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Abstract: The immobilization technology provides a potential pathway for enzyme recycling. Here,
we evaluated the potential of using dextranase immobilized onto hydroxyapatite nanoparticles as a
promising inorganic material. The optimal immobilization temperature, reaction time, and pH were
determined to be 25 ◦C, 120 min, and pH 5, respectively. Dextranase could be loaded at 359.7 U/g.
The immobilized dextranase was characterized by field emission gun-scanning electron microscope
(FEG-SEM), X-ray diffraction (XRD), and Fourier-transformed infrared spectroscopy (FT-IR). The
hydrolysis capacity of the immobilized enzyme was maintained at 71% at the 30th time of use.
According to the constant temperature acceleration experiment, it was estimated that the immobilized
dextranase could be stored for 99 days at 20 ◦C, indicating that the immobilized enzyme had good
storage properties. Sodium chloride and sodium acetic did not desorb the immobilized dextranase.
In contrast, dextranase was desorbed by sodium fluoride and sodium citrate. The hydrolysates were
79% oligosaccharides. The immobilized dextranase could significantly and thoroughly remove the
dental plaque biofilm. Thus, immobilized dextranase has broad potential application in diverse fields
in the future.

Keywords: dextranase; hydroxyapatite; immobilization; recyclable; plaque removal

1. Introduction

Dextranase (1,6-α-D-glucan 6-glucanohydrolase; EC 3.2.1.11) specifically hydrolyzes α-
1,6 glycosidic bond of dextran with broad application prospects in diverse industries [1–3],
such as in the production of low molecular-weight medical dextran and in food processing,
sugarcane factories, and the prevention and treatment of dental plaque biofilms [4–6].

The development of dextranase-immobilization technology is expected to provide a
promising technology for its reuse [7,8]. The purpose of immobilization is to immobilize
an enzyme inside or on the surface of an insoluble material such that the catalytic activity
of the enzyme is maintained. The immobilization strategies generally focus on continuous
operation, increasing stability, and reducing the usage of enzymes. The feasibility of immo-
bilizing dextranase on different support materials has been verified via physical adsorption,
ion adsorption, encapsulation, and covalent adsorption. However, it remains a challenge
to identify materials that provide the requirements of special characteristics for higher
enzyme immobilization efficiency. Moreover, the robustness and costs of immobilization
are significant factors that affect their application. Ideally, the carrier material should
have a relatively high specific surface area to enable immobilization of a large amount of
enzyme [9,10]. Moreover, hydrophilicity with good infusibility and low solubility of the
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substrate could avoid product contamination. From the immobilization of biocatalysts to
the recovery of enzymes, the mechanical resistance and thermal stability of the scaffolds
are important throughout the process [11]. Another important parameter to be evaluated
during the fixation process is the diffusion rate of the substrate to the catalyst. Hence, the
identification of suitable materials for different enzymes remains the focus of attention of
the researchers [12,13].

Hydroxyapatite (HA), a non-toxic nano-material, is a promising inorganic material that
immobilizes enzymes [14,15]. Adsorption of proteins on HA has been applied in a variety
of applications such as in the chromatographic separation of proteins, bone regeneration
in biomedical science, and drug delivery in the pharmaceutical industry [16,17]. HA
structures is composed of phosphate and calcium groups that are involved in ion adsorption
of protein-side groups. The presence of calcium ions in HA can also be complexed with
formic acid. The chemical group present in the amino acid of the enzyme contributes to
the high stability and fixed interaction characteristics. Recent studies have reported the
immobilization of lipase, β-glucosidase, and dextransucrase on HA nanoparticles [18–20].
However, their research is not comprehensive enough. This paper systematically studied
the conditions, properties, utilization, and storage stability of HA-immobilized dextranase.
Considering the large-scale industrial application of biocatalysts, HA nanoparticles need
to be further explored as immobilized enzyme carrier materials [21,22].

Dental plaque is a biofilm structure composed of a variety of microorganisms that
can lead to the development of caries and periodontal diseases. S. mutans is considered
as one of the important bacteria that form dental plaque and dental caries [23]. The
enzymatic hydrolysis of dental plaque has become a hot research topic in the recent
years owing to the mild nature of the process and the high efficiency. In this study,
dextranase was immobilized on HA under different conditions and the optimal conditions
of immobilization yield was investigated. Moreover, the characteristics of HA-immobilized
dextranase were investigated, and the effect of dextranase on plaque removal was discussed.
We obtained an effective method to ensure that immobilized dextranase has high catalytic
activity, stability, and recyclability.

2. Materials and Methods
2.1. Materials

Arthrobacter oxidase KQ11 was used to prepare dextranase in our laboratory (Strain
KQ11 was inoculated in the fermentation medium. After 28 h of fermentation, the broth
was centrifuged at 12,000× g at 4 ◦C for 10 min. The supernatant contained the crude
enzyme, which was then ultrafiltered through a 30-kDa membrane. Then, the dextranase
was lyophilized to obtain the enzyme powder). Nano-HA (<100-nm particle size) was
purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Phenol from Nanjing Chemical Reagent Co., LTD. (Nanjing, China). Crystal violet from
Tianjin Fuchen Chemical Reagent Factory (Tianjin, China). NaCl, NaF, sodium acetate,
sodium citrate, acetic acid, sodium hydroxide, 3,5-dinitrosalicylic acid, dextran 20,000, and
hydrochloric acid were bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). All other reagents used in the study were of analytical grade.

2.2. Immobilization of Dextranase on HA

HA and dextranase were mixed in tubes, and the fixation process was monitored by
measuring the enzyme activity in the supernatant obtained by centrifugation at 13,800× g
for 5 min. Free dextranase served as the control. The relative activity was calculated based
on the average measurement [22].

The percent immobilized yield (IY) was calculated by using the following formula:

Immobilization yield (%) = (1 − S/C) × 100

where, S and C represent the activities of supernatant and control, respectively.
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For dextranase activity determination, 50 µL of the enzyme solution and 150 µL of 3%
dextran (molecular weight: 20,000; 50 mM; pH 6 sodium acetate buffer preparation) were
mixed and placed on a 60 ◦C water bath for 15 min. Then, 200 µL of 3,5-dinitrosalicylic acid
preparation reagent (DNS) was added to stop the reaction, followed by boiling for 5 min
and the addition of 3 mL of distilled water. The absorbance of the mixture was then read
at 540 nm using a microplate reader (Infinite M1000 Pro; Tecan, Männedorf, Switzerland).
For the immobilized enzymes, 10 mg of HA-immobilized dextranase was added to 1 mL of
the substrate solution and subjected to reaction under the same conditions, after which the
enzyme activity was estimated.

One unit (U) of enzyme activity was defined as the amount of enzyme required to
release 1 µmol of maltose in a minute under the condition of 60 ◦C and pH 6, using 3%
dextran 20,000 as the substrate.

2.3. Optimization of Immobilizing Parameters

In order to determine the ideal conditions for the fixation process, the optimal reaction
temperature was determined. For this purpose, dextranase powder was dissolved in
pure water, and the resultant enzyme solution was used for immobilization reaction
under different temperature conditions (10–45 ◦C) for 1 h. The reaction was performed
for different time periods (5–240 min) at 25 ◦C. In addition, different concentrations of
dextranase (0.5, 1.0, 1.5, 2.0, and 2.5 mg/mL) were used for the immobilization purpose.
Similarly, different pH conditions and buffers were selected in the optimization study
(sodium acetate buffer at pHs 4–6 and Tris-HCl buffer at pHs 7–9).

2.4. The Properties of Immobilized Dextranase

The immobilized dextranase was prepared under optimal conditions, and their prop-
erties were evaluated. The temperature was set to 20–65 ◦C, while the pH was set between
4 (acetic sodium buffer for 4–6) and 9 (Tris-HCl buffer for 7–9). The relative activity was
calculated, and all experiments were performed in triplicate.

2.5. Desorption by Sodium Salts

The desorption of HA-immobilized dextranase was evaluated with different eluents.
Different sodium salts, such as sodium chloride, sodium acetate, sodium fluoride, and
sodium citrate were used, and the elution effect of different concentrations of selected
sodium salt on the immobilized dextranase was investigated. The volume of the buffer
used for elution was the same as that used for immobilization.

Elution efficiency (%) = E/A × 100

where, E = dextranase activity of eluent and A = the activity of immobilized dextranase

2.6. Characterization Methods

Field emission gun-scanning electron microscope (FEG-SEM) was used to analyze the
morphological particles of HA. Briefly, the dextranase was mixed with HA for 60 min. The
resultant solution was centrifuged and washed thrice with pure water, and the precipitate
was resuspended in pure water on a shaker. Finally, the sample was lyophilized by drying
directly at 60 ◦C for 12 h). The crystallinity of HA particles was measured using X-ray
diffraction (XRD). The diffraction pattern was recorded in the diffraction range (2θ) of
20◦–70◦. Fourier-transformed infrared spectroscopy (FT-IR) was utilized to analyze HA
particles without or with dextranase. The measurement was performed in the transmission
mode in the mid-infrared range of 400–4000 cm−1.

2.7. The Hydrolysates of Immobilized Dextranase

The substrate (1%) was mixed with immobilized dextranase and allowed to react
for 2 h. Then, the solution was centrifuged at 13,800× g for 2 min, and the hydrolysates
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were obtained in the supernatant and subjected to analyses by high performance liquid
chromatography (HPLC).

2.8. Stability of Reuse and Storage

The reusability of the immobilized dextranase was evaluated by assessing the activity
of immobilized dextranase under optimal conditions. Next, the immobilized enzyme was
obtained by centrifugation (13,800× g, 2 min). Then, the precipitate was washed with pure
water and resuspended in fresh substrate for the next step. For the stability test, a constant
temperature-accelerated experiment was performed to estimate the storage period of the
immobilized dextranase. The immobilized dextranase was incubated at 25, 35, and 45 ◦C
for 6 days, and the activity was monitored every day. The first-level pyrolysis diagram of
the immobilized dextranase was obtained from plotting the enzyme activity logarithm and
the incubation time. Then, the thermal degradation K was obtained from the equivalent of
the linear correlation and regression analysis. The K was plotted against the number of
days required for enzyme inactivation at different temperatures. Finally, the storage life of
the immobilized dextranase was estimated.

2.9. Removal of the Dental Plaque Biofilm

The effect of dextranase on the degradation of biofilm produced by Streptococcus mutans
(ATCC 25175) was evaluated. For this purpose, S. mutans was first cultured in sucrose-free
brain heart infusion (BHI) broth medium at 37 ◦C for 18 h. Then, 20 µL of the broth was
inoculated into 180 µL of the BHI medium supplemented with 1% sucrose in a 96-well
plate, followed by incubation at 37 ◦C for 24 h under anaerobic condition. Next, the broth
was gently aspirated, and the wells were washed thrice with 300 µL of 0.2 mM phosphate
buffer (PB). After the wells were allowed to dry naturally in the air for 1 h, dextranase, HA,
and immobilized dextranase were added to the wells. The amount of free dextranase was
the same as the amount of immobilized dextranase; similarly, the amount of HA was the
same as the amount of HA in immobilized dextranase. Pure water served as the control.
The wells were washed thrice after the 1-h incubation. After natural drying for 1 h, 200 µL
of 0.1% crystal violet was added to the well. After 5 min, the dye was removed, and the
wells were thrice washed by PB. After natural drying, 200 µL of 95% ethanol was added to
re-dissolve the stained biofilm, and the solution was subjected to absorbance measurement
at 595 nm. The rate of biofilm degradation was then calculated.

To prepare the sample for SEM observation, sterile glass slides were arranged in a
24-well plate, and S. mutans was cultured in the wells. At the end of the experiment, the
slides were removed and fixed in 2.5% glutaraldehyde at 4 ◦C for overnight. Next, the
slides were subjected to different concentrations of ethanol gradient dehydration (from
50% to 100%) for 5 min. Finally, the slides were dried, sprayed with gold, and observed
under SEM (model JFC-1600; JSM-6390LA; JEOL, Tokyo, Japan).

3. Results
3.1. Immobilization Condition

Our results revealed that the immobilization yield remained stable at 25–35 ◦C
(Figure 1a). In addition, lower temperature of 10–20 ◦C was not found to be conducive for
immobilization. The reaction time was at least 2 h (Figure 1b), and 81% dextranase was
immobilized on HA. The immobilization yield was the highest at 1 mg/mL dextranase
powder concentration (Figure 1c). Based on these results, 1 mg HA was found to immo-
bilize 100 µg of dextranase powder. Although higher concentration of dextranase could
increase the immobilization, the immobilization yield was found to decrease (Figure 1c).
The immobilization rate could reach 90% at pH 5, and the immobilization condition was
preferred under acidic buffer than under alkaline buffer (Figure 1d). HA nanoparticles
demonstrated a negative potential in the pH range of 4–9 (Figure S2). In the process of
immobilization, we noted that the fixation efficiency decreased with higher pH value. The
highest immobilized yield was performed at pH 5, at the potential HA of −7 mV. The
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isoelectric point of dextranase was 5.19 [24], and the dextranase had a weak negative charge
at pH 5. Accordingly, the acidic conditions were found to enhance the immobilization yield
of the dextranase.
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concentration, and (d) pH.

Two different buffers were used for immobilization to optimize the performance.
Notably, the relative dextranase activity was the highest at pH 5. In fact, the optimal pH of
KQ11 dextranase was 7. Our experiments demonstrated an efficient process for dextranase
immobilization on HA in a short time.

3.2. Characteristics of Immobilized Dextranase

The immobilization was influenced by the properties of dextranase. For instance,
the immobilized dextranase was more stable on a wide range of pH (Figure 2a). The
optimal pH shifted from pH 6 to 5 (Figure 2b). The temperature condition remained the
same (Figure 2c). However, a significant improvement was noted at 65 ◦C, at which the
immobilized dextranase maintained 90% of its activity. On the contrary, dextranase could
not be measured at 65 ◦C (Figure 2d). Based on our results, HA may enhance the ability of
enzymes against higher temperature for certain time periods.

3.3. Desorption by Sodium Salts

Immobilized dextranase could not be desorbed in a solution of 0.4 M sodium chloride
and sodium acetic (Figure 3a,c) [18]. These observations indicate a non-universality of
ionic interactions that can be conducted at high concentrations in the presence of these
salts. The strong physical adsorption of HA with dextranase has important industrial
significance considering that the enzyme may not be easily leached from the carrier under
the reaction conditions [25,26]. In contrast, dextranase could be desorbed in a solution
of 50 mM sodium fluoride and sodium citrate (Figure 3b,d). Considering that citrate is
composed of three carboxylic acid groups and only one sodium acetate group; this finding
provides strong evidence that the COO-site of the enzyme was critical for their interaction
with HA nanoparticles. The effect of these carboxylic acids can be attributed to the effect of
the polar groups on the Ca2+ ions of the HA nanoparticles, resulting in a certain type of
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coordination reaction. Calcium ions acted as stable coordinators of the hard acid with an
oxygen atom of a hard base.
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Hydrogen bonds, ionic bonds, coordinate, and van der Waals force may have impor-
tant contribution to the process of immobilization. The structure of HA is composed of
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phosphates, hydroxyls, and calcium groups, which are useful for ionic interactions with
proteins. Our results thus suggested that the main acting force was ionic bonds [10,27].

Proteins can be adsorbed via a coordination bond established with the remaining
position of the chelating metal ion on the surface of the substrate, such as in immobilized
metal ion affinity chromatography (IMac). Calcium ions are not sequestered by complexing
agents because the metal is already a part of the crystal structure of the HA. The high
stability of the complex formed may be attributed to the ring structure formation, similar to
that in a chelation reaction. Other factors that may be involved include electrostatic forces,
van der Waals forces, and hydrogen bonding of the OH-groups of HA, although it remains
difficult to determine their relative contributions [9,28,29].

3.4. Detection of Immobilized Dextranase

The surface of HA showed smooth after immobilization of dextranase, and it tended to
agglomerate, indicating that they were bound together by relatively weak forces (Figure 4a,b).
We noted that the immobilized dextranase was easy to disperse. On the other hand, the
HA surface possessed a certain roughness, which made it difficult to estimate the thickness
of dextranase adsorbed onto the surface.
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spectra, and (d) XRD spectra.

Figure 4c displays the results of FT-IR. The FT-IR spectrum showed a stronger band at
1648 cm−1, which corresponded to a symmetric C=O stretching absorption. This observa-
tion suggested the presence of a carboxylic acid group of the amino acid. As the enzyme
adsorbed, the band corresponding to the C=O bond of the amino acid (1650 cm−1) became
slightly enhanced. The peaks located at 1421 and 1648 cm−1 were attributed to N-H and
C=O stretching vibrations, respectively. These results signify the successful immobilization
of dextranase on HA nanoparticles. Agrawal et al. also confirmed the immobilization of
dextranase (SiO2 nanoparticles) by FT-IR, reporting 1648 cm−1 absorbance of the amino
acid group of the enzyme [30]. Thus, the absorption bands of hydroxyl and phosphate
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groups were demonstrated in the HA molecule (Ca10(PO4)6(OH)2). Similarly, the bands
1421 and 1648 cm−1 corresponded to the presence of C=O in the HA particles.

The XRD results suggested that the crystal form of HA did not change after its
immobilization. The peaks of hydroxyapatite with dextranase were strengthened, and the
relative intensity of each peak had a good corresponding relationship with the XRD pattern
of hydroxyapatite (Figure 4d).

3.5. The Hydrolysates and Recyclable Catalysts

The hydrolysate was analyzed by HPLC. The immobilized dextranase maintained
excellent activity by hydrolyzing dextran to produce oligosaccharides. The concentration
of maltotriose, maltopentaose, and maltohexaose were 79.29% (Figure 5a).
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Table 1. The removal rate of different additives on the dental plaque biofilm. 

Additives Biofilm Removal Rate 
Control 0.00 ± 8.66 

Free Enzyme 14.32 ± 12.29 
HA 52.56 ± 9.64 

Immobilized Enzyme 86.44 ± 1.01 

Figure 5. (a) HPLC of standard G1-G7: Glucose, maltose, maltotriose, maltotetraose, maltopentaose,
maltohexaose, maltoheptaose, and HPLC analysis of hydrolysates; (b) reusing experiment of immobi-
lized dextranase, (c) simulated first-level pyrolysis diagram of immobilized enzyme, and (d) pseudo
first-order pyrolysis rate of immobilized enzyme and the time required for inactivation.

Our results revealed that the immobilized dextranase could maintain 84.02% of its
hydrolysis capacity at the 20th time and 71.42% at the 30th time of use (Figure 5b). Thus,
the immobilized dextranase expressed remarkable repeatability. Moreover, according to
the constant temperature acceleration experiment, there is a linear relationship between
immobilized enzyme activity and storage time at different incubated time (Figure 5c).
It was estimated that the immobilized dextranase could be stored at 20 ◦C for 99 days
(Figure 5d). The stability of the immobilized dextranase was thus significant.

3.6. Degradation of Dental Plaque Biofilm

Crystal violet staining in the present experiment revealed that immobilized dextranase
was the best for removing dental plaques. However, the immobilized dextranase could
achieve 86.44% degradation of the biofilm, showing an obvious significant effect on the
S. mutans biofilm (Table 1).
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Table 1. The removal rate of different additives on the dental plaque biofilm.

Additives Biofilm Removal Rate

Control 0.00 ± 8.66
Free Enzyme 14.32 ± 12.29

HA 52.56 ± 9.64
Immobilized Enzyme 86.44 ± 1.01

The SEM results confirmed that the immobilized dextranase significantly influenced
the removal of dental plaque formed by S. mutans. As shown in Figure 6, the slide is
covered by S. mutans fully in the control. Dextranase could definitely remove the plaque,
and the extent of removal depended on the quantity of dextranase. However, the biofilm
still contained excessive residues after the addition of HA. Remarkably, the immobilized
dextranase could avoid the adhesion of S. mutans on the slide (Figure 6d). In fact, the biofilm
was thoroughly removed with the use of immobilized dextranase, which demonstrated
stable property and showed a potential for application in dental care [31,32].
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Figure 6. (a) Control group (add pure water); (b) add free enzyme (3.6 U); (c) add HA (10 mg); and (d) add immobilized
enzyme (10 mg HA immobilized 3.6 U of free enzyme).

4. Conclusions

We conducted a systematic study to evaluate the feasibility of immobilizing dextranase
on HA nanoparticles. The optimal immobilization conditions were inferred as follows:
Temperature, pH, and reaction time of 25 ◦C, 5, and 120 min, respectively. Dextranase
could be loaded at the rate of 359.73 U/g of HA. The property of the immobilized dex-
tranase induced a slight change in the optimal pH and thermostability. The immobilized
dextranase was characterized by FEG-SEM, XRD, and FT-IR. Our results demonstrated
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that dextranase could be immobilized on the surface of nano-HA. Sodium chloride and
sodium acetic could not desorb the immobilized dextranase. In contrast, dextranase could
be desorbed by sodium fluoride and sodium citrate. After 30-times of the hydrolysis cycles,
the immobilized dextranase retained approximately 71.42% of its initial activity as well as
it was estimated that the immobilized dextranase could be stored for 99 days at 20 ◦C and
for 93 days at 30 ◦C. The hydrolysates were 79.29% oligosaccharides, and the immobilized
dextranase could significantly and thoroughly remove the dental plaque biofilm. The
successful immobilization of dextranase and its performance indicates its exciting and
promising application prospects in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/1/130/s1, Figure S1: The size of HA NPs detected by dynamic light scattering (DLS). Figure S2:
Zeta potentials of HA. Figure S3: Residual rate of biofilm after different additives on dental plaque
biofilm (pure water served as the control group).
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