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A B S T R A C T

Kafta Sheraro National Park (KSNP) has experienced rapid and consecutive destruction of dry woodland vege-
tation due to the influence of anthropogenic activities in the past three decades. However, to date, the change in
woodland cover and its driving factors have not been addressed. This study aims to assess the spatial and temporal
trends of land use/land cover change, seasonal vegetation cover change via the normalized difference vegetation
index (NDVI), and human-induced drivers of change that occurred in the KSNP between 1988 and 2018 by using
satellite imagery sensors (TM, ETMþ, OLI), field observations, and local community interview data. The 2018
image results showed kappa coefficients of the dry season and wet season of 0.90 and 0.845, respectively. There
was a continuous decline in woodland (29.38%) and riparian vegetation (47.11%) and an increasing trend in
shrub bush land (35.28%), grassland (43.47%), bare land (27.52%), and cultivated land (118.36 km2) over the
thirty-year period. Moreover, the results showed that bare land expanded from wet to drier months, while
cultivated land and grazing land increased from dry to wet months. Based on the NDVI results, high to moderate
vegetation was decreased by 21.47%, while sparse and non-vegetation expanded by 19.8% and 1.7%, respec-
tively. Settlement and agricultural expansion, human-induced fire, firewood collection, gold mining, and charcoal
production were the major proximate drivers that negatively affected park resources. Around KSNP, the local
communities’ livelihood depends on farming (crop and livestock production). This expansion of farming is the
main driver of woodland depletion, which leads to increased resource competition and a challenge for the survival
of wildlife. Therefore, urgent sustainable conservation of park biodiversity by encouraging community partici-
pation in conservation practices and preparing awareness creation programs should be mandatory.
1. Introduction

Land use land cover (LULC) change is a human-dominated modifi-
cation of the terrestrial surface of the Earth (Ellis, 2006) and a signifi-
cant environmental issue that affects the ecological processes
encountered on a global scale (Klimanova et al., 2018; Sleeter et al.,
2012). The assessment of LULC change is a study of environmental
change that is more closely associated with the expansion of settlement
following agriculture (Wang et al., 2018) and rapid urbanization and
deforestation (Hassan et al., 2016). The consequences of LULC change
include forest fragmentation and cover reduction, land degradation,
biodiversity loss (Cheruto et al., 2016; Haregeweyn et al., 2015; Mai-
tima et al., 2009), climate change (Agidew and Singh, 2017), and
degraded habitat quality (Hassan et al., 2016). The changes also have
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significant environmental consequences for the fluctuation of local
climate conditions, lowering ground water tables, and alteration in
surface runoff (Bewket and Abebe, 2013; Lambin et al., 2003; Lambin
and Geist, 2006). The change in LULC was more associated with the
rural people livelihood that depends on mixed farming of crop pro-
duction and livestock (Asmame and Abegaz, 2017). LULC change was
caused by the expansion of agriculture through unplanned and inap-
propriate land management practices to meet the food demand of the
local communities (Agidew and Singh, 2017). In many areas of devel-
oping countries, LULC changes caused by deforestation have increased
the agricultural production of rural communities (Maitima et al., 2009)
because their livelihood depends on natural resources (Mwavu and
Witkowski, 2008). It also has important impacts on the functioning of
socioeconomic and environmental systems, with tradeoffs for
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sustainability, food security, and biodiversity (Lesschen et al., 2005).
LULC change via deforestation, urbanization, and intensified or exten-
sified agriculture also created negative influences on the water cycle
(Hisdal and Tallaksen, 2000).

LULC change is the combined temporal interaction of social, eco-
nomic, institutional, and environmental factors (Hassan et al., 2016; Li
et al., 2009; Lambin et al., 2001). These change factors influence the
socioeconomic and living environments of the rural livelihood of many
regions of Sub-Saharan Africa (Maitima et al., 2010). In this region, high
poverty level, fuel production, expansion of settlement, and agriculture
were prioritized as drivers for LULC change (Mekuyie et al., 2018; Kamwi
et al., 2015; Kindu et al., 2015). Similarly, in semiarid areas of Ethiopia,
the expansion of croplands and overharvesting of woodlands were major
drivers of change (Zewdie and Csaplovics, 2016). The government-led
resettlement program in Ethiopia was another core driver of LULC
change because the program was undertaken without due consideration
of natural resources and lacked a clear management plan for the sus-
tainable utilization of resources (Yadeta et al., 2022; Mamude et al.,
2021; Abera et al., 2020; Esa and Assen, 2017). Thus, the livelihood of
resettled communities depends on the production of agricultural crops at
the expense of woodland vegetation.

LULC change has increased the trend of biodiversity crises over the
last four decades globally (Sharma et al., 2018; Butchart et al., 2010;
Krauss et al., 2010). This global loss of biodiversity has great potential to
interrupt relevant ecological processes and hinder ecosystem services
that are essential for humans (Schmitz et al., 2014; Keesing et al., 2010).
LULC change directly affects global biodiversity, which contributes to
assessing recent regional and global climate change and future climate
scenarios (Dwivedi et al., 2005; Fan et al., 2007). Currently, biodiversity
is dominantly concentrated in protected areas (PAs) (Butsic et al., 2015;
Coetzee et al., 2014; Geldmann et al., 2013). The resources in and around
PAs are more critical in developing nations of the communities living
adjacent to PAs because their livelihoods are often directly dependent on
the resources (Hartter and Southworth, 2009). In most parts of the world,
the activities of communities around PAs are expected to influence them
negatively (Jones et al., 2018; Sala et al., 2000). LULC change around PAs
has direct impacts on PA biodiversity and its ecological processes (Jones
et al., 2009; Hansen and Defries, 2007). Over the last three decades,
LULC change has been occurring rapidly in PAs and is projected to
continue (DeFries et al., 2005; Beresford et al., 2018). Therefore, the
evaluation and monitoring of LULC changes in and around PAs have
become of paramount importance (Bailey et al., 2016).

The expansion of cultivated land has been largely at the expense of
forests; globally, during the 1990s, there was an average loss of 16
million hectares of forests per year (FAO, 2011). Agricultural expansion
has been reported to be the main driver of deforestation and lead to
biodiversity loss (Haines, 2009; Lepers et al., 2005). A conversion of
forest cover to other human-made land use, particularly to agriculture,
was reported from PAs of the conterminous United States (Lu et al.,
2018), Sagarmetha National Park, Nepal (Garrard et al., 2016), Semiarid,
India (Duraisamy et al., 2018), and PAs forest, Mexico (Sancheza Reyes
et al., 2017). The conversion of forests to agriculture has also become a
major problem in East (Lambin et al., 2003) and South Africa (Bailey
et al., 2016) due to rapid population growth and subsequent resource
competition. In Ethiopia, anthropogenic activities are the most signifi-
cant factors adversely altering natural resources (Marchant et al., 2018)
and contributing detrimental impacts on the environment and livelihood
of people (Tefera, 2011; Gebreslassie, 2014). Most of the studies of LULC
change in Ethiopia have documented a considerable expansion of farm-
land at the expense of forest cover and other LULC (Lemenih et al., 2014).
A study in the Eastern Tigray region revealed a strong decrease in forest
and bushland in favor of arable and rangelands (Kassa et al., 2014).
Similarly, in the Kafta Humera district (around the study site), agricul-
tural land has largely expanded by shrinking the coverage of woodland
(Alemu et al., 2015; Zewdie and Csaplovics, 2016). Extensive agricultural
expansion as a cost of woodland and dense forest decline was also
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reported from Nechisar National Park (Fetene et al., 2015), Bale Moun-
tain National Park (Nune et al., 2016), and Babile Elephant Sanctuary
(Sintayehu and Kassaw, 2019).

Ethiopia is ecologically rich in biodiversity; however, the biological
resources of plants and wild animals are gradually shrinking (Tefera,
2011). Forest disturbance and the rapid rate of deforestation in the
country mainly occur due to poor resource management and government
land policy (i.e., the national government needs to ensure rapid economic
growth and poverty mitigation at the expense of natural resources
(Othow et al., 2017). To combat these problems, Ethiopia has established
21 national parks, 2 wildlife sanctuaries, 6 wildlife reserves, 20 control
hunting areas and priority forests, biosphere reserves, and community
conservation areas since 1966 (Vreugdenhil et al., 2012). However, most
of Ethiopia's PAs are increasingly degraded due to unsustainable natural
resource management, habitat degradation due to livestock encroach-
ment, illegal settlement, agricultural expansion, deforestation, border
conflicts of local communities, uncertain land tenure, and very low public
awareness of the importance of biodiversity and ecosystems (Young,
2012). Moreover, suitable wildlife habitats and their biological diversity
are decreasing due to the destruction and fragmentation of natural
habitats (Bekele and Yalden, 2013). However, the expansion of protected
areas in Ethiopia is increasingly occurring, and the suitable wildlife
habitats of almost all parks, including Kafta Sheraro National Park
(KSNP), are collapsing gradually from time to time.

Land use land cover (LULC) change is key information for scholars
who are working in land management studies (Karakas et al., 2015).
Therefore, understanding the dynamics and driving forces of LULC
changes at the local and global levels is fundamental in developing
strategic planning and the analysis of land-related policies (Tekle and
Hedlund, 2000). To announce each LULC change, remotely sensed (RS)
and geographical information systems (GIS) are widely used data sources
(Karakas et al., 2015; Karakus et al., 2014). Comparatively, the combi-
nation of RS data and field observations can accomplish LULC change
detection more accurately than separately (Mucova et al., 2018) because
satellite data analysis alone might miss the drivers of LULC change
(Lambin and Meyfroidt, 2010). Human perception is significant for un-
derstanding LULC change patterns, driving forces, and consequences
(Burgi et al., 2017; Grinblat et al., 2015). Moreover, LULC change anal-
ysis acceptance and accuracy were maximized when satellite image
analysis was mixed with local residents’ participation (Garrard et al.,
2016; Nune et al., 2016; Kamwi et al., 2018). Therefore, the main
objective of this study was to assess the extent of LULC change and the
key drivers of change in Kafta Sheraro National Park (KSNP) between
1988 and 2018. The specific objectives were (1) to identify and delin-
eate different LULC categories and to show the spatial and temporal
trends of the main LULC change; (2) to assess the wet and dry season
variations in NDVI and dry land forest vegetation cover change; and (3)
to explore the causes/driving factors of LULC change by the socioeco-
nomic conditions of the communities and their perceptions of LULC
change and proximate drivers.

2. Materials and methods

2.1. Description of the study area

Kafta Sheraro National Park (KSNP) was designated a park in 2007
(Letter, No: 13/37/82/611) with an area of 2176.43 km2. The park was
formerly named the “Shire Wildlife Reserve” and was established in 1973
with an estimated area of 750 km2 governed by the Tigray national
regional state. Kafta Sheraro National Park (KSNP) is located in Kafta
humera and Tahitay adiyabo weredas (districts) of the western and
northwestern zones of the Tigray region 1356 km from Addis Ababa and
490 km from Mekelle city. The park is situated in northern Ethiopia
between latitude 14�050–14�270N and longitude 36�420–37�390E. The
park is bordered by Eritrea in the north and transverse by the Tekeze
River (Figure 1). The elevation of the park varies from 539 to 1130 m



Figure 1. Location and elevation map of Kafta Sheraro National Park (KSNP) in the Tigray region.
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above sea level (m.a.s.l.). The landforms of the areas are heterogeneous
in nature and consist of a flat plain, undulating to rolling; some isolated
hills and ridges, a chain of mountains, and valleys. The climate of the area
is generally characterized by hot to warm semiarid and seasonal rainfall
(Temesgen and Warkineh, 2020). The maximum monthly temperature is
in April (43.7 �C), while the minimum monthly temperature is in
December (19.2 �C) and January (19.1 �C). The mean monthly temper-
ature ranges from 28.35 �C to 35.1 �C. The coolest temperature occurs in
August, while the warmest temperature occurs from March to May. The
rainfall pattern varies greatly with the months of the season. Short rains
occur in June and September, and long rains occur during July (174 mm)
and August (252 mm), whereas rare cases of rain in the remaining
months appear (Figure 2).

The KSNP harbored more than 70 woody species, 46 trees, 18 shrubs,
and 6 tree/shrubs. The most dominant and frequent tree species in the
park are Acacia mellifera, Combretum hartmannianum, Terminalia brownii,
Balanites aegyptiaca, Dicrostachy scinerea, Acacia senegal, Acacia oerfota,
Boswellia papyrifera, Ziziphus spina-christi, and Anogeissus leiocarpus
(Temesgen and Warkineh, 2020). The park is also home to large mam-
mals such as African elephant, Roan antelope, Oribi, Spotted hyena,
Greater kudu, warthog, Anubis baboon, Grivet monkey, crocodile, fish
species and wintering migratory bird (Demoiselle crane) along the
Tekeze River (Shoshani and Demeke, 2008). Agriculture is the main
3

source of livelihood and economic activities of the studied settlers. The
livelihood of the local communities of the districts Kafta humera and
Tahitay adiyabo weredas (surrounding the park) is dominated by mixed
farming of crop livestock production (Dejene et al., 2013).

2.2. Data collection and sources

2.2.1. Satellite image data
Landsat 5 thematic mapper (TM), Landsat 7 Enhanced thematic

mapper plus (ETMþ), and Landsat 8 Operational land imager/Thermal
infrared sensor (OLI/TIRS) multispectral satellite sensor data were used
to detect LULC changes from 1988 to 2018 (Figure 3). The images were
downloaded from Earth Explorer (http://earthexplorer.usgs.gov) and
covered by the path/row (170/50) of the Worldwide Reference System.
The images with high resolution and minimum or no cloud cover were
selected from a number of images for each period to minimize errors or
confusion for classification. A total of 26 images for the dry and wet
seasons, 5 for LULC change detection, and 21 for normalized difference
vegetation index (NDVI) analysis were downloaded. The dry season
period of the area was defined from November to May, and the wet
season was defined from June to October. However, the images were
taken for the wet season between September and October and for the dry
season between March and April. These months were preferred for all

http://earthexplorer.usgs.gov


Figure 2. Maximum, mean, and minimum monthly temperature (�C) and mean monthly rainfall (mm. month�1) of Humera and Sheraro Districts Meteorological
Center (1996–2016); Source ¼ Ethiopian National Meteorology Agency (ENMA, 2018).
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satellite image sensors because they were found to have no or minimum
cloud cover and water vapor. A detailed explanation of each satellite
sensor is described in Table 1 for LULC change classification and for NDVI
analysis in Table 2.

2.2.2. Field observation data
Field visits were carried out from December 2018 to April 2018 for

the dry season and from mid-June 2018 to the beginning of November
2018 for the wet season to identify major LULC types and to take field
training points that are changed seasonally in the KSNP. Table 3 shows
LULC change identified in the field in each season and cross-checked
Figure 3. Flow diagram summary of step
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through interviews of local farmers’ focus group discussions (FGDs)
with farmland inside and around the park. Accordingly, the local farmers
interviewed that the plowing and sowing time of rain fed crops starts in
June and that the crops are harvested from mid-November to December.
After the rain fed crops are harvested, they could leave the land bare until
the next sowing year (June) or be left totally free and shifted to a new
area. Similarly, the grasses covered in the wet season appeared bare until
the next rainy season (Table 3).

Fieldwork is mainly focused on observing and capturing the various
LULC types using a digital camera, and each sampling location was
recorded via the geographical positioning system (GPS) of handheld
s and data utilized in image analysis.



Table 1. Data type and detailed description of satellite images used in LULC change analysis.

Satellite Sensor type Path/Row Acquisition date Spatial Resolution(m) Bands (B) used for spectral signature Bands wave length (μm)

Landsat5 TM 170/50 23-10-1988 30 B1, B2, B3, B4, B5, B7 0.48–2.20

Landsat5 TM 170/50 19-10-1998 30 B1, B2, B3, B4, B5, B7 0.48–2.20

Landsat7 ETMþ 170/50 06-10-2008 30 B1, B2, B3, B4, B5, B7 0.48–2.22

Landsat8 OLI/TIRS 170/50 10-10-2018 30 B2, B3, B4, B5, B6, B7 0.45–2.29

16-03-2018

Note: TM¼ thematic mapper, ETMþ¼ enhanced thematic mapper plus, OLI¼ operational land imager, TIRS¼ thermal infrared sensor, B¼ band, μm¼micrometer, m
¼ meter and calendar order (day-month-year).
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Garmin GPS-60. To emphasize, the classification was more accurate;
more than 100 ground truths (latitude and longitude records) were
collected from each LULC type of the 2018 image, and a total of 700
points were collected for seven classes. The accuracy assessment was
basically good for the Landsat-8 (OLI) of the 2018 satellite image because
the points directly show the recent feature of LULC categories. The
ground control points were divided into two groups: one group for
selecting training sites for classification and the second group for the
accuracy assessment.

2.2.3. Socioeconomic survey
Sampling design: The drivers of LULC change in the study were

collected from three basic sources: (1) household questionnaires, (2)
focus group discussions, and (3) key informant interviews. As the park is
located in two weredas (districts) of Kafta humera and Tahitay adiyabo,
seven Kebeles (the smallest governmental administrative units of
Ethiopia) were purposively selected from the total, based on proximity to
the park and their livelihood directly dependent on the resources of KSNP
and its surrounding area. A systematic sampling method was used to
select the representative sample respondents for the household in-
terviews from individual kebeles, whereas the purposive sampling
technique was used for focus group discussion and key informant in-
terviews. The sample size of households was calculated using equ. (1)
Sampling technique (Cochran, 1977).
Table 2. Detailed description of satellite images used for normalized difference
vegetation index (NDVI) analysis.

Satellite
ID

Sensor
type

Path/
Row

Acquisition
date

Spatial
Resolution(m)

Sources

Landsat 5 TM 170/50 13-03-1988 30 USGS

Landsat 7 ETMþ 170/50 20-10-2007 30 USGS

170/50 26-03-2007 30

170/50 06-10-2008 30

170/50 28-03-2008 30

170/50 09-10-2009 30

170/50 16-04-2009 30

170/50 12-10-2010 30

170/50 18-03-2010 30

170/50 15-10-2011 30

170/50 21-03-2011 30

170/50 01-10-2012 30

170/50 08-04-2012 30

Landsat 8 OLI/TIRS 170/50 26-09-2013 30 USGS

170/50 28-03-2013 30

170/50 29-09-2014 30

170/50 21-03-2014 30

170/50 16-09-2015 30

170/50 08-03-2015 30

170/50 20-10-2016 30

170/50 26-03-2016 30

Note: TM ¼ thematic mapper, ETMþ ¼ enhanced thematic mapper plus, OLI ¼
operational land imager, TIRS ¼ thermal infrared sensor, USGS ¼ United States
Geological Survey, calendar order (day-month-year).
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no¼ t2pq
e2

; n¼ no
1þ ðno�1Þ (1)
N

where, no ¼ assumed simple random sample size of households (384); p
¼ estimated proportion of the population to be included in the sample
(i.e., 50%); q ¼ 1 � p; t ¼ uncertainty (number of standard errors) in the
number of people depending on park resources of �5% (at the 95%
confidence interval level, Z value¼ 1.96); e¼ the margin of error (0.05);
n ¼ sample size, and N ¼ the total number of household heads (i.e.,
5458). Using Eq. (1), the result of the sample size was 359; however, to
compensate and cover the non-response of households, the sample size
was increased by 10% (36). Therefore, the total sample size of the
selected households in this study was 395 (Table 4).

For questionnaire distribution, households were systematically
selected from each kebele. Thus, the first household selection started
randomly from the settled households, and then the next households were
selected systematically at every 9th interval in each kebele using the for-
mula below until the given sample size was reached. Therefore, the size of
the interval (k) for selectionwas calculated by k¼N/n, where k¼ the size
of the interval for selection;N¼ total population (households); andn¼ the
number of samples required for the study (Mota et al., 2019).

Household survey: The questionnaires had both open and closed-
ended questions to gather information about the perceptions of the
local communities on LULC changes and the drivers of change in KSNP
from November 2018 to June 2019. The questionnaires covered 395
households from seven Kebeles (Table 4), and individual household re-
sponses took 50–70 min. The targeted populations for semi structured
interviews were parks near communities (villagers) having direct inter-
action with KSNP, irrigation farm holders, and livestock owners. The
questionnaires were designed to gather general household characteris-
tics, forest coverage trends, perception of the local people on LULC
change, and the drivers of change (Appendix-1).

Focus group discussions (FGDs): The investigator will collect data by
gathering a group of participants together to discuss the relevant issue of
the study. The FGDs were performed within seven Kebeles in the study
area by involving elderly peoplewhowere older than 60 years and lived in
the area for more than 28 years. The elders were consulted for the age and
history of the land use type and the main drivers of LULC change of KSNP
using open-ended questions. This has helped us to be aware of the ongoing
LULC change (past and present drivers of LULC change) in the study area.

Key informant interviews (KII): Themain objective of the key informant
interviews was to collect detailed information from a wide range of people
who selected specific groups who had first-hand information about the
Table 3. Some of the LULC classes change seasonally or remain the same, and the
field points are set for the two seasons (wet and dry).

Land use land cover classes Wet season Dry season

1. Rain fed crops Cultivation Bare land

2. Grazing/grass cover Grass land Bare land

3. Irrigated land Cultivation Cultivation

4. Streams & main tributary rivers Water body Bare land

5. Main road Bare land Bare land

6. Sandy and small gravel area Bare land Bare land



Table 4. Total selected sample household heads from seven Kebeles of Kafta
humera and Tahitay Adiyabo districts (Source: survey 2018/19).

Wereda
(district)

Selected
Kebeles

Total heads of
household

Sample size has taken
from each kebele

Male Female Total

Kafta-humera Adebay 2976 88 36 124

Freselam 291 25 9 34

Wuhedet 262 21 7 28

Mayweyni 265 22 8 30

Adigoshu 671 55 17 72

Tahitay
adiyabo

Adiaser 324 28 9 37

Aditsetser 669 51 19 70

Total 5458 293 102 395
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ongoing problems that happened in KSNP by the communities. The quali-
tative data collection from key informants was via direct individual in-
terviews and focus group discussions. Thus, the researcher conducted three
key informant interviews: (1) community administrators and professional
experts (i.e., cropand livestockproduction, forest andwildlife conservation,
soil andwater conservation)of the studydistricts; (2) religious leaders in the
districts; and (3) management, experts, and scouts of KSNP.

The questionnaire for focus groups (elderly people) and key infor-
mant interviews were arranged for qualitative data collection by pre-
paring the outlined script and a list of open-ended questions from specific
topics of the study objectives (i.e., forest cover trend, past and present
LULC, causes of LULC change, and community attitude to LULC change).
The questions prepared by the investigator for elderly people were short,
clear, and phrased in their local language (i.e., Tigrigna), while for expert
and professional informants; the questionnaires were broad and more
formally phrased. Moreover, the selected groups engaged in detailed
discussions, elaborations, and conversations on the issues raised (ques-
tionnaires). Finally, the investigator recorded the interview response
both by note taking and audio recording.
2.3. Data analysis

2.3.1. Preprocessing of images
Before LULC classification and detection of changes, preprocessing of

satellite images is an imperative process to develop an inline association
between biophysical phenomena on the ground and acquired data
(Coppin et al., 2004). Before any activities, Landsat images (TM 1988 and
1998, ETMþ 2008 and OLI 2018 imageries) were geometrically rectified
(geocoded) to the World Geodetic System 1984 (WGS 84) and set a
projection to Universal Traverse Mercator (UTM) zone 37 N specific to
Ethiopia. Geometric and radiometric (reflectance) calibration: During
image acquisition, satellite images have different types of dis-
tortions/noise, which reduces the quality of the image. The calibration of
Landsat imagery was performed based on the known solar geometry and
on the gain and bias values provided by the Landsat metadata (Hilker
et al., 2012). For better performance of the Landsat time series of LULC
change analysis, consistent image sets of geometric and radiometric
corrections are the two significant activities (Rani et al., 2017; Hansen
and Loveland, 2012). For the present study, geometric and radiometric
(reflectance) corrections were carried out to decrease negative atmo-
spheric effects or correct for changes that occurred in scene illumination,
atmospheric solar conditions, and viewing geometry, as applied by
Chander et al. (2009). Likewise, images with clouds and cloud shadows
were removed using a cloud mask (fmask function) with the ArcMap10.5
tool. Subsequent calibration activities, such as gap filling, layer stacking,
and sub setting of bands, were undertaken.

2.3.1.1. Band color combination. This activity refines image interpret-
ability by increasing differentiability among objects of the image for
classification. According to Mohy et al. (2016), visual interpretation of
6

images is an important step toward understanding the area of specific
study and preparing for field surveys. Chavez et al. (1982) developed a
quantitative statistical technique called the optimum index factor (OIF)
that improves image visualization and selection of Landsat image band
ratio color combination (Eq. (2)). The optimum index factor (OIF) was
based on the variance (i.e., standard deviation) and the correlation
among the different band ratios. The authors reported that the ratio
combination with the largest OIF value that contained the most infor-
mation content and the least amount of decomposition (lowest correla-
tion coefficients) was selected for the optimum color composite.

OIF¼
P3

i¼1SDiP3
j¼1jCCjj

(2)

where, Sdi ¼ standard deviation for ratio i; |CCj| ¼ absolute value of the
correlation coefficient between any of the three band color ratios.

In this study, for better visualization of different objects in the images,
we created a color combination by taking band 7 for infrared (2.064–2.345
μm), 4 for near-infrared (1.547–1.749 μm), and 1 for blue (0.772–0.898
μm),whichwere chosen for TM1988, 1998 and ETMþ 2008. For OLI 2018,
band 7 for infrared (2.107–2.294 μm), band 5 for near-infrared
(0.851–0.879 μm), and band 4 for red (0.636–0.673 μm) were chosen.
The preprocessing activities were performed using ENVI 5.3 software.

2.3.2. Land use/cover class classification
The images were classified using the supervised classification algo-

rithms under ENVI 5.3 because we are familiar with the study landscape.
This classification method may be preferable for LULC change detection
if prior information about the landscape is gained through personal
knowledge of the study area (Rogan and Chen, 2004). The individual
LULC class signatures of polygons (training areas) were marked based on
field observations, household knowledge, and color combinations of
bands (image visual interpretation). Then, the image data set in the LULC
class is placed via the maximum likelihood classifier (MLC). Even though
there are different classifiers, the MLC algorithm was better performed
using all the spectral bands fit to vegetation (Abyot et al., 2014; Rawat
et al., 2013; Manandhar et al., 2009). This technique also has a greater
probability of weighting minority classes that can be swamped by the
large class during training samples taken from images. The minority
classes in the image have the opportunity to be included in their
respective spectral classes (reduce uncategorized pixels) from entering
into another class (Othow et al., 2017). Accordingly, seven major LULC
classes were recognized in KSNP, and their description was based on the
author's prior knowledge of the study site and detailed field observations
(Table 5).

2.3.3. Accuracy assessment
Accuracy assessment is useful to assess the quality of the data

collected in the field and the classified images. This technique determines
the sources of error encountered during the classification of satellite
images (Congalton and Green, 2009). Accuracy assessment determines
how accurate the ground truth data region of interest agreed with clas-
sified images of the remotely sensed data in which precision testing was
conducted using the Kappa index (Keshtkar et al., 2017; Smits et al.,
1999). We compare the accuracy assessment of 1988, 1998, and 2008
using ground sample points taken from Google Earth maps, long-lived
resident interviews, and previously published research reports. Howev-
er, for the dry and wet seasons of the 2018 satellite image classification
and accuracy assessment analysis, 100 points from each of the 7 classes
(total of 700 points) of ground truth data in the form of reference points
were collected using a geographic positioning system (GPS). Generally,
the accuracy assessment was expressed using four parameters: user's
accuracy, producer's accuracy, overall accuracy, and kappa coefficient,
which were derived from the error (confusion) matrix following Eqs. (3),
(4), (5), and (6) (Lillesand et al., 2008; Congalton and Green, 2009; Liu
et al., 2007; Lung and Schaab, 2009).



User’s accuracy ðUAÞ¼ Number of correctly classified pixels in each catagory
Total number of reference pixels in that catagory ðrow totalÞ � 100% (3)

Producer’s accuracy ðPAÞ¼ Number of correctly classified pixels in each catagory
Total number of reference pixels in that catagory ðcolumn totalÞ � 100% (4)

Overall accuracy ðOAÞ¼Total number of correctly classified pixels ðDiagonalÞ
Total number of reference pixels

� 100% (5)

Table 5. Land use/cover categories and their explanations in Kafta Sheraro National Park (KSNP).

LULC type Description

Woodlands Large and medium trees which have medium canopy cover arise from lower range of grasses and herbs.

Shrub-bush
lands

Dominantly covered by short height shrub/bush structure of plants and arise from mixed lower coverage of grasses and herbs.

Riparian forests Dense canopy cover vegetation of the park along Tekeze River and its tributary rivers valley having vertical stratification and dominated by tall trees or wood lands.

Grasslands Plains, rough ground and relatively hilly areas cover by different predominantly grass species mixed with herbs and natural pasture for animals.

Agricultural
land

Both rain fed crops and irrigated vegetable and fruit crops like banana and mango plantation. Areas of store house and farmhouses are also under agricultural land.

Water bodies Water courses of Tekeze river, permanent and seasonal tributary rivers, and streams

Bare land Areas including no vegetation cover, gravel and asphalt roads, degraded lands, bare ground and gold excavation areas, mixed sand and small gravel which are found in
Tekeze River sides and its tributary rivers.
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Kappa coefficientðKcÞ¼NΣ
m
Dij� Σ

m
Ri:Cj

2
P i;j¼1 (6)
N � Ri:Cj

where, N ¼ total number of pixels, m ¼ number of classes, ΣDij ¼ total
diagonal elements of an error matrix (the sum of correctly classified
pixels in all images), Ri ¼ total number of pixels in row i, and Cj ¼ total
number of pixels in column j. The value of Kc ranges betweenþ1 and�1.

2.3.4. Land use land cover (LULC) change
The magnitude of change is a degree of expansion (þ) or reduction

(�) in the LULC size of the classes. The percent rate of LULC change was
computed by Eq. (7) (Duraisamy et al., 2018; Bekele et al., 2019; Asmame
and Abegaz, 2017; Esa and Assen, 2017).

Change rate ð%Þ¼Area of final year � area of initial year
Area of initial year

� 100 (7)

The annual rate of change per year was calculated using Eqs. (8) and
(9) (Alawamy et al., 2020).
Annual rate of change
�
km2 � year

�¼Area of final year � area of initial year
Time interval b=n initial & final years

Annual rate of change ð%Þ¼ Area of final year � area of initial ye
ðTime interval b=n initial & final yearsÞ � ðArea

7

2.3.5. Normalized difference vegetation index (NDVI) analysis
The normalized difference vegetation index (NDVI) is used to

distinguish the forest cover status, state of degradation, and extent of loss
(Meneses-Tovar, 2011). Thus, NDVI information is relevant in the study
area because the local community influence on forest cover is relatively
high. Landsat images from 1988 and 2018 were utilized to extract NDVI
values of vegetation cover change classification as nonvegetation, sparse
vegetation, and high to moderate density vegetation (Figure 8 and
Table 11). The NDVI value ranges between �1 and þ1. As the value
increases toward þ1 or increasing positive NDVI values indicate dense
vegetation (vegetated plant canopy), and values close to zero or
decreasing negative values (�1) indicate nonvegetation surfaces such as
water and bare ground (Schnur et al., 2010). NDVI has a high positive
value in vegetated agricultural cover crops (Meneses-Tovar, 2011). NDVI
is calculated based on the difference in the ratio of red (R) and near
infrared (NIR) reflectance using Eqs. (10) and (11) (Naif et al., 2020;
Bilgili et al., 2014).
(8)

ar
of initial yearÞ � 100 (9)
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Landstat�8;NDVI¼Near infrared ðband 5Þ � Red ðband 4Þ
Near infrared ðband 5Þ þ Red ðband 4Þ (10)
Landsat�5; 7 NDVI¼Near infrared ðband 4Þ � Red ðband 3Þ
Near infrared ðband 4Þ þ Red ðband 3Þ (11)

Note: In this analysis, the index was computed based on the difference
in red band 4 (0.64–0.67 μm) reflectance and NIR band 5 (0.85–0.88 μm)
reflectance of Landsat-8 OLI of both dry (March 2018) and wet season
(October 2018) satellite images. In addition, for the TM and ETMþ sen-
sors, the red band was 3 (0.63–0.69 μm), and the NIR band was 4
(0.77–0.9 μm).

The study site is located in a semiarid region, where climate variables
are limiting factors for vegetation cover determination. From the climate
variables, precipitation has a direct relation with the spatial and temporal
changes in the NDVI. Due to the absence (discontinuous) of remotely
sensed satellite images between 1996 and 2006, the NDVI relation with
climate variable analysis was conducted between 2007 and 2016. In
these periods, continuous satellite image data were directly matched
with the recorded precipitation and temperature of the same years and
seasons. Thus, the statistical relationship between the NDVI response and
precipitation and/or temperature separately was examined through a
simple linear regression model for one decade of data as applied with Eq
(12).

NDVI ¼ a � b*rainfall or temperature þε (12)

where, ‘NDVI’ ¼ dependent factor; rainfall or temperature ¼ indepen-
dent factor, a ¼ intercept, b ¼ partial slope coefficient for variable
rainfall or temperature, and ε ¼ random error. The seasonal mean NDVI,
annual seasonal rainfall, and seasonal mean temperature were analyzed
for the period from 2007 to 2016. The significance of the mean NDVI
change was evaluated at the 95% confidence level (p < 0.05).

2.3.6. Socioeconomic and associated statistical analysis
The data collected from sampled households were quantitatively

analyzed, whereas data from focus group discussions (FGDs) and key
informant interviews were analyzed qualitatively. Descriptive statistics,
such as the mean and percentage, were used to describe the socioeco-
nomic variables of the households and summarize their responses using
tables and figures. Statistically, the interviewees' awareness of the drivers
Figure 4. Wet season land use/land cover change class map derived from October
sat images.
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of LULC change response between selected socioeconomic variables was
analyzed by Pearson's chi-square (nonparametric test). The main drivers
of LULC change obtained from the household surveys were summarized
by the ranking method. In this method, the index was calculated as a
ranking ratio with the principle of weighted average adopted by Musa
et al. (2006), as described in equ (13).

Index¼ Rn*C1 þ Rn�1*C2 þ…þ R1*Cn

ΣRn*C1 þ Rn�1*C2 þ…þ R1*Cn
(13)

where, Rn ¼ the value given for the least ranked level by respondents (in
this study, the least rank is 4th, then Rn¼ 4, Rn�1¼ 3,& R1¼ 1); C1¼ the
counts of the 1st ranked, C2 ¼ the counts of the 2nd ranked... & Cn ¼ the
counts of the least ranked level (in this study, Cn ¼ the count of the 4th
rank).

On the other hand, the local people's awareness status of LULC change
drivers of KSNP, which is determined by the socioeconomic descriptive
variable difference of the sampled households, was tested by logistic
regression analysis. Logistic regression analysis is the interaction among
the driver data and the LULC change category. Lesschen et al. (2005)
stated that logistic regression is useful for discrete dependent variables
that have a binary (bivariate) outcome and investigates the association of
dependent (response) variables with independent variables. Therefore,
the interlinked mathematical formula is summarized in equ (14).

Logit (Y) ¼ α þ β1X1 þ β2X2 þ β3X3 þ… … …þ βkXk (14)

where, Y ¼ the dependent (response) variable, α ¼ the intercept, β1... βk
¼ the regression coefficients of explanatory variables, and X1... Xk (7) ¼
the independent (explanatory) variables.

In the present study, the dependent variable was the difference in
household awareness of the drivers of LULC changes, while the inde-
pendent variables consisted of the descriptive information of the sampled
households. Hence, there were seven determinant socioeconomic vari-
ables used in the analysis: age categories, gender, household size, edu-
cation level, settlement duration, agricultural land size, and distance
from settlement to the KSNP border. Thus, this analysis evaluated the
impact probability of the independent variables on the dependent vari-
ables. Additionally, the correlations between the trends of different LULC
change types were computed, and a statistically significant association
was identified at p < 0.05. All the above-listed statistical tests (i.e.,
Pearson's chi-square (X2), regression and correlation) were performed
23, 1988, October 19, 1998, October 06, 2008, and October 16, 2018, Land-



Figure 5. Dry season land use/land cover class map derived from March 16, 2018, Landsat image.

Table 6. Accuracy assessment (error matrix) for 1988, 1998, and 2008 Landsat
images.

Land use land cover
classes

1988 1998 2008

UA (%) PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

Woodland 90.46 87.15 93.79 94.15 88.69 66.54

Shrub-bushland 77.65 82.20 84.20 92.39 75.54 86.64

Riparian forest 93.73 85.40 64.06 86.77 76.81 91.33

Grassland 77.57 96.35 96.92 88.59 75.47 94.65

Agricultural land – – 64.78 73.03 68.03 60.58

Water body 100.00 97.84 97.06 88.55 99.30 85.94

Bareland 97.71 95.09 87.09 95.87 95.31 96.64

Overall accuracy (OA) 88.6% 88% 82.26%

Kappa coefficient (Kc) 0.85 0.84 0.79

UA ¼ user accuracy, PA ¼ producer accuracy.
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using R-statistical Package (R-Core Team, 2019) and IBM SPSS statistics
(IBM Corp, 2019).

2.3.7. Ethics approval and research site permission
The study ethics were reviewed and approved by the College of

Natural & Computational Science, Research Department Graduate
Committee (DGC, 2018) and Ethiopian Wildlife Conservation Authority
Research Ethics Review Committee. Prior to the field visit and data
collection, a permission letter was obtained from the Ethiopian wildlife
conservation authority for the selected study site of Kafta Sheraro
Table 7. Wet season confusion matrix for the 2018 OLI classified image.

Classified data Ground truth data

Wood land Shrub bushland Riparian forest Grass la

Woodland 129 0 7 0

Shrub-bushland 6 92 0 6

Riparian forest 0 0 128 0

Grass land 0 22 0 146

Agricultural land 0 0 0 1

Water body 1 0 0 0

Bareland 0 5 0 18

Total 136 119 135 171

PA (%) 88.36 77.31 89.63 82.49

Over all accuracy 86.9%

Kappa coefficient 0.845

Note: classes are shown by the number of classified pixels, UA ¼ user accuracy, PA ¼
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National Park (KSNP). Before distributing the questionnaire, the objec-
tive of the study was briefly explained to participants, and verbal consent
was collected. The questionnaire excluded personal identifiers (privacy)
such as the names of interviewees.

3. Results and discussion

3.1. Land cover classification map and seasonal variation of accuracy
assessment

The LULC spatial distributions of Kafta Sheraro National Park (KSNP)
were classified well in both the wet season from 1988 to 2018 (Figure 4)
and the dry season in 2018 (Figure 5). The overall accuracies (OA) during
1988, 1998, and 2008 were 88.6%, 88%, and 82.26%, respectively,
while the Kappa coefficients (Kc) were 0.85, 0.84, and 0.79, respectively
(Table 6). The wet and dry season classification accuracy assessment of
KSNP is considered reliable and acceptable agreement for the classified
image of 2018. Based on the ground truth recorded data of 2018, the
overall accuracies (OA) for images of wet and dry seasons were 86.9%
and 91.96% with Kappa coefficients (Kc) of 0.845 and 0.90, respectively
(Tables 7 and 8). The wet season OA and Kc of the study were higher than
those of the Central Rift Valley of Ethiopia (Mesfin et al., 2020), pro-
tected and communal areas of Namibia (Kamwi et al., 2018), and Quir-
imbas National Park, Mozambique (Mucova et al., 2018). Similarly, the
dry seasons of OA and Kc are also higher than the Bale Mountain National
Park, Ethiopia (Nune et al., 2016), Maputaland-Pondoland-Albany
Biodiversity hotspot (Bailey et al., 2016), and Tarangire and Katavi Na-
tional Parks (Mtui et al., 2017).
nd Agriculural land Water body Bare land Total UA (%)

1 0 0 137 88.97

0 0 0 104 88.46

0 0 0 128 96.80

1 0 14 183 73.00

88 0 0 89 98.88

0 74 0 75 98.67

0 0 88 111 79.28

90 74 102 827 -

93.62 98.67 85.44 - -

producer accuracy.



Table 8. Dry season confusion matrix result for the 2018 OLI classified image.

Classified data Ground truth data

Wood land Shrub bushland Riparian forest Grass land Irrigated land River water Bare land Total UA (%)

Woodland 117 28 2 1 0 0 6 154 76.47

Shrub-bushland 1 79 0 5 0 0 0 85 92.94

Riparian forest 0 2 53 0 0 0 0 55 96.36

Grassland 0 0 0 46 0 0 0 46 100

Irrigated land 0 0 0 0 0 0 0 98 100

River water 0 0 0 0 98 0 0 109 100

Bare land 2 0 0 0 0 109 66 68 97.06

Total 120 109 55 52 98 109 72 615 –

PA (%) 97.50 72.48 96.36 72.73 100 100 91.67 – –

Over all accuracy 91.96%

Kappa coefficient 0.90

Note: classes are shown by the number of classified pixels, UA ¼ user accuracy, PA ¼ producer accuracy.

Table 9. Area extent of land use/land cover types in 1988, 1998, 2008, and 2018.

Land use land cover classes 1988 1998 2008 2018

km2 % km2 % km2 % km2 %

Woodland 1,251.88 57.98 1,132.08 52.44 1,007.32 46.66 884.03 40.95

Shrub-bushland 374.91 17.36 402.36 18.64 436.82 20.23 507.18 23.49

Riparian forest 83.77 3.88 60.92 2.82 52.48 2.41 44.31 2.05

Grassland 371.03 17.18 417.52 19.34 496.35 22.99 532.34 24.66

Agricultural landa 0.00 0.00 64.79 3.00 95.57 4.45 118.35 5.48

Water body 48.30 2.24 49.22 2.28 34.59 1.60 35.02 1.62

Bareland 29.13 1.35 32.09 1.48 35.85 1.66 37.75 1.75

Total 2,159 100 2,159 100 2159 100 2159 100

a Cultivation area was absent in 1988, but crop cultivation clearly started in 1993.

Table 10. Magnitude and annual rate of change in different LULC categories of KSNP from 1988-2018*.

Land use land cover classes 1988–1998 1998–2008 2008–2018 Change between 1988-2018 Annual rateof change/year
1988–2018

km2 % km2 % km2 % (km2) % (km2) (%)

Woodland �119.81 �9.57 �124.8 �11.0 �123.3 �12.2 �367.85 �29.38 �12.3 �0.98

Shrub-bushland 27.45 7.32 34.46 8.56 70.36 16.1 132.27 35.28 4.41 1.17

Riparian forest �22.85 �27.3 �8.78 �14.4 �7.83 �15.0 �39.46 �47.11 �1.32 �1.57

Grassland 46.49 12.53 78.82 18.88 35.99 7.25 161.31 43.47 5.38 1.45

Agricultural land 64.80 – 30.78 47.5 22.78 23.8 118.36 – 3.94 –

Water body 0.92 1.89 �14.63 �29.7 0.42 1.23 �13.29 �27.51 �0.44 �0.92

Bareland 2.94 10.08 3.78 11.8 1.30 3.61 8.02 27.52 0.27 0.92

*Negative sign (�) indicates that the land use/land cover class was decreasing in the entire time span.
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The user's accuracies (UA) and producer's accuracies (PA) of the wet
season woodland, riparian forest, agriculture, and water body were
greater than 88% reasonably classified for the tested year (Table 7). Dry
season riparian forest, irrigated land, river water, and bare land were
relatively well classified, above 91% for all tested maps (Table 8).
Comparatively, the dry season accuracy in 2018 was quantified to be
higher than that in the wet season, and these results are in agreement
with a study in tropical semiarid areas (Msigwa et al., 2019). These au-
thors tested and approved that wet and dry seasonal accuracy exhibited
an increasing trend from wet to drier seasons. In our study, the low
classification accuracy or higher confusion error of the wet season
grassland and woodland cover in 2018 was mostly caused by confusion
with other related land cover classes. For example, in the wet season,
grass is often confused with cultivation, and woodland is confused with
shrub-bush land due to the limited spatial resolution and image quality
10
(Msigwa et al., 2019) also observed that wet season grassland had low
classification accuracy. As reported by Duraisamy et al. (2018), during
the wet season, there was a high vegetative cover of crops and natural
vegetation, which creates confusion or makes it difficult to differentiate
among them. Furthermore, a study in Burkina Faso also revealed the
highest classification accuracy in the dry season and the lowest classifi-
cation accuracy in the wet season (Liu et al., 2007).

3.2. Trends of land use/land cover change during the period 1988–2018

Kafta Sheraro National Park (KSNP) experienced extensive LULC
change due to increased settlement coupled with the expansion of
farming activities from 1988 to 2018. However, woodland area coverage
during 1988 was the largest; a continuous decline was observed in the
three consecutive decades of the study period. The highest decline was
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observed from 1998 to 2008 by 11.0% (124.8 km2), while the lowest
decline was 9.57% (119.81 km2) between 1988 and 1998. In thirty years
(1988–2018), woodland decreased by 29.38% (367.85 km2) at an
average rate of 12.3 km2 (0.98%) per year (Tables 9 and 10). The riparian
forest declined consecutively from 1988 to 1998 and 1998 to 2008 by
27.3 km2 (22.85%) and 14.4 km2 (8.78%), respectively. However, in the
3rd period (2008–2018), the forest slightly declined by 7.83 km2 (15%).
In the three decade study, this class decreased by 39.46 km2 (47.11%) at
an annual rate of 1.32 km2 (1.57%) per year (Tables 9 and 10). Because
these periods took place, widespread expansion of dry season irrigated
land and wet season rain fed crops occurred. The increase in settlement
around the park, agricultural expansion, and firewood collection had a
great impact on the destruction of woodland cover. The depletion of the
Tekeze riverside riparian forest was due to extensive irrigated crop
cultivation undertaken since 1993. In contrast, the dry season of bare
land, agricultural land, grassland, and shrub bush land was highly
expanded throughout the study period (1988–2018). Similar findings
were reported from the Babile elephant sanctuary (1977–2017) study, in
which woodland and riparian forests decreased, whereas agricultural
land and bare land continuously increased (Sintayehu and Kassaw,
2019). In contrast to the present finding, the authors found a reduction in
shrub bush land, as this class of land cover was the second next to
woodland in their study periods. Birhane et al. (2018) also supported that
shrub land was the dominant land cover from 1985 to 2015 in Hugum-
burda National forest priority areas that declined. Farmland expansion at
the expense of woodland decline was also stated in Bale Mountain Na-
tional Park (Muhammed and Elias, 2021; Solomon et al., 2014). Shrub
land, grass (grazing land), settlement, cultivation, and bare land
increased as the cost of forestland declined (Asmame and Abegaz, 2017).
More studies from the central Rift Valley of dry land in Ethiopia revealed
that areas of cropland doubled, and grass/grazing land and bare land
increased as extensive woodland was destroyed between 1986 and 2016
(Mesfin et al., 2020; Bekele et al., 2019; Garedew et al., 2009). Moreover,
in advance of cultivated land, a remarkable increasing trend was shown
mainly at the expense of forest cover (Berihun et al., 2019; Bewket and
Abebe, 2013). Abera et al. (2020) reported that woodland and dense
forest decreased by 34.6% and 59.9%, respectively, while cultivation
expanded by 15.16 km2/year. Therefore, including the current study in
KSNP, all the listed case studies in Ethiopia showed that agricultural land
has expanded intensively at the expense of dense forest and woodland
cover decline.

The increase in shrub bush land was maximum, 16.1% (70.36 km2),
from 2008 to 2018. From 1988 to 2018, the shrub bush land cover
increased by 132.27 km2 (35.28%) at a rate of 4.41 km2 (1.17%) per
year. The highest expansion of grassland in the study area was 18.88%
(79.82 km2) between 1998 and 2008. However, the increment was very
small during 2008 and 2018, accounting for 7.25% (35.99 km2). During
the 1988–2018 period, grassland (grazing land) expansion was 43.47%
(161.31 km2) at an annual rate of 5.38 km2 (1.45%) per year.
Table 11. Major land cover classes of transformation (conversion) from and to
KSNP (1988–2018).

Conversion (transition) class types Area coverage

Change from class 1988 Change to class 2018 km2 %

Woodland Shrub-bushland 174.3 15.0

Woodland Grass land 353.7 30.5

Woodland Agricultural land 71.8 6.2

Shrub-bushland Grass land 71.2 18.0

Shrub-bushland Woodland 134.8 30.3

Shrub-bushland Agricultural land 20.5 9.7

Riparian forest Shrub-bushland 11.5 12.9

Riparian forest Woodland 40.1 45.0

Riparian forest Agricultural land 11.9 6.9

Grass land Agricultural land 12.6 2.8
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Agricultural land (irrigated and rain fed crops) clearly showed a high
expansion compared to the other land cover classes. Crop cultivation
inside the park was absent in 1988; however, it started after 1993 and
continued in 1998, 2008, and 2018, with extents of approximately 3%,
4.43%, and 5.48%, respectively. The highest expansion of cultivation
was observed between 1993 and 1998, by 64.8 km2, followed by 47.5%
(30.78 km2) from 1998 to 2008. However, the expansion was relatively
small, 23.8% (22.78 km2), between 2008 and 2018. From 1993 to 2018,
cultivation increased by 118.36 km2 at an annual rate of 3.94 km2 per
year (Tables 9 and 10). Water bodies: In three decades (1988–2018),
water negatively changed by 13.29 km2 (27.51%) at an annual rate of
0.44 km2 (0.92%) per year. Bare land's highest expansion of change rate
was 11.8% (3.78 km2) during 1998 and 2008, followed by 10.08% (2.94
km2) and 3.61% (1.3 km2) from 1988 to 1998 and 2008 to 2018,
respectively. In the whole study period, bare land expansion was 27.52%
(8.02 km2), with an annual rate of increase of 0.27 km2 (0.92%) per year
between 1988 and 2018 (Tables 9 and 10). However, based on the sea-
sonal comparison of March 2018 and October 2018, bare land cover
tremendously expanded from wet months to drier months (Figure 6).
Consistent studies in Ethiopia quantified that bare land increased by
49.1%, whereas natural forest decreased by 35.76% from 1984 to 2015
(Gebrie et al., 2021). Likewise, in Malawi, bare land areas increased
extremely as the expense of forest declined (Munthali et al., 2019). The
conversion of woody vegetation to cultivation has been broadly reported
in different areas of Ethiopia (Ewunetu et al., 2021; Takala et al., 2020;
Anteneh et al., 2016) and Kenya (Erdogan et al., 2011; Maeda et al.,
2010). Moreover, a study in semiarid Karamoja of Uganda and the MPA
of South Africa showed expansion of crop cultivation and heightened
encroachment of shrub bush land as the cost of woodland declined
(Bailey et al., 2016; Egeru et al., 2014). From 1979 to 2017, Quirimbas
National Park lost 41.67% of forest and changed to other human-made
LULC (Mucova et al., 2018). In central Kenya, farmland and bare land
increased by 160.45% and 73.2%, respectively, as a cost of forest decline
(Maina et al., 2020). From 1957 to 2014, the forest area decreased by
83.8% (0.87 km2 year�1), while shrub, farmland and bare land expanded
by 18.6% (0.23 km2 year�1), 57.7% (0.92 km2 year�1), and 0.114 km2

year�1, respectively (Esa and Assen, 2017). Between 1986 and 2009,
shrub land increased by 23.5% and agricultural land by 0.16 km2 year�1

(24.1%), while forestland decreased by 33.5% (Dinka and Chaka, 2019).
In contrast to the present study, grassland and bare land declined while
agricultural land increased (Andarge et al., 2020).

From 1988 to 2018, major LULC class transformation from and to
highlighted grassland gained a large area from woodland (353.7 km2)
and subsequent shrub bush land (71.2 km2). However, grassland gained
negligible area from the rest of the land use/land cover classes. Similarly,
agricultural land gained significant area from woodland (71.8 km2),
grassland (12.6 km2), riparian vegetation (11.9 km2), and shrub bush
land (20.8 km2). The highest loss was computed from woodland and
shrub bush land class types during the studied period (Table 11).
Figure 6. Seasonal land use/land cover class (bare land, cultivation, grassland,
and water) cover change in Kafta Sheraro National Park (KSNP) in March and
October 2018.



Figure 7. Seasonal variability in NDVI (greeness status) in Kafta-Sheraro National Park (KSNP) for the wet season (a and c) and dry season (b and d) during the 1988
and 2018 satellite images.

Figure 8. Vegetation cover change distribution of Kafta-Sheraro National Park in 1988 (a) and 2018 (b).
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3.2.1. Seasonal LULC change
In addition to temporal variation in LULC change, some classes varied

their proportion and rate of change seasonally (i.e., dry and wet seasons).
Thus, the comparison between the wet season (October 2018) and dry
season (March 2018) satellite images of LULC change classification of
KSNP was computed (Figures 4 and 5). The results indicated that the land
cover class of bare land increased by 26.3% (568.46 km2) from the wet
season toward the drier season because the total rain fed crop field and
grazing areas were changed into bare ground during long dry months. In
contrast, cultivation (rain-fed crops), grazing land, and water decreased
12
by 5.15% (111.26 km2), 24.06% (519.5 km2), and 0.97% (21 km2),
respectively, from wet months to drier months. Bareland was very small
in the wet season but increased toward drier months, whereas grassland
and agriculture were relatively small in the dry season but increased in
the wet season (Figure 6). The pronounced change in bare land occurred
due to the harvesting of rainfed crops and dried and removed pasture
during the prolonged dry months. According to (Msigwa et al., 2019),
LULC change variation occurred between dry season irrigated crops and
wet season rain fed crops. They suggested that during the dry season,
bare land is increasing, while in the wet season, bare land is very small.



Table 12. Normalized difference vegetation index (NDVI) of land cover change
(area in km2 and %) in Kafta Sheraro National Park between 1988 and 2018.

Land cover class 1988 2018 2018–1988

km2 % km2 % Change
(km2)

High-moderate density
vegetation

1439.4 66.67 974.8 45.2 �464.6

Sparse vegetation 643.5 29.8 1071.6 49.6 þ428.1

Nonvegetation (water
&riverside sand)

76.115 3.5 112.6 5.2 þ36.5

Total 2,159 100 2,159 100 …….
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3.3. Temporal and seasonal changes in NDVI

The seasonal variation in the average NDVI between wet and dry
seasons was observed and reported in several semiarid areas (Amri et al.,
2011; Ferreira et al., 2003). Illegal fire, extensive agriculture, charcoal
production, and other related human-induced drivers of LULC change
negatively affected the vegetation resources of the park. To detect
vegetation cover changes over a thirty-year period, normalized differ-
ence vegetation index (NDVI) analyses of the 1988 and 2018 wet and dry
season satellite sensors were utilized. Figure 7 indicates the NDVI
threshold-based difference between the dry (mid-March) and wet
(mid-October) months of 1988 and 2018. The pixel count of the wet
season showed a higher NDVI value of 0.85 in 1988 and 0.84 in 2018
from June to mid-October; the park areas are dominated by vegetated
woodland, shrubland, and riparian (Riversides) vegetation. During the
dry season, from the end of December to the end of March, the maximum
NDVI value was 0.64 in 1988 and 0.49 in 2018. During the dry season,
dominant vegetated areas were concentrated on the sides of water points
(hereafter Tekeze River sides and its tributary rivers) and the eastern
riversides irrigated fruit plantations of the park. Our result concurred
with a study in semiarid areas of Uganda, which indicated that the mean
Figure 9. The interannual variation in the seasonal mean NDVI between 2007 and 2
Present study). However, the pattern of total annual rainfall (c) and average annual ra
Sheraro National Park (ENMA, 2018).

13
NDVI of the wet season was higher than that of the dry season (Egeru
et al., 2014).

The present reclassification analysis of NDVI also showed a significant
change in areas of vegetation cover (Figure 8 and Table 12). The high-
moderate density vegetation cover in 1988 was approximately 66.67%.
However, the magnitude of its cover in 2018 declined to 45.2%. In the
entire period of 1988–2018, high- to moderate-density vegetation was
reduced by 464.6 km2. The sparse vegetation covered 29.8% of the total
area of the park in 1988 but expanded to 49.6% in 2018. Sparse vege-
tation coverage increased by 428.1 km2 from the total area of the park
between 1988 and 2018. Moreover, the coverage of nonvegetation
increased from 3.5% in 1988 to 5.2% in 2018. Nonvegetation showed an
expansion of 36.5 km2 from 1988 to 2018 (Table 12). The NDVI results
also indicated a significant change in vegetation cover; the amount of
high- to moderate-density vegetation cover declined by 21.47%, while
sparse vegetation cover increased by 19.8% from the total area of KSNP.
On the other hand, nonvegetation cover increased by 36.5 km2 between
1988 and 2018. In agreement with the present study, the dense vegeta-
tion cover declined by 26.1%, whereas nonvegetation increased by 14.3
km2 between 2000 and 2018 (Abera et al., 2020). In the Kafta humera
district (surrounding the park), woodland vegetation converted by
cropland leads to expanding bare ground during the dry season (Zewdie
and Csaplovics, 2016).

3.4. Seasonal NDVI-precipitation/temperature relationship

According to the wet and dry season Landsat data, the interannual
variation in NDVI during the 10-year period (2007–2016) was computed.
The dry season mean NDVI indicated a significant decreasing trend (p <

0.05), while the wet season variation was nonsignificant over time. The
dry season maximum mean NDVI value occurred in 2007 and 2008,
while the minimum value occurred in 2016. In the wet season, the
minimum and maximum mean NDVI values were 0.21 in 2012 and 0.33
in 2007, respectively (Figure 9a and b). In contrast, the rainfall did not
show significant (p > 0.05) variation in the specified period (Figure 9c
and d). The relationship between NDVI and climate variables (rainfall
016 showed significant variation in the dry and wet seasons (a and b) (Source:
infall (d) between 1996 and 2016 did not significantly change over time for Kafta



Figure 10. Regression analysis of the seasonal mean NDVI trend and relationship with (a and b) wet and dry season rainfall (mm) and temperature (�C) (c and d)
between 2007 and 2016.

Table 13. Socioeconomic general characteristics of the sampled households (N¼
395).

Household characterstics Categories Calculated values

Gender Male 74.0%

Age – Min: 22; mean: 44.7; max:
75 years

Ethnic category Tigraway 86.0%

Kunama 14.0%

Family size 2–5; 6–8 Min: 2; mean: 5; max: 8

Education status Formal (1–12th grade) 74.2%

Resettlement status
(1991–2002)

– 71.7%

Distance from settlement to
park

5–10 km; 11–15 km;
>15 km

Min: 6. 5; mean: 12.6; max:
21 km

Respondents alternative
income

12.9%

Energy for cooking Fuelwood 94.7%

Farmland holding size 1–3 ha; 4–7 ha; >7 ha Min: 1; mean: 4.2; max: 10
ha

Crop use (home consumption
and sale)

– 72.4%

Source of livelihood & income Crop production 1 (rank)

Land tenure (land use permits) Legal 86.0%

N ¼ total number of the sampled households interviewed for this study; min ¼
minimum; max ¼ maximum.
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and temperature) was analyzed for a ten-year period (2007–2016)
because satellite image data were absent before 2007 and some values of
daily rainfall and temperature were missing. Figure 10a–d summarizes
the statistical analysis between the seasonal mean NDVI, mean annual
rainfall (value scale in log10 to fit NDVI values), and mean temperature
between 2007 and 2016. Even if there was a change in seasonal rainfall
and temperature, the correlation relationship of wet and dry season NDVI
with these two climate variables was not statistically significant (p >

0.05). The variation and slight decreasing trends in NDVI might occur
due to the dominant nature of the scattered woodland vegetation
composition of the park and several activities of the local communities,
such as extensive woodland conversion to cultivation and extinguishing
of illegal fire and fuel wood collection. In line with our findings, vege-
tation cover change in Nechsar National Park was due to human-driven
deforestation (Fetene et al., 2015). Similarly, temporal reduction of
NDVI in dry land Ethiopia changed the woodland cover due to the
expansion of cropland, settlements, and fuel wood harvesting (Zewdie
and Csaplovics, 2016).

The variation in seasonal rainfall and temperature trends in the study
period was not consistent with the mean NDVI trends in the wet and dry
seasons. This directly reflects the influence of rainfall and temperature,
which were not considered the main drivers of vegetation cover change
in the KSNP. Due to limited local meteorological stations, a lack of
advanced recording instruments and skilled manpower leads to low ac-
curacy of climate variable data. Therefore, the statistical analysis
revealed that precipitation and temperature were not considered the
main drivers of vegetation dynamics; rather, human-induced factors
were the major actors in the vegetation cover decline of the park.
Moreover, dry season vegetation areas along the Tekeze Riversides are
independent of annual rainfall, as they directly access water from the
bank of the river. However, the seasonal decreasing trends of NDVI are
more interlinked with increasing human driving activities, such as the
conversion of woody vegetation to seasonal cultivation and bare land,
loss of vegetation by fire, firewood collection, and charcoal production.
Consistent with our study results in Africa, the Sahel also showed that
human-induced activities increase vegetation degradation (Evans and
Geerken, 2004). Moreover, however, Ethiopian dry land vegetation
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productivity is dominantly controlled by the availability of moisture
(Hailu et al., 2015); the low correlation between precipitation and NDVI
is due to the decline in vegetation cover (Li et al., 2004). This is an
indication of a slight response of degraded woodland area to precipita-
tion (Zewdie and Csaplovics, 2016).

In contrast to the present study, reports have shown that NDVI change
(either increasing or decreasing) is driven by precipitation/temperature
in arid and semiarid areas of Africa (Ghebrezgabher et al., 2020; Martiny
et al., 2006) and in other countries, such as Spain, Iraq, and China (Naif
et al., 2020; Chu et al., 2007; Fensholt et al., 2012; Pei et al., 2019; Sanz



Table 14. The main livelihood and economic activities ranked by respondents (N
¼ 395$).

Activities Number of respondents (n) %

Crop production (rainfed and irrigated) 197 50.0

Livestock rearing 25 6.3

Mixed crop and livestock 173 43.7

Private and government employee 22 5.5

Self business 17 4.3

Fuelwood (charcoal and firewood collection) 5 1.3

Gold mining and aromatic resin collection 7 1.8

$ The total number of respondents was 395; however, overcounts are pre-
dictable due to multiple responses of households to questions.
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et al., 2021). NDVI controls the growth of vegetation conditions, tem-
poral biomass accumulation, and changes (Zhao et al., 2014). The
spatiotemporal variation in NDVI was determined by the variation in the
temporal distribution of precipitation (Xia et al., 2014). On the other
hand, the huge differences in the vegetation cover between the dry and
wet seasons were due to climatological and anthropogenic effects
(Al-Saady et al., 2015). Similarly, in the Gojeb district, Ethiopia, and the
Three-North Shelter Forest of China, vegetation degradation is mainly
influenced by both human-induced factors and rainfall variability
(Huang and Kong, 2016; Dagnachew et al., 2020).
3.5. Local community perception of the drivers of LULC change

3.5.1. Demographic and socioeconomic information of the sampled
households

The age of the sampled household heads (N¼ 395) ranged from 22 to
75 years old, with an average of 44.7 ± 13.7 (SD) years, and more than
fifty percent of respondents’ age category (22–41 years) was in the
productive region. Approximately 74% of the sampled households were
male. The household size ranged from two persons to 8 persons, with an
average of ~5 persons. The farm size of the respondents varied from 1 to
10 hectares, with an average of 3.9 hectares. With respect to their edu-
cation status, 74.2% of the respondents attended formal education, and
25.8% attended informal education (Table 13). Approximately three-
fourths of the sampled households were engaged in crop production
and mixed crops and livestock. However, a small portion of the
Figure 11. Respondents' awareness of the trend
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respondents were involved only in livestock rearing and other additional
activities coupled with farming. Crop production was ranked as the
topmost important source of livelihood/income, followed by mixed crop
and livestock farming in the districts (Table 14). The most important
types of crops produced in the study area were rainfed: Sesamum indicum,
Sorghum bicolor, Eleusine coracana, Eragrostis tef, and Zea mays L., whereas
irrigated crops included Muza species, Mangifera indica, Carica papaya,
Allium cepa, Allium sativum, Solanum tuberosum, and Capsicum annuum.

3.5.2. Local community response to trends of LULC variables
Local community perception of major LULC change types and other

associated variables of change showed statistical significance (p <

0.001). The participants were well aware that woodland and riparian
forest (Tekeze River side vegetation of the park) significantly declined in
the whole study period (p < 0.001). The local communities provided
confidential evidence for the decline of approximately 90.3% woodland
and 88.7% riparian vegetation of KSNP and its surroundings. In contrast,
approximately 57.3% of the respondents recognized that the distance
from the water source to the settlement showed constant trends. How-
ever, agricultural land, grazing area (grassland), bare land, resettlement,
and road access to the park significantly increased throughout the stud-
ied periods (p < 0.001) (Figure 11).

3.5.3. Main (immediate) drivers of LULC changes in KSNP
The drivers of LULC change were both proximate and underlying

(Munthali et al., 2019; Bewket and Abebe, 2013). For this discussion,
more emphasis is given to the proximate drivers of LULC change. During
the surveyed period, the participants identified 13 pronounced factors as
key drivers of the observed LULC change in KSNP. The expansion of legal
and illegal settlements, cultivated land, illegal fire following encroach-
ment by cultivation, seasonal grazing, firewood collection, and tradi-
tional gold mining were prioritized as the top significantly (p < 0.001)
ranked drivers (Table 15). Likewise, from key informant interviews and
focus group discussions (FGDs), similar feedbacks were also recorded,
and they were strengthened; expansion of settlements and agriculture,
firewood collection, charcoal production, and land tenure (administra-
tion) problems were identified as the main causes of LULC change in the
study area.

These main drivers were generated by a scarcity of resources in the
moderate- and high-altitude areas of the region following resettlement
from dense to less populated areas, low awareness regarding the
of LULC and related variables (N ¼ 395).



Table 15. Main drivers of LULC change recognized by local communities’ per-
ceptions in Kafta Sheraro National Park (N ¼ 3951, 2, * and $).

Recognized land use
land cover change
drivers

Number of households choosen the
drivers*

Total 1

score
Ranking2

ratio

Rank
(1)

Rank
(2)

Rank
(3)

Rank
(4)

Legal and illegal
resettlement

156 94 45 15 1011 0.18

Expansion of
cultivated land

104 84 61 16 806 0.14

Illegal fire 83 74 50 19 673 0.12

Expansion of grazing
land

74 65 61 39 652 0.11

Firewood collection 59 46 63 46 546 0.09

Traditional gold
mining

37 47 58 39 444 0.08

Charcoal production 35 56 43 41 435 0.07

Land administration
problem

29 51 37 25 368 0.06

Natural resin
collection

20 35 28 27 268 0.047

Ethio-Eritrean war
(civil war)

14 19 18 16 165 0.030

Drought 11 21 11 16 145 0.025

Eritrean community
intervention

7 22 9 13 125 0.022

Permanent and
seasonal road

0 6 11 13 53 0.009

Σ weight total - - - - 5691 –

1 Weight ¼ R4C1 þ R3C2 þ R2C3 þ R1C4.
2 Index ¼ R4C1 þ R3C2 þ R2C3 þ R1C4/Σ R4C1 þ R3C2 þ R2C3 þ R1C4 (5691).
* The negative importance of drivers decreases from Rank (1) to Rank (4).
$ The total number of respondents was 395; however, overcounts are pre-

dictable due to multiple responses of households to questions.

Figure 12. Traditional gold mining activities (a) preparing land for irrigated planti
ersides of Kafta-Sheraro National Park (Photo by Fitsum Temesgen, 2018–2019): Rem
field work (identifying land/use cover classes of rainfed crops & ground truth recor
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environmental benefits of natural resources, lack of access to renewable
energy sources (i.e., solar energy and electric cities) and high poverty.
According to the household survey, focus group discussion and key
informant interviewers’ resettlement schemes by the government and a
few illegally were highly expanded in the study area between 1991 and
2003. From the household response, approximately 71.7% were reset-
tlers (Table 13). Due to the program, new settlement communities,
namely, Tekeze, Maytemen, Maykeyh, Fre-Selam, Wuhedet, and May-
weyni, were established near KSNP. Similar studies in Ethiopia showed
that resettlement programs have brought significant LULC and massive
clearance of forests and depletion of much natural vegetation cover in
Hawa Galan and Chewaka districts, Oromia (Yadeta et al., 2022; Abera
et al., 2020), Gelda district, Amhara (Esa and Assen, 2017), and Esira
district of the South region (Mamude et al., 2021).

The majority of the sampled households (~94.7%) utilized wood and
wood products for cooking (Table 13). These activities led to the
destruction of dominant woodland outside and inside the KSNP. As stated
by the focus group discussion and key informant interviews, the wood-
land of the park is not only used as source energy but also used as a source
of alternative income by the local communities. This result is in line with
Central Rift Valley, Ethiopia (Bekele et al., 2019), Gelana, Ethiopia
(Asmame and Abegaz, 2017), Dedza, Malawi (Munthali et al., 2019), and
Quirimbas National Park, Mozambique (Mucova et al., 2018), which
revealed that fire wood collection and charcoal making were the main
drivers of LULC change.

The area has great potential for nonrenewable natural resources, and
traditional gold mining is a common activity that negatively changes the
land cover of the study site (Figure 12a). The activity of gold mining also
leads to a drift population from other areas toward the mine sites and
increased settlements in the whole surrounding area of KSNP, and they
even constructed temporary structures as a place of residence inside the
park. According to vegetation surveyed by KSNP, the above listed ac-
tivities destroy the natural vegetation by uprooting the plants’ root
profile and are an approximate cause for extinguishing illegal fire
ng (b) and cultivations of banana (c) and cereal crops (d) along the Tekeze riv-
ark: The photo (Figure 12c) refers to the corresponding author while conducting
ding).



Table 16. The impacts of household demographic and socioeconomic status on
attitudes toward the top four recognized drivers of LULC change in Kafta Sheraro
National Park.

Independent variables B S.E Wald p value

1. Expansion of cultivated land (driver-dependent variable)

Age 0.62 0.45 1.87 0.17

Gender (1 ¼ male)a 0.20 0.31 0.42 0.52

Education level (0 ¼ Informal)a – – – –

Education level (1 ¼ 1–8 grade)* �4.78 1.08 19.43 0.00

Education level (2 ¼ 9–12 grade) 0.05 0.41 0.02 0.89

Household size �0.73 0.41 3.08 0.08

Settlement duration* �0.79 0.31 6.60 0.01

Agricultural land size �0.41 0.56 0.54 0.46

Distance from settlement to park �0.22 0.29 0.58 0.44

2. Resettlement (driver-dependent variable))

Age �0.44 0.42 1.10 0.29

Gender (1 ¼ male)a �0.47 0.29 2.70 0.10

Education level (0 ¼ Informal)a – – – –

Education level (1 ¼ 1–8 grade)* �2.10 0.54 15.21 0.00

Education level (2 ¼ 9–12 grade) �0.09 0.41 0.05 0.82

House hold size 0.55 0.38 2.12 0.14

Settlement duration 0.22 0.29 0.60 0.44

Agricultural land size* �1.23 0.66 3.46 0.045

Distance from settlement to park 0.18 0.27 0.43 0.51

3. Human induced fire (driver-dependent variable)

Age 0.25 0.44 0.34 0.56

Gender (1 ¼ male)a 0.24 0.30 0.64 0.42

Education level (0 ¼ Informal)a – – – –

Education level (1 ¼ 1–8 grade)* �3.31 0.64 26.74 0.00

Education level (2 ¼ 9–12 grade) 0.16 0.41 0.15 0.70

House hold size �0.05 0.39 0.02 0.89

Settlement duration 0.17 0.30 0.33 0.56

Agricultural land size �0.29 0.54 0.28 0.59

Distance from settlement to park �0.22 0.25 0.61 0.43

4. Expansion of grazing (driver-dependent variable))

Age 0.57 0.45 1.61 0.20

Gender (1 ¼ male)a 0.03 0.30 0.01 0.93

Education level (0 ¼ Informal)a – – – –

Education level (1 ¼ 1–8 grade)* �3.83 0.82 21.97 0.00

Education level (2 ¼ 9–12 grade) 0.31 0.41 0.59 0.44

House hold size* �0.77 0.42 3.45 0.045

Settlement duration �0.02 0.31 0.01 0.93

Agricultural land size 0.23 0.58 0.16 0.69

Distance from settlement to park* �0.56 0.29 3.78 0.04

* ¼ significant at 5% (0.05), S. E ¼ standard error; B ¼ coefficient of explanatory
variable.

a Female and informal education set as zero (i.e., References variables).
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(Temesgen and Warkineh, 2020). Gold mining coupled with an expan-
sion of settlement in East Cameron had a negative impact on natural
vegetation (Kamga et al., 2020). Furthermore, mining activities in Ghana
had a pronounced impact on the loss of vegetation (Garai and Narayana,
2018; Prosper et al., 2015).

Based on socioeconomic and field observation data, illegal fire is
another proximate significant driver of LULC change in the KSNP. The
dry season fire was extinguished for a different purpose by three agents:
(1) farmers, (2) Boswellia papyrifera resin collectors and (3) traditional
gold miners. The local community farmers prepared the land for culti-
vation through the destruction of woodlands by burning, while resin
collectors and traditional gold miners used fire for daily food prepara-
tion. All the agents destroyed the valuable natural resources of the park,
which led to wildlife migration outside the park. Detailed human-
induced fire hazards related to LULC change reports are limited in
Ethiopia; however, a consistent study in hot spot tropical countries of
Brazil, the Serengeti ecological unit, and Cameroon for an 18-month
period daily fire observation record indicated a direct relationship be-
tween the occurrence of fire and LULC change (Eva and Lambin, 2000).
On the other hand, a study in central Spain of frequently burned areas
showed that pine woodland coverage decreased while shrubland
encroachment increased (Viedma et al., 2006). Similar reports also
indicated that human-induced fire made a great contribution to
increasing the destruction or loss of vegetation, which is a direct
expansion of bare land areas (Prosper et al., 2015).

In addition to the local community pressure on natural resources, civil
war and border conflicts are additional factors in Ethiopia. According to
the household, focus group discussion, and key informant interviews, the
Ethio-Eritrea war of 1998/99 dominantly destroyed the socioeconomic
features of the Tigray region, including the uncounted vegetation and
wildlife resources in and around KSNP. During the war period, the mil-
itary mechanization of the Eritrean troop crossed the park area and
destroyed the natural resources. Our result was consistent with the Syrian
conflict (2011–2018), which significantly and negatively influenced
environmental resources (Mohamed et al., 2020). Similarly, the civil war
of Sri Lanka (1983–2009) affected forest reserves and protected areas of
the country (Rathnayake et al., 2020). The Civil War of Sierra Leones
(1991–2002) also caused the contraction of the Kono district forest cover
structure and its spatial extent (Wilson and Wilson, 2012).

3.5.4. Socioeconomic characteristics vs respondents’ awareness of drivers
Logistic regression was applied to analyze (p < 0.05) the top four

recognized drivers, namely, resettlement, expansion of agriculture, fire,
and expansion of grazing land at the household level (Table 16). Seven
demographic and socioeconomic explanatory (independent) variables
were utilized for the whole analysis. The results of the analysis indicated
that settlement duration (p ¼ 0.01) and the distance from the settlement
area to KSNP (p ¼ 0.04) significantly and negatively influenced the
sampled households' degree of awareness of the expansion of agriculture
and grazing land. Additionally, respondents’ high awareness of the
expansion of cultivated land, settlement, illegal fire, and expansion of
grazing was influenced significantly (p ¼ 0.001) and negatively by the
education level of the interviewees. The perception of respondents of the
expansion of grazing land and expansion of settlement (resettlement) was
also negatively influenced by individual household size and agricultural
land size occupied (p ¼ 0.045). The remaining explanatory variables,
such as age category, gender, number of families, and the landholding
size of respondents, did not significantly influence the perception of re-
spondents of the four drivers of LULC change listed below (Table 16).

3.5.5. LULC change impact implication on KSNP sustainability
Understanding and evaluating the spatial and temporal LULC changes

in natural vegetation inside and outside the KSNP and the negative
contribution of the local community to these changes are significant.
According to the classified image, changes were detected in different
land cover classes between 1988 and 2018, which indicated that
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dominant woodland and riparian forest transformed into cultivation,
grazing land, and bare land. As a consequence, the land surface was left
with scattered vegetation and bare ground, which immediately showed
how the natural vegetation (plant biodiversity) was lost over time and
limited the habitat range of the wildlife. Moreover, the change in
woodland was expanding into farmland, leading to encroachment of the
African elephant habitat and creating a major challenge for their free
movement.

Similarly, our questionnaire assessment also confirmed that the range
of wildlife before 30 years was anywhere in the park area. Recently, the
suitable habitats for wildlife have shrunk and collapsed in specific areas
in the park because agricultural expansion coupled with the extinguish-
ing of illegal fire has progressively increased. Second, the encroachment
of livestock, firewood and charcoal collectors and traditional gold miners
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led to disturbance and displaced wildlife from the long existing habitat
and shifted to new habitat patches. The increasing demand of the local
communities for irrigated crop cultivation, livestock grazing, water for
home and livestock consumption, and other resource utilization were
obstacles to wildlife movement and access to water, especially during the
dry season. Such activities increased the conflict between elephants and
humans. Moreover, the shift of the riparian forest LULC class into farm-
land (irrigated area) around water points is the immediate cause for
wildlife free movement and blocks water access. Most likely, wildlife is
forced to migrate outside the park boundary even far from neighboring
countries. This report concurs with Ellis’ (2006) study that LULC change
dramatically reduced biodiversity. Similarly, in the northern highlands of
Ethiopia, LULC change was reported as an indication of plant and wildlife
species loss (Asmame and Abegaz, 2017). A study in PAs of Mexico also
indicated a reduction in temperate and tropical vegetation cover
threatened to the whole biodiversity of the site (Sancheza Reyes et al.,
2017). A recent study in Bale Mountain National Park revealed that the
decreasing trends of grassland and forestland while increasing farmland
LULC led to increased habitat fragmentation and reduced the size and
loss of available core area for the existing core-dependent endemic
wildlife species (Muhammed and Elias, 2021). Furthermore, the expan-
sion of agriculture threatens elephant habitats and increases competition
for resources between humans and elephants (Sintayehu and Kassaw,
2019). The decline in woody savanna in Tarangire National Park was also
an indication of a threat to wildlife conservation (Mtui et al., 2017).

4. Conclusion and recommendation

The results of a three-decade (1988–2018) study indicated that
intensive and extensive LULC changes were observed in Kafta Sheraro
National Park (KSNP). The proportional change in the park was used to
determine the total LULC types in three different periods. Thus, recog-
nizing and mapping LULC is important in planning continuous studies on
natural resource management. The most important change was observed
in the decline of woodland and riparian forest from 1,251.9 km2 and
83.77 km2 in 1988 to 884 km2 and 44.31 in 2018, respectively. In
contrast, agricultural land expanded from 64.79 km2 in 1998 to 118.35
km2 in 2018 from the total park area. LULC classes of shrub bush land,
grassland, water bodies, and bare land have shown relatively moderate
changes. The serious degradation of woodland and riparian vegetation of
the park resulted in the encroachment of shrub bush land and an increase
in sparse vegetation cover ground (bare land), cultivated land, and
grazing land. The major depletion trend was observed from woodland to
rainfed crop cultivation and from riparian vegetation to irrigated land. In
general, the period between 1998 and 2008 showed the highest change
compared with the other two periods (i.e., 1988 to 1998 and 2008 to
2018). This large change was possible due to the high resettlement
program around the PA in that period relative to the other periods. The
seasonal change in grassland and cultivation enormously expanded from
the drier season to the wet season, whereas bare land showed pro-
nounced expansion from wet months to drier months (Figure 6). The
results of the NDVI analysis indicated that the dense woodland and
riverside vegetation decreased from 66.67% in 1988 to 45.2% in 2018,
while nonvegetation increased from 3.5% in 1988 to 5.2% in 2018. Based
on field observations and interviews with local people, the gradual
change in the vegetation cover of the park was mainly driven by
increasing human-induced pressure on the natural resources. However,
our results indicated that rainfall and temperature were not considered
the main drivers of the extensive change in vegetation cover in the KSNP.
The major habitat change factors are expansion of settlement and
riverside/rainfed cultivation, human-induced fire, grazing, firewood
collection, traditional gold mining, charcoal production, land adminis-
tration problems, and natural resin collection, which degrade the wildlife
habitat and limit their movement routes. The increasing trend of LULC
change directly and negatively influences wildlife habitats, as the area is
known home to African elephants and other wild animals.
18
Therefore, it is paramount to detect LULC changes and current envi-
ronmental features and consider these features for each land use class in
terms of revealing the feasibility of the land use potential in the study
districts. Understanding the past and present LULC change drivers that
are interlinked with the livelihood of local communities is essential.
Manage and exclude newly opened settlements in natural forest areas
and consider water resources, agricultural areas, and settlement areas
when planning sustainable natural resource management in the area.
Attention should be given to the sustainable conservation of park
biodiversity by encouraging community participation in conservation
practices, preparing awareness creation programs, and controlling all
illegal activities practiced in and around KSNP. Furthermore, this study
provides baseline information for setting effective land use planning and
advanced management options for park sustainability. Natural structural
features of the district area map for each land use should be located by
local administrators for future forest and wild animal management.
Fourteen percent (Table 13) of the local residents had unclear land rights
(i.e., no legal land permit) and misbalanced access to land, which causes
uncontrolled expansion of agriculture unless uniformly secured land
rights are recommended to all households to minimize illegal expansion
of farming and related issues.
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