an innovation introduced in 2010
and primarily designed for identifying targets within GEMs [17].
Recently, Ishchuk et al. refined and applied this algorithm to the yeast
ecModel, ecYeast8. By predicting combinations of targets, they managed
to amplify heme production within cells by an impressive 70-fold [16].
To the best of our knowledge, ECMpy 2.0 stands as a pioneering auto-
mated toolkit seamlessly integrating data acquisition, model construc-
tion, model refinement, model analysis and visualization, along with the
prediction of metabolic engineering targets.

2. Materials and methods

2.1. Model parsing

ECMpy requires the retrieval of protein molecular weight informa-
tion from UniProt using UniProt IDs, in conjunction with the allocation
of enzyme kinetic data through substrate (BiGG ID) and EC matching.
Recognizing the existing variability in the quality of GEMs, we have
introduced a preliminary step in ecModel construction that involves
evaluating gene coverage (UniProt ID coverage), reactions coverage (EC
number coverage excluding exchange reactions), and metabolites
coverage (BiGG ID coverage). During this assessment, we have estab-
lished that models with coverage below 33 % are not recommended for
direct ecModel construction. Users are required to augment these
annotation details within the model to proceed with subsequent
processes.

2.2. Parameter acquisition

The total enzyme amount constraint (
∑n

i
vi∗MWi
σi∗kcat,i

≤ Ptotal ∗ f) is pri-
marily composed of the following elements: molecular weight (MW),
saturation coefficient (σ), enzyme kinetic parameters (kcat), the total
protein fraction (Ptotal), and the mass fraction of enzymes (f). Notably,
the saturation coefficient typically adopts a uniform average of 0.5
across all enzymes [7,10,11], while Ptotal of 0.56 g total cellular prote-
in/g DCW represents the average protein content in most microbial cells
[18]. The f value can be derived from protein composition data, such as
for E. coli with 0.406 g enzyme/g total cellular protein [6], C. glutamicum
with 0.46 g enzyme/g total cellular protein [10], B. subtilis with 0.588 g
enzyme/g total cellular protein [11], and S. cerevisiae with 0.446 g
enzyme/g total cellular protein [7]. In ECMpy 2.0, we furnish a function
to compute the f value (see 02.get_ecModel_using_ECMpy.ipynb),
whereby users need only provide GEM files and protein abundance data
to automate the acquisition of f values.

ECMpy 2.0 offers two approaches for accessing enzyme kinetic
parameter information, ensuring comprehensive coverage for both
model organisms and non-model organisms. The first method utilizes
the AutoPACMEN process to extract enzyme kinetic parameter infor-
mation from the BRENDA [19] and SABIO-RK [20] databases. Using
substrate and EC number, the enzyme kinetic parameter information
associated with the model is parsed in 9 steps (detailed in 01.get_reac-
tion_kcat_using_AutoPACMEN.ipynb). If a perfect match for organism,
substrate, and EC number is not found, AutoPACMEN facilitates kcat
matches by querying the BRENDA and SABIO-RK databases using a set
of hierarchical matching criteria as summarized in the literature [4].
Furthermore, to augment the number of experimental sources for kcat
data, we extended the AutoPACMEN workflow in ECMpy 2.0, intro-
ducing a transformation for enzyme specific activity data (Eq. (1)). This
method is suitable for cases with high annotation quality in the species’
GEM and a database rich in enzyme kinetic parameter data. For
non-model organisms, there is a scarcity of enzyme kinetic parameter
data in the BRENDA and SABIO-RK databases, which is insufficient for
constructing ecModels. The second method integrates the DLKcat [14]
approach, which predicts enzyme kinetic parameters based on the
sequence information of enzymes catalyzing reactions and substrate
information. This method involves seven steps outlined in 01.get_reac-
tiion_kcat_using_DLKcat.ipynb. While this approach can provide kinetic
parameter information for nearly all enzymes in the model, there is a
discrepancy between predicted values and experimental data. It is
particularly useful for cases with poor GEM annotation quality and
limited database coverage of kinetic parameters for that species.

Z. Mao et al.

Synthetic and Systems Biotechnology 9 (2024) 494–502

496

kcat
[
s− 1]=

SA
[
umol ∗ mg− 1 ∗ min− 1] ∗MW

[
mg ∗ umol− 1

]

60
[
s ∗ min− 1] (1)

Molecular weight (MW) is a critical factor influencing the predictive
accuracy of ecModels. Two key factors impact the final MW assigned to a
specific reaction’s enzyme: whether the protein is constituted by sub-
units (‘and’ relationship in the GPR) and the quantity of each subunit.
Previous ecModel construction workflows, such as GECKO and Auto-
PACMEN, have overlooked subunit composition information (typically
set to 1 or provided by the user). In ECMpy 2.0, we have introduced an
automated process for acquiring protein subunit composition, stream-
lining the process for users who only need to provide species information
to retrieve quantitative subunit information extracted from the ‘Inter-
action’ section in UniProt. Initially, we retrieve all UniProt IDs and
‘Interaction’ section for the specified species based on species name or
ID. Subsequently, we developed a word list to analyze the descriptive
information within the ‘Interaction’ section (e.g., Homodimer; Hetero-
trimer; Tetramer of two alpha and two beta chains) and converted it into
corresponding subunit numbers [10]. For instance, P0A796 is described
in UniProt as ‘Homotetramer’, indicating a subunit number of 4.

2.3. ecModel construction

The process of constructing an ecModel can be outlined through the
following steps (as detailed in 02.get_ecModel_using_ECMpy.ipynb).
Initially, reversible reactions in the GEM were divided into pairs of
irreversible reactions. Additionally, reactions governed by multiple
isoenzymes were segmented into distinct reactions, appending a nu-
merical identifier to the reaction ID, such as GLCpts_num1. This
approach ensures that each reaction is uniquely associated with a cor-
responding enzyme entity. Following this clarification, we calculated
the MW for each individual enzyme entity. For reactions catalyzed by
enzyme complexes, we aggregated the cumulative sum of proteins
constituting the complex (as in Eq. (6)). Furthermore, we proceeded to
determine the kinetic parameters for the enzymes, a task accomplished
through the AutoPACMEN or DLKcat methodologies. Concurrently, we
quantified the mass fraction of total cellular enzymes (Eq. (7)), a process
facilitated by proteomic or RNA-Seq data. Ultimately, the ECMpy pro-
cess was used to construct the ecGEM, and the mathematical represen-
tation of this method is as follows:

Z=max
{
CT ∗ v

}
(2)

S ∗ v= 0 (3)

lb≤ v ≤ ub (4)

∑n

i=1

vi ∗MWi

σi ∗ kcat,i
≤ Ptotal ∗ f (5)

MW=
∑m

j=1
Nj ∗MWj (6)

f =
∑n(genemodel)

i=1
AiMWi

/
∑n(genetotal)

j=1
AjMWj (7)

Where CT is the transposed vector of the integer coefficient of each flux
in the objective function Z; S is the stoichiometric matrix; lb and ub are
the lower and upper bounds of the reaction fluxes in the system,
respectively; kcat,i is the turnover number of enzymes that catalyze re-
action i; MWi denotes the molecular weight of enzyme i; m is the number

of different subunits in the enzyme complex; Nj is the number of jth
subunits in the complex; σi is the saturation coefficient for enzyme i;
Ptotal is the average protein content in most microbial cells ; f is the total
mass fraction of all cellular enzymes in our ecGEM.

2.4. Parameter calibration

The initial ecGEM exhibited discrepancies in predicting the experi-
mental phenotype, necessitating a correction of the kcat values. In the
context of ECMpy 2.0, we have implemented an automated parameter
calibration process for the ecModel, by identifying the reaction with the
highest enzyme cost in the pathway and substituting its kcat values with
the highest value (as detailed in 03.ecModel_calibration.ipynb). The
calibration procedure aligns with the coherent approaches of ECMpy
and GECKO, with a comprehensive blueprint elaborated in the ecBSU1
[11]. Initially, our effort involved quantifying the enzyme cost attrib-
uted to each specific reaction in the pathway, focusing on biomass
maximization as the primary objective. Subsequently, reactions exhib-
iting the most substantial enzyme costs were identified as candidates for
recalibration. Following this identification, adjustments were made to
the reaction’s kcat value, aligning it with the highest corresponding kcat
value extracted from the BRENDA and SABIO-RK databases. In deter-
mining the highest corresponding kcat value, the current process does
not distinguish between different experimental conditions or species.
Instead, it relies solely on identifying the maximum value associated
with the same EC number in the two databases. This iterative refinement
process continued until convergence with experimental data was ach-
ieved or the specified threshold of iterations was reached.

2.5. ecModel analysis and visualization

ECMpy 2.0 introduces a suite of analytical functionalities, com-
plemented by visual representations, to comprehensively dissect
ecModels. For instance, we have incorporated cumulative distribution
plots to showcase the complexity of ecModel parameters, spanning di-
mensions such as kcat and MW. Additionally, we utilize Phenotypic
Phase Plane (PhPP) analysis to reveal trends in the model solution space.
Various analyses related to metabolic overflow are integrated, enabling
the effortless capture of overflow metabolites and presenting the reasons
behind overflow metabolism occurrences. Lastly, simulations are pro-
vided to illustrate the trade-off between enzyme usage efficiency and
biomass yield.

2.6. Metabolic engineering target prediction

Within the context of ECMpy 2.0, we offer three distinct methodol-
ogies for predicting metabolic engineering targets using ecModels.
These methodologies include the enzyme cost-based sorting method [5,
11], the FSEOF algorithm-based method [16], and the HGLP/LGHP
method [10]. The enzyme cost-based sorting method, utilized for
product computation, focuses on the product, setting the lower
threshold of the biomass reaction at 10 % of the maximal growth rate. By
analyzing flux values, it examines the enzyme cost of each reaction,
pinpointing kinetic bottleneck reactions characterized by the most
substantial enzyme costs (Eq. (8)). The HGLP/LGHP method calculates
the cost of each reaction within two pathways, namely HGLP and LGHP.
It subsequently scrutinizes fold changes in enzyme costs, selecting those
with a fold change exceeding 1.5 as potential targets for metabolic en-
gineering (Eqs. (9) and (10)). For the FSEOF method, we have success-
fully reproduced and translated this methodology from MATLAB code to
Python. During each simulation, the core objective was to maximize

Z. Mao et al.

Synthetic and Systems Biotechnology 9 (2024) 494–502

497

product production, a pursuit undertaken across ten distinct
biomass-yield conditions (0.5* wild-type biomass - 0.9* wild-type
biomass). Scores were generated for each reaction in the network,
discerning fluxes that consistently increased or decreased as biomass
requirements diminished. Thus, the flux scores meticulously highlighted
reactions that exhibited consistent upregulation (score >1), down-
regulation (0 < score <0.95), or stability (0.95 < score <1).

Enzyme costi =
vi ∗MWi

σi ∗ kcat,i
(8)

Enhance target=
{

Enzyme
⃒
⃒
⃒
⃒
Enzyme costLGHP
Enzyme costHGLP

≥ 1.5
}

(9)

Weaken target=
{

Enzyme
⃒
⃒
⃒
⃒
Enzyme costHGLP
Enzyme costLGHP

≥ 1.5
}

(10)

2.7. Configuration of operating environment

ECMpy 2.0 is implemented in Python 3.7 and utilizes Python’s
standardized library along with additional modules such as Biopython,
COBRApy (version = 0.21.0) [12], openpyxl, requests, xlsxwriter,
scikit-learn [21], RDKit, pubchempy, plotly, among others, as detailed
on the project’s GitHub page (https://github.com/tibbdc/ECMpy).
Users can access the ECMpy 2.0 codebase and documentation via two
methods:

(1) Installing ECMpy 2.0 using pip:

pip install ECMpy.

(2) Acquiring ECMpy 2.0 via git clone:

git clone https://github.com/tibbdc/ECMpy.git.
Furthermore, detailed documentation on the functionalities of all

ECMpy 2.0 functions is available at https://ecmpy.readthedocs.io/e
n/latest/.

3. Results and discussion

3.1. An overview of ECMpy 2.0

ECMpy 2.0 comprises four major modules: model parsing, parameter
acquisition, model construction, and model analysis (Fig. 1). The quality
of GEMs significantly impacts the construction of ecModels, especially
regarding the acquisition of kinetic parameters. In the initial phase of
ecModel construction, we implement model parsing rules, which involve
a straightforward evaluation of metabolite BiGG IDs, gene UniProt IDs,
and reaction EC number annotations coverage within the model to
determine the feasibility of ecModel construction. We propose that future
GEMs should adhere to the standard-GEM guidelines [22], explicitly
incorporating support for diverse database IDs within the annotations of
genes, metabolites, and reactions. This enhancement facilitates the con-
struction of multi-constraint models (mcModels), encompassing enzyme
constraints, thermodynamic constraints, and others.

The construction of ecModels involves critical parameters such as
enzyme kinetic parameters (kcat), enzyme molecular weight (MW), and
the mass fraction of enzymes (f). To acquire enzyme kinetic parameters,
we currently support two methods: one based on AutoPACMEN for
parsing the BRENDA and SABIO-RK databases, and another based on
DLKcat for direct prediction. We have expanded the capabilities of
AutoPACMEN to utilize specific activity [5] (Eq. (1)) data from
BRENDA, thereby broadening the coverage of enzyme kinetic parame-
ters. However, AutoPACMEN is more suitable for organisms with

Fig. 1. The framework of ECMpy 2.0. The framework comprises four main modules: firstly, the model parsing module parses the model to assess the coverage of
UniProt ID, BiGG ID, and EC numbers; secondly, the parameter acquisition module retrieves the required f, MW, and kcat data from various data sources for modeling;
thirdly, the model construction module adds enzyme constraints directly by incorporating total enzyme equations and performs parameter calibration; finally, the
model analysis module allows users to conduct mechanistic analysis and predict metabolic engineering targets.

Z. Mao et al.

https://github.com/tibbdc/ECMpy
https://github.com/tibbdc/ECMpy.git
https://ecmpy.readthedocs.io/en/latest/
https://ecmpy.readthedocs.io/en/latest/

Synthetic and Systems Biotechnology 9 (2024) 494–502

498

abundant enzyme kinetic parameters in databases, such as model or-
ganisms (e.g., E. coli, C. glutamicum, and S. cerevisiae). For most
non-model organisms, this approach often yields unreliable kcat. Hence,
in ECMpy 2.0, we have integrated the DLKcat method, providing
enhanced enzyme kinetic parameters, particularly for non-model or-
ganisms. In terms of obtaining enzyme molecular weight data, inspired
by GPRuler [23], we have developed a method that automatically parses
UniProt annotations to retrieve protein subunit composition informa-
tion, facilitating the subsequent computation of molecular weights for
corresponding reactions [10,11]. For proteins not record on UniProt,
ECMpy 2.0 defaults to considering it as a monomer, similar to the
approach taken by AutoPACMEN and GECKO. To calculate the f value,
we provide a computational function that takes the model and protein
abundance data (accessible from PAXdb [24] or determined through
experimentation) as inputs, enabling direct computation of the f value.

The model construction module in ECMpy employs a streamlined
process, introducing enzyme constraints by directly incorporating the
total enzyme amount constraint and enabling automated calibration of
enzyme kinetic parameters based on enzyme utilization. Regarding the
model analysis module, commonly used analysis methods for ecModels
have been integrated, including model parameter analysis, PhPP anal-
ysis, metabolic overflow simulation, and trade-off phenomenon simu-
lation. A notable achievement is the seamless integration of three
distinct metabolic engineering target prediction methodologies: an
enzyme cost-based sorting approach, the FSEOF-based method, and the
HGLP/LGHP method.

3.2. Comparison of enzyme-constrained model construction and analysis
tools

Currently, three primary workflows exist for constructing ecModels:
AutoPACMEN, GECKO, and ECMpy. These methods, originating from
FBAwMC (flux balance analysis with molecular crowding) [25], share a
common principle focusing on enzyme selection and quantification for
synthesis, emphasizing pathways with enzymes combining low molec-
ular weight and high catalytic capacity. The key distinction lies in the

approach to introducing total enzyme amount constraint. AutoPACMEN
and GECKO utilize pseudo-metabolites and pseudo-exchange reactions,
while ECMpy imposes a total protein constraint outside the S-matrix,
resulting in varying model complexities.

For acquiring enzyme kinetic parameters, all three processes extract
data from authoritative enzyme databases, BRENDA and/or SABIO-RK
(Table 1). ECMpy 2.0 and GECKO enhances coverage by integrating
the DLKcat method, a machine learning approach for predicting enzyme
kinetic parameters, extending applicability to non-model organisms.
Recognizing the influence of molecular weight on reaction fluxes,
GECKO, AutoPACMEN, and ECMpy require users to manually organize
protein subunit composition data; otherwise, it defaults to monomers
(with a subunit count of 1). ECMpy 2.0 introduces automated parsing of
UniProt annotations for this purpose, enhancing the accuracy of mo-
lecular weight calculations for enzyme-constrained models.

In terms of model analysis and metabolic engineering target pre-
diction, GECKO incorporates FVA and FSEOF algorithms. ECMpy 2.0, by
not modifying the S-matrix, accommodates diverse analytical methods
within the COBRApy toolkit. In contrast, GECKO and AutoPACMEN
necessitate the rewriting of analysis functions within COBRApy to align
with the new S-matrix structure. It introduces ecModel analysis and
visualization tools, including model parameter analysis, PhPP analysis,
metabolic overflow simulation, and trade-off phenomenon simulation.
Additionally, three published ecModel methods for metabolic engi-
neering target prediction—enzyme cost, HGLP/LGHP, and FSEOF—are
integrated. ECMpy2.0 is subject to limitations and currently lacks inte-
gration with proteomic data, unlike GECKO.

AutoPACMEN and ECMpy 2.0 are solely written in Python, ensuring
universality and extensibility. GECKO supports both MATLAB and Py-
thon versions through geckopy [26] but lags in development, not fully
incorporating all GECKO analysis methods (e.g., FSEOF).

3.3. ecModel construction and analysis

ECMpy 2.0 provides two methodologies for ecModel construction.
The first involves a step-by-step process through specific notebook files

Table 1
Recent workflow for constructing and analyzing ecModels.

Method AutoPACMEN GECKO ECMpy

kcat source BRENDA and SABIO-RK BRENDA; Deep learning (DLKcat) BRENDA and SABIO-RK; Deep learning (DLKcat)
Protein Subunit

composition
source

– – Automatic parsing of UniProt

Method of adding
enzyme
constraints

To each enzyme catalyzed reaction, add
enzyme usage as substrate to the S-matrix,
and one total protein exchange reaction.

For each enzyme-catalyzed reaction, add enzyme
usage as a substrate to the S-matrix, and include
an equal number of protein exchange reactions in
the S-matrix.

no metabolites or reactions added, only a total protein
constraint outside the S-matrix.

Model complexity Medium High Low
Simulation utilities – Flux variability analysis; Model parameter

analysis
The S-matrix remains unchanged, ensuring compatibility
with any GEM analysis method. Additionally, ECMpy 2.0
integrates model parameter analysis, phenotype phase
plane Analysis, metabolic overflow simulation, and trade-
off phenomenon simulation.

Prediction of
metabolic
engineering
targets

– FSEOF Three methods: enzyme cost, the enzyme cost differences
in different conditions, and FSEOF

Year 2020 2017, 2022, 2024 2021
Reference [4] [3,7,8] [6]
Platform Python MATLAB/Python Python

Z. Mao et al.

Synthetic and Systems Biotechnology 9 (2024) 494–502

499

(00.Model_preview.ipynb, 01.get_reaction_kcat_using_DLKcat.ipynb/,
01.get_reaction_kcat_using_AutoPACMEN.ipynb, 02.get_ecModel_u-
sing_ECMpy.ipynb, and 03.ecModel_calibration.ipynb). Alternatively, a
one-click model construction is possible via the command line (06.One-
click_modeling.ipynb). This notebook offers four one-click modeling
options that can be combined in various ways:

(1) Direct utilization of user-provided kcat, MW, and f.
(2) Utilization of user-provided kcat and MW, with f values calculated

from protein abundance data.
(3) Calculation of kcat, MW, and f values, with kcat data parsed using

AutoPACMEN.
(4) Calculation of kcat, MW, and f values, with kcat data predicted

using DLKcat.

As of now, the one-click modeling process for Method 4 takes
approximately 3–4 h to complete. The primary bottleneck is the auto-
mated acquisition of kcat and MW data, where tasks like parsing protein
subunit composition data take around 1–1.5 h, and metabolite ID con-
version takes around 1–2 h. The data retrieval speed depends on internet
speed, suggesting potential improvements like caching such data in
future ECMpy. For instance, pre-parsing protein subunit composition
data for all species to create a dedicated matching file and pre-arranging
a metabolite ID conversion file. Addressing these data matching and ID
conversion challenges is anticipated to reduce ecModel construction
time to within 0.5 h.

To validate the feasibility of ECMpy 2.0, we constructed ecGEMs
using 108 models stored in the BiGG database [27], with the majority
being Escherichia coli (58 models). During the modeling process, we
excluded five models whose genes could not be mapped to UniProt, as
well as five mammalian models (of limited utility for ecGEMs), including
four Homo sapiens models and one Mus musculus model. Additionally, for
cases with more than two models per species, only one model was
retained. Consequently, a total of 20 models were ultimately selected for
the construction of ecGEMs, encompassing diverse species such as bac-
teria (including 16 species like E. coli, Pseudomonas putida, Bacillus
subtilis, etc.), fungi (Saccharomyces cerevisiae), protozoa (Plasmodium
falciparum and Trypanosoma cruzi), and algae (Phaeodactylum tricornu-
tum) (detailed in 07.BiGG_to_ecGEM.ipynb). The ecGEMs mentioned
above can be directly accessed through GitHub at the following link:
https://github.com/tibbdc/ECMpy/tree/master/model/BiGG/. How-
ever, it is worth noting that these models are still in their preliminary
stages. To be used effectively, they require further kinetic parameter
corrections based on experimental results.

To demonstrate how ECMpy 2.0 constructs ecModels, we use E. coli
as an example and employ the first method described above to build an
ecModel for E. coli. The initial model utilized iML1515R [6] and protein
abundance data from PAXdb. After the initial model construction,
automated calibration was performed based on the experimentally
determined E. coli growth rate (0.66 h− 1 [18]). Following 49 rounds of
calibration (adjustable threshold; set here to fewer than 50 iterations of
calibration), the simulated growth rate was adjusted to 0.401 h⁻1. It’s
important to note that the growth rate has not been iterated here to
match the experimental growth rate. Additionally, it is advisable to
perform manual corrections using C13 flux data [6] or protein abun-
dance data, as the flux distribution results from the automated calibra-
tion process may differ from experimental values.

Afterwards, we utilized the manually corrected ecModel of E. coli
(eciML1515 [6]) to showcase the analysis capabilities of ECMpy2.0.
Initially, ECMpy 2.0’s model parameter analysis module was employed

to clearly illustrate distinct features of kcat and MW (Fig. 2 A and B).
Further analysis using PhPP visualization provided a global perspective
on how changes in two environmental variables, such as carbon and
oxygen uptake rates, impact optimal growth rates (Fig. 2C and D). The
introduction of enzyme constraints significantly reduced the solution
space (Fig. 2 D). Utilizing ECMpy 2.0’s overflow simulation module, an
analysis of E. coli metabolic overflow was conducted, and a visualization
graph illustrated the stages of overflow occurrence and overflow
byproducts (Fig. 2E). Moreover, the integration of the trade-off phe-
nomenon simulation module revealed a distinct trade-off between yield
and enzyme usage efficiency in E. coli’s metabolic process (Fig. 2F).
Additionally, the metabolic processes were categorized into the
substrate-limited stage (less than 6 mmol/gDCW/h), overflow switching
stage (between 6 and 6.5 mmol/gDCW/h), and overflow stage (greater
than 6.5 mmol/gDCW/h) (Fig. 2 E and F). Finally, the phenotype
simulation module allows for the simulation and comparison of
phenotype outcomes under different experimental conditions. It’s
important to note that the comparative functionality of phenotype re-
sults may not be applicable to all models and requires supporting
phenotype data. Here, we demonstrate the phenotype simulation and
comparison capabilities of ECMpy2.0 using the example of the
maximum growth rates of E. coli on 24 different carbon sources [18].
The predicted results showed good agreement with previously reported
experimental data [18], as illustrated in Fig. 2G), and outperformed
non-enzyme-constrained models (Fig. 2H). This indicates that the
introduction of enzyme constraint conditions enables the model to
simulate phenotypes more accurately. Moreover, we conducted a com-
parison of computational time for calculating the maximum growth
rates of ecGEMs constructed using three methods (ECMpy 2.0, GECKO,
and AutoPACMEN) under these 24 carbon source conditions. Our
analysis revealed that models built with the GECKO method demon-
strated slightly slower computational times (all exceeding 0.8 s)
compared to the other two models, primarily attributed to the larger
number of metabolites and reactions in the GECKO model (Supple-
mentary Table S1). Nevertheless, for users, the discrepancy in compu-
tational speed may not be substantial.

3.4. Applications in metabolic engineering

GEMs provide fundamental insights for predicting targets in meta-
bolic engineering. In contrast to GEMs, ecModels possess the capability
to compute enzyme costs alongside reaction fluxes, allowing for the
identification of pivotal enzymes within pathways. ECMpy 2.0 in-
troduces three algorithms for pinpointing metabolic engineering targets,
demonstrated through a case study focused on tryptophan production in
E. coli (utilizing eciML1515 [6]), showcasing the effectiveness of each
approach. Firstly, we evaluated the enzyme cost of each reaction to
identify kinetic bottleneck reactions, categorized as reactions with the
highest enzyme costs. In this analysis, glucose served as the substrate,
tryptophan as the objective, and the lower bound of the biomass reac-
tion was set at 10 % of the maximal growth rate [11]. Subsequently,
reactions with the greatest enzyme costs (exceeding 1 % of total enzyme
capacity) were identified as potential targets for metabolic engineering
(Supplementary Table S2). Following that, we computed the cost of
reactions across two pathways: HGLP (growth rate set at 0.6 h⁻1) and
LGHP (growth rate set at 0.1 h⁻1). Reactions exhibiting fold changes in
enzyme cost greater than 1.5 were selected as candidates for metabolic
engineering [10]. This method not only identifies overexpression targets
but also reveals potential targets for attenuation (Supplementary
Table S2). Lastly, the FSEOF method was employed to scan relevant

Z. Mao et al.

https://github.com/tibbdc/ECMpy/tree/master/model/BiGG/

Synthetic and Systems Biotechnology 9 (2024) 494–502

500

Fig. 2. Construction and Analysis of ecModel. (A) Cumulative distribution of kcat values. (B) Cumulative distribution of molecular weights. Changes in the maximal
growth rate with the increase of glucose and oxygen uptake rates in iML1515 (C) and eciML1515 (D). Comparison of in silico overflow between iML1515 and
eciML1515. (F) Trade-off phenomenon simulated by eciML1515. (G) Predicted E. coli growth rates on different carbon sources using eciML1515. (H) Distribution of
prediction errors of internal fluxes from different models.

Z. Mao et al.

Synthetic and Systems Biotechnology 9 (2024) 494–502

501

targets within the tryptophan synthesis pathway. In each simulation, the
objective function aimed to maximize tryptophan production while
determining an optimum solution for each biomass-yield condition.

Upon comparing the target predictions generated by these three
methods, we identified eight reactions (ANPRT, ANS, CHORS, IGPS,
PRAIi, PRPPS, SHK3Dr, and TRPS3) predicted simultaneously by all
three algorithms (Fig. 3 and Supplementary Table S2). Notably, five of
these reactions were corroborated by existing literature [28]. Further-
more, comparing HGLP/LGHP and FSEOF revealed 13 consistent over-
expression targets. Almost half of these targets were already
documented in the existing literature [28] (refer to Table 2). Both of
these methods also identified a significant number of attenuation targets
(refer to Supplementary Table S2).

4. Conclusions

In summary, we have introduced ECMpy 2.0, the first comprehensive
automated toolkit that integrates data acquisition, model construction,
model refinement, model analysis and visualization, and predictive
targeting for metabolic engineering. This advanced toolkit not only
streamlines the extraction and acquisition of enzyme kinetic parameters
and protein subunit composition data but also introduces a machine
learning approach for predicting enzyme kinetic parameters. This
innovation enables the construction of ecModels even for species with
limited kinetic annotations.

ECMpy 2.0 represents a groundbreaking integration of model anal-
ysis and visualization capabilities within the domain of ecModel con-
struction tools. This enhancement not only enables users to interact with
the model-generated results but also facilitates in-depth exploration.
Moreover, ECMpy 2.0 seamlessly incorporates three established algo-
rithms utilizing ecModels to identify targets for metabolic engineering,
thereby lowering barriers to ecModel application.

The integration of enzyme constraints significantly improves the
predictive accuracy of GEMs, aligning model predictions more closely
with experimental measurements. However, given the inherent
complexity of biological systems, relying solely on enzymatic constraints
proves insufficient for a comprehensive description. Hence, there is a
necessity to incorporate additional biological data into novel composite
constraints, such as thermodynamics [29] and regulatory networks [30],
or to construct a whole-cell GEM [31]. Furthermore, in terms of visu-
alization of results, there is a lack of pathway visualization functionality
similar to what CAVE [32] provides. This feature is crucial for users to
assess pathways, make model adjustments, and showcase results. This
functionality will be updated in future versions of ECMpy.

5. Availability of data and materials

ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a
pip package (https://pypi.org/project/ECMpy). The repository provides
a detailed notebook that thoroughly documents data acquisition, model
construction, model analysis and visualization, as well as how to apply it
to metabolic engineering. The documentation for the code can be found
at https://ecmpy.readthedocs.io/en/latest/.

CRediT authorship contribution statement

Zhitao Mao: Software, development, Software, testing, Manuscript
drafting, Manuscript review and editing. Jinhui Niu: Software, devel-
opment. Jianxiao Zhao: Software, development. Yuanyuan Huang:
Data acquisition, Software, testing. Ke Wu: Software, development.
Liyuan Yun: Software, testing. Jirun Guan: Software, testing. Qian-
qian Yuan: Software, testing. Xiaoping Liao: Supervision. Zhiwen
Wang: Supervision. Hongwu Ma: Supervision, Manuscript review and
editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This research was funded by the National Key Research and Devel-
opment Program of China (2021YFC2100700), National Natural Science
Foundation of China (32300529, 32201242, 12326611), Tianjin Syn-
thetic Biotechnology Innovation Capacity Improvement Projects (TSBI-
CIP-PTJS-001, TSBICIP-PTJS-002, TSBICIP-PTJJ-007), and Major
Program of Haihe Laboratory of Synthetic Biology (22HHSWSS00021),
and Strategic Priority Research Program of the Chinese Academy of

Fig. 3. Comparative Analysis of Predicted Overexpression Targets. Dark blue:
targets predicted only by the FSEOF method. Light red: targets predicted only
by the Enzyme cost method. Light green: targets predicted only by the HGLP/
LGHP method. Lavender: targets predicted by all three methods. Light blue:
targets predicted by both the HGLP/LGHP and FSEOF methods. Light brown:
targets predicted by both the HGLP/LGHP and Enzyme cost methods. Mauve:
targets predicted by both the FSEOF and Enzyme cost methods.

Table 2
Metabolic engineering target prediction.

Enzyme cost HGLP/LGHP FSEOF

Overexpression
targets

ANS [28],
TRPAS2_reverse,
ANPRT [28],
TRPS3 [28], PRAIi
[28], IGPS [28],
GLCDpp, PRPPS,
GNK, PDH,
CHORS,
PGK_reverse,
PGM_reverse,
SHK3Dr,
KARA1_reverse

SHK3Dr, DHQTi,
IGPS [28], TRPS3
[28], PRAIi [28],
PRPPS, SHKK,
CHORS, DHQS,
PSCVT,
TRPAS2_reverse,
ANS [28], ANPRT
[28], DDPA [28]

H2Otpp_reverse,
H2Otex_reverse,
CO2tex_reverse,
Htex_reverse,
ACtex_reverse,
TRPtex_reverse,
TRPt2rpp_reverse,
ANS [28], TRPS3
[28], ANPRT [28]
IGPS [28], PRAIi
[28], SHKK,
DHQTi, CHORS,
DHQS, DDPA [28],
PSCVT, SHK3Dr,
NH4tpp, NH4tex,
PGI, PRPPS,
RPI_reverse, GLNS,
PPA, ADK1

Attenuation
targets

– 78 reactions 340 reactions

Knockout
targets

– – 12 reactions

Z. Mao et al.

https://github.com/tibbdc/ECMpy
https://pypi.org/project/ECMpy
https://ecmpy.readthedocs.io/en/latest/

Synthetic and Systems Biotechnology 9 (2024) 494–502

502

Sciences (XDB0480000).
Here we are deeply grateful to klamt-lab for releasing the code for

AutoPACMEN (https://github.com/klamt-lab/autopacmen) and to
SysBioChalmers for sharing the code for DLKcat (https://github.com/Sy
sBioChalmers/DLKcat), which enables ECMpy 2.0 to rapidly obtain
enzyme kinetics parameter information for the corresponding models.
We extend our heartfelt thanks to qLSLab for making the code for
GPRuler available (https://github.com/qLSLab/GPRuler), as it has
inspired ideas for ECMpy 2.0 to automatically acquire the subunit
composition of proteins.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.synbio.2024.04.005.

References

[1] Maia P, Rocha M, Rocha I. In silico constraint-based strain optimization methods:
the quest for optimal cell factories. Microbiol Mol Biol Rev 2016;80:45–67.

[2] Massaiu I, Pasotti L, Sonnenschein N, Rama E, Cavaletti M, Magni P, Calvio C,
Herrgård MJ. Integration of enzymatic data in Bacillus subtilis genome-scale
metabolic model improves phenotype predictions and enables in silico design of
poly-γ-glutamic acid production strains. Microb Cell Factories 2019;18:3.

[3] Chen Y, Gustafsson J, Tafur Rangel A, Anton M, Domenzain I, Kittikunapong C,
Li F, Yuan L, Nielsen J, Kerkhoven EJ. Reconstruction, simulation and analysis of
enzyme-constrained metabolic models using GECKO toolbox 3.0. Nat Protoc 2024;
19:629–67.

[4] Bekiaris PS, Klamt S. Automatic construction of metabolic models with enzyme
constraints. BMC Bioinf 2020;21:19.

[5] Ye C, Luo Q, Guo L, Gao C, Xu N, Zhang L, Liu L, Chen X. Improving lysine
production through construction of an Escherichia coli enzyme-constrained model.
Biotechnol Bioeng 2020;117:3533–44.

[6] Mao Z, Zhao X, Yang X, Zhang P, Du J, Yuan Q, Ma H. ECMpy, a simplified
workflow for constructing enzymatic constrained metabolic network model.
Biomolecules 2022;12:65.

[7] Sánchez BJ, Zhang C, Nilsson A, Lahtvee P-J, Kerkhoven EJ, Nielsen J. Improving
the phenotype predictions of a yeast genome-scale metabolic model by
incorporating enzymatic constraints. Mol Syst Biol 2017;13:935.

[8] Domenzain I, Sánchez B, Anton M, Kerkhoven EJ, Millán-Oropeza A, Henry C,
Siewers V, Morrissey JP, Sonnenschein N, Nielsen J. Reconstruction of a catalogue
of genome-scale metabolic models with enzymatic constraints using GECKO 2.0.
Nat Commun 2022;13:3766.

[9] Zhou J, Zhuang Y, Xia J. Integration of enzyme constraints in a genome-scale
metabolic model of Aspergillus niger improves phenotype predictions. Microb Cell
Factories 2021;20:125.

[10] Niu J, Mao Z, Mao Y, Wu K, Shi Z, Yuan Q, Cai J, Ma H. Construction and analysis
of an enzyme-constrained metabolic model of. Corynebacterium Glutamicum
Biomol. 2022;12:1499.

[11] Wu K, Mao Z, Mao Y, Niu J, Cai J, Yuan Q, Yun L, Liao X, Wang Z, Ma H. ecBSU1: a
genome-scale enzyme-constrained model of Bacillus subtilis based on the ECMpy
workflow. Microorganisms 2023;11:178.

[12] Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-based
reconstruction and analysis for Python. BMC Syst Biol 2013;7:74.

[13] Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific
metabolic network models. PLoS Comput Biol 2014;10:e1003424.

[14] Li F, Yuan L, Lu H, Li G, Chen Y, Engqvist MKM, Kerkhoven EJ, Nielsen J. Deep
learning-based kcat prediction enables improved enzyme-constrained model
reconstruction. Nat Catal 2022;5:662–72.

[15] Consortium TU. UniProt: the universal protein knowledgebase in 2023. Nucleic
Acids Res 2022;51:D523–31.

[16] Ishchuk OP, Domenzain I, Sánchez BJ, Muñiz-Paredes F, Martínez JL, Nielsen J,
Petranovic D. Genome-scale modeling drives 70-fold improvement of intracellular
heme production in. Saccharomyces cerevisiae Proc Natl Acad Sci 2022;119:
e2108245119.

[17] Choi HS, Lee SY, Kim TY, Woo HM. In silico identification of gene amplification
targets for improvement of lycopene production. Appl Environ Microbiol 2010;76:
3097–105.

[18] Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T. Prediction of microbial
growth rate versus biomass yield by a metabolic network with kinetic parameters.
PLoS Comput Biol 2012;8:e1002575.

[19] Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, Neumann-
Schaal M, Jahn D, Schomburg D. BRENDA, the ELIXIR core data resource in 2021:
new developments and updates. Nucleic Acids Res 2020;49:D498–508.

[20] Wittig U, Rey M, Weidemann A, Kania R, Müller W. SABIO-RK: an updated
resource for manually curated biochemical reaction kinetics. Nucleic Acids Res
2017;46:D656–60.

[21] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in Python.
J Mach Learn Res 2011;12:2825–30.

[22] Anton M, Almaas E, Benfeitas R, Benito-Vaquerizo S, Blank LM, Dräger A,
Hancock JM, Kittikunapong C, König M, Li F, et al. standard-GEM: standardization
of open-source genome-scale metabolic models. bioRxiv 2023;2023.
2003.2021.512712.

[23] Di Filippo M, Damiani C, Pescini D. GPRuler: metabolic gene-protein-reaction rules
automatic reconstruction. PLoS Comput Biol 2021;17:e1009550.

[24] Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von
Mering C. PaxDb, a database of protein abundance averages across all three
domains of life*. Mol Cell Proteomics 2012;11:492–500.

[25] Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barabási A-L,
Oltvai ZN. Intracellular crowding defines the mode and sequence of substrate
uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci
USA 2007;104:12663–8.

[26] Muriel JC, Long C, Sonnenschein N. Simultaneous application of enzyme and
thermodynamic constraints to metabolic models using an updated Python
implementation of GECKO. Microbiol Spectr 2023;11:e01705. 01723.

[27] King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, Ebrahim A,
Palsson BO, Lewis NE. BiGG Models: a platform for integrating, standardizing and
sharing genome-scale models. Nucleic Acids Res 2015;44:D515–22.

[28] Guo L, Ding S, Liu Y, Gao C, Hu G, Song W, Liu J, Chen X, Liu L. Enhancing
tryptophan production by balancing precursors in. Escherichia coli Biotechnol
Bioeng 2022;119:983–93.

[29] Yang X, Mao Z, Zhao X, Wang R, Zhang P, Cai J, Xue C, Ma H. Integrating
thermodynamic and enzymatic constraints into genome-scale metabolic models.
MetaEscherichia coli Biotechnol Bioengb Eng 2021;67:133–44.

[30] Shen F, Sun R, Yao J, Li J, Liu Q, Price ND, Liu C, Wang Z. OptRAM: in-silico strain
design via integrative regulatory-metabolic network modeling. PLoS Comput Biol
2019;15:e1006835.

[31] Karr Jonathan R, Sanghvi Jayodita C, Macklin Derek N, Gutschow Miriam V,
Jacobs Jared M, Bolival B, Assad-Garcia N, Glass John I. Covert Markus W: a
whole-cell computational model predicts phenotype from genotype. Cell 2012;150:
389–401.

[32] Mao Z, Yuan Q, Li H, Zhang Y, Huang Y, Yang C, Wang R, Yang Y, Wu Y, Yang S,
et al. CAVE: a cloud-based platform for analysis and visualization of metabolic
pathways. Nucleic Acids Res 2023;51:W70–7.

Z. Mao et al.

https://github.com/klamt-lab/autopacmen
https://github.com/SysBioChalmers/DLKcat
https://github.com/SysBioChalmers/DLKcat
https://github.com/qLSLab/GPRuler
https://doi.org/10.1016/j.synbio.2024.04.005
https://doi.org/10.1016/j.synbio.2024.04.005
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref1
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref1
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref2
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref2
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref2
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref2
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref3
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref3
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref3
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref3
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref4
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref4
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref5
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref5
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref5
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref6
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref6
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref6
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref7
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref7
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref7
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref8
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref8
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref8
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref8
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref9
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref9
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref9
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref10
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref10
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref10
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref11
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref11
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref11
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref12
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref12
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref13
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref13
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref14
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref14
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref14
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref15
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref15
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref16
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref16
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref16
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref16
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref17
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref17
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref17
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref18
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref18
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref18
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref19
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref19
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref19
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref20
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref20
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref20
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref21
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref21
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref21
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref22
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref22
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref22
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref22
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref23
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref23
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref24
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref24
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref24
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref25
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref25
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref25
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref25
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref26
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref26
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref26
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref27
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref27
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref27
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref28
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref28
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref28
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref29
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref29
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref29
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref30
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref30
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref30
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref31
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref31
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref31
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref31
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref32
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref32
http://refhub.elsevier.com/S2405-805X(24)00056-5/sref32

	ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models
	1 Introduction
	2 Materials and methods
	2.1 Model parsing
	2.2 Parameter acquisition
	2.3 ecModel construction
	2.4 Parameter calibration
	2.5 ecModel analysis and visualization
	2.6 Metabolic engineering target prediction
	2.7 Configuration of operating environment

	3 Results and discussion
	3.1 An overview of ECMpy 2.0
	3.2 Comparison of enzyme-constrained model construction and analysis tools
	3.3 ecModel construction and analysis
	3.4 Applications in metabolic engineering

	4 Conclusions
	5 Availability of data and materials
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Supplementary data
	References

