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Abstract: Coumarin is a naturally occurring lactone-type benzopyrone with various applications
in the pharmaceutical, food, perfume, and cosmetics industries. This hydrophobic compound is
poorly soluble in water but dissolves well in protic organic solvents such as alcohols. Despite
the extensive use of coumarin, there are only a few reports documenting its solubility in organic
solvents, and some reported data are incongruent, which was the direct impulse for this study. To
resolve this problem, a theoretical congruency test was formulated using COSMO-RS-DARE for
the determination of intermolecular interaction parameters, which allowed for the identification
of outliers as suspicious datasets. The perfect match between back-computed values of coumarin
solubility and the experimental ones confirms the reliability of the formulated theoretical approach
and its adequacy for testing solubility data consistency. As the final approval, the temperature-related
coumarin solubility in seven neat alcohols was determined experimentally. Four solvents (methanol,
ethanol, 1-propanol, and 2-propanol) were used for reproducibility purposes, and an additional
three (1-butanol, 1-pentanol, and 1-octanol) were used to extend the information on the homologous
series. The consistency of this extended solubility dataset is discussed in terms of the comparison of
remeasured solubility values with the ones already published and within the series of structurally
similar solvents. The proposed procedure extends the range of applicability of COSMO-RS-DARE
and provides a real and useful tool for consistency tests of already published solubility data, allowing
for the approval/disapproval of existing data and filling gaps in datasets. Linear regressions utilizing
a 2D molecular descriptor, SpMin2_Bhm, or the distance between solute and solvent in the Hansen
solubility space, Ra, were formulated for the estimation of COMSO-RS-DARE integration parameters.

Keywords: coumarin; solubility; COSMO-RS; COSMO-RS-DARE; intermolecular interactions; aliphatic
alcohols; neat solvents

1. Introduction

Solubility values are one of the most fundamental physicochemical properties of
organic solids, including active pharmaceutical ingredients (APIs) [1,2], and such data
have both practical and theoretical importance. Solvents are used at multiple stages
of the API manufacturing process, including extraction, synthesis, crystallization, and
purification. All of these steps rely on the dissolution behavior of pharmaceuticals and
their intermediates. Obtaining bioactive compounds from natural sources, including plants,
algae, and biowastes, is often the first step requiring the usage of an appropriate solvent.
The most suitable solvents are characterized by a good extraction potential, selectiveness,
and environmental friendliness [3–6]. For example, the common method of purification of
synthesized or natural APIs is crystallization, and for this purpose either a good solubilizer
has to be selected or the optimal solvent/anti-solvent combination [7,8].

Coumarin (C9H6O2, 2H-1-benzopyran-2-one, CAS 91-64-5) is a chemical compound
that is wide-spread in nature, occurring, for example, in tonka beans, cinnamon, and
vanilla [9–11]. It has found applications in many areas, including dye-sensitized solar
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cells [12], fluorescent probes [13], sensitizers [14], laser dyes [15], and inhibitor additives to
different materials [16]. Even more importantly, coumarin and its derivatives have some
beneficial biological activities, including antioxidant [17], anticoagulant [18], antibacte-
rial [19], anti-inflammatory [20], antiviral [21], and enzyme inhibitory [22] actions, which
make them widely used in medicine [23].

Considering coumarin manufacturing, solvent selection plays a crucial role. Aliphatic
alcohols, especially biobased ones such as ethanol, glycerol, and 2-propanol, are considered
to be efficient and relatively green extracting agents for nutraceuticals [24,25]. For instance,
according to Bourgaud et al. [26], proton-donating and polar solvents, such as water,
ethanol, and methanol, were more efficient for the extraction of coumarin from Melilotus
officinalis L. than chloroform, diethyl ether, and ethyl acetate. This is understandable since
coumarin and its derivatives are, in general, highly proton-accepting molecules [27–29].
Furthermore, the aqueous solubility of coumarin decreases with the increase of pH [30],
which confirms its relatively basic character.

The nature of solute and solvent, determining their mutual affinity, and the ther-
modynamic parameters related to the stability of the crystal lattice, are the key factors
affecting solubility. Among a variety of theoretical models developed to describe the
solubility–temperature relationships, the in silico quantum-chemical computations are the
most intriguing since they are based on the information retrieved from the 3D molecu-
lar structure. In principle, they provide actual solubility predictions [31], in contrast to
many models offering merely back-computations, such as, for example, the van’t Hoff [32],
Apelblat [33,34], Buchowski-Ksiazczak (λh) [35], Wilson [36], NRTL [37], and Jouyban-
Acree [38] models. One of the most recognized in silico approaches is the conductor-like
screening model for real solvents, COSMO-RS [39–42]. It deserves special attention due
to its efficiency, universality, and clear thermodynamic interpretation and for following
chemical intuition.

The aim of this paper is fourfold. First of all, the theoretical protocol for resolving
inconsistencies in reported solubility data is formulated. Second, a validation of this
theoretical approach is performed by experimental remeasurements of already published
solubility data. Third, for providing a broader perspective, a series of structurally similar
solvents are used for additional confirmation of the theoretically drawn conclusions about
the coherency of the solubility dataset by including newly measured cases. Finally, an
interpretation of the COSMO-RS-DARE parameters is offered by correlating the computed
values with popular molecular descriptors.

2. Materials and Methods
2.1. Materials

Coumarin (CAS: 91-64-5, MW = 143.14 g/mol) was purchased from Sigma Aldrich
(Saint Louis, MO, USA), and the purity of this chemical was ≥99% according to the supplier.
All of the solvents used were also provided by Sigma Aldrich and included: methanol
(CAS: 67-56-1, MW = 32.04), ethanol (CAS: 64-17-5, MW = 46.07 g/mol), 1-propanol (CAS:
71-23-8, MW = 60.10 g/mol), 2-propanol (CAS: 67-63-0, MW = 60.10 g/mol), 1-butanol
(CAS: 71-36-13, MW = 74.12), 1-pentanol (CAS: 71-41-0, MW = 88.15 g/mol), and 1-octanol
(CAS: 111-87-5, MW = 130.23 g/mol). The purity of all solvents was ≥99%.

2.2. Calibration Curve

The calibration curve used for the determination of coumarin solubility was pre-
pared with the use of a stock solution of coumarin in methanol with a concentration
of 0.0333 mg/mL. This solution was then successfully diluted by transferring its fixed
amounts to 10 mL volumetric flasks and adding methanol. The obtained series of solutions
with decreasing coumarin concentrations was measured spectrophotometrically, and the
absorbance values found at 310 nm wavelength were plotted against the corresponding
concentration values. Three separate curves were prepared and then averaged, with the
resulting linear equation being y = 42.346x + 0.0085. The curve can be characterized by
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high linearity, with the determination coefficient of R2 = 0.9997. The limit of detection
(LOD) and limit of quantification (LOQ) were found to be LOD = 4.93 × 10−4 mg/mL and
LOQ = 1.48 × 10−3 mg/mL, which were well below the coumarin concentrations found in
the samples.

2.3. Sample Preparation

In this study, the shake-flask-type method of solubility determination was used. As
documented in previous studies [43–48], the applied procedure was found to be useful
and reliable in the case of various pharmaceutically active compounds. The samples used
for solubility measurements were prepared by adding an excess amount of coumarin to
10 mL volumetric flasks that were then filled with the appropriate solvent in order to
obtain saturated solutions. The prepared samples were incubated for 24 h at four different
temperatures (25–40 ◦C with 5 ◦C intervals) using an ES-20/60 Orbital Shaker Incubator
supplied by Biosan (Riga, Latvia). The temperature adjustment accuracy was 0.1 ◦C, and
its variance during the daily cycle was ±0.5 ◦C. Moreover, the mixing of the samples at
60 rev/min was provided by the incubator. In the next step, the samples were filtered
using a syringe with a PTFE filter with a 22 µm pore size. All of the test tubes, syringes,
and filters were preheated to the appropriate temperature to avoid the precipitation of
dissolved coumarin. Finally, fixed amounts of the filtrate were transferred to test tubes,
which were prefilled with a set amount of methanol, and samples prepared in this way
were measured spectrophotometrically.

2.4. Solubility Measurements

The concentration of coumarin in the samples was determined through spectrophoto-
metric measurements using an A360 spectrophotometer from AOE Instruments (Shanghai,
China). Spectra in the 190–700 nm wavelength range were recorded with a 1 nm resolu-
tion, and samples were diluted with methanol, which was also used as a reference. The
absorbance values at 310 nm were used in conjunction with the calibration curve prepared
earlier. Three samples were measured for each data point, and their concentrations were
averaged and expressed as mole fractions.

2.5. COSMO-RS-DARE Computations

COSMO-RS-DARE (dimerization, aggregation, and reaction extension) [49] is an
adaptation of the COSMO-RS approach [39–41] for treating bulk systems by including
concentration-dependent composition alterations imposed by diverse reactions in the bulk
system. The adaptation of this approach for solids solubility computations was detailed
in our previous papers dealing with neat solvents [50], binary mixtures [45], and ternary
systems [51]. Therefore, only brief remarks are provided here. In this study, both COSMO-
RS and COSMO-RS-DARE computations were carried out using COSMOtherm (version
22.0.0, Dassault Systèmes, Biovia: San Diego, CA, USA) [52] software. The most important
difference between these approaches is the definition of conformers included in the thermo-
dynamic property computations. In both methods, each component is represented by the
set of the most representative conformers, which are identified during the initial phase prior
to the actual thermodynamic property computations. Typically, the conformational analysis
leads to a set of low-energy structures of every component of the considered bulk system.
For this purpose, the COSMOconf program [53] can be used to offer an automatization of
this process. However, such a procedure is unable to identify multicomponent clusters that
might potentially occur in the system due to direct interactions between components. These
complexes can significantly differ in their electron density properties, which are essential
for the COSMO-RS approach. Hence, the pool of conformers of monomers is extended,
with the ones identified in the separate conformational analysis including bimolecular con-
tacts. After generating potentially important pairs, the full clustering algorithm is applied
to reduce the number of conformers and eliminate very similar clusters or those of low
probability due to the energy values exceeding the selected threshold with respect to the
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most favorable one. All the results presented here were computed using the TURBOMOLE
program [54,55] with in-house-developed scripts. There is one important modification im-
plemented in this paper due to problems encountered during the optimization of coumarin
dimers in the case of applying the RI-DFT BP86 (B88-VWN-P86) functional along with
the def-TZVP basis set. For consistency with parametrization sets of COSMOtherm, the
geometries optimized in such a manner are used for the final generation of “cosmo” and
“energy” files by single-point energy computations in an extended def2-TZVPD basis set
using the same functional. Unfortunately, optimization trials of coumarin pairs failed using
this approach since coumarin, as an aprotic compound, cannot form dimers stabilized by
hydrogen bonds. Pairs of this type were identified in the case of heteromolecular contacts
with proton-donating molecules such as alcohols or water. However, the expected stacked
dimers of coumarin were not obtained since monomers tend to separate from each other
while using this type of geometry optimization. The reason for this was the inappropriate
accounting of contributions coming from electron dispersion and non-covalent interactions.
Hence, geometry optimization was performed using an alternative approach. Since the
basis superposition error (BSSE) can be an important contribution to pairs stabilization
energy, the geometry optimizations were performed in consistency with geometry-based
counterpoise corrections (gCP) [56] of the pairs stabilization energies. This parametrization
relies on the BP97 GGA functional used with the def2-SVPD basis set and Grimme D3-BJ
dispersion corrections [57]. Fortunately, this level of geometry optimization led to stable
coumarin pairs in stacked conformations, which is not surprising since this meta-GGA
functional is commonly accepted as a reliable one for intermolecular interaction character-
istics [58]. Hence, the obtained geometries of pairs were used for the preparation of the
final input files, which were necessary for the utilization of the BP_TZVPD_FINE_22.ctd
parametrization in COSMOtherm by completing the single-point energy computations on
the required RI-DFT BP86/def2-TZVPD level.

For every system, the COSMO-RS-DARE approach introduces two fitting parameters
defining intermolecular interactions between those centers that are not included in the
default COSMO-RS statistical analysis. The mathematical form describing these parameters
resembles the Gibbs free energy equation as follows:

Gint
ij (T) = Hint

ij − T·Sint
ij (1)

where the enthalpic, Hint
ij , and entropic, Sint

ij , contributions of the interactions between the
i-th and j-th species are considered to be temperature-independent. These parameters are
computed by fitting to experimental solubility data. It is important to note that the linear
function defined by Equation (1) holds for many systems with very high accuracy, irrespec-
tive of the number of temperatures used for solubility determination. The intermolecular
interaction thermodynamic parameters defined in Equation (1) can be used for assessments
of enthalpy–entropy compensation by the analogy to a similar analysis conducted with
the aid of a solvation thermodynamic function determined via a van’t Hoff plot. Here, the
following definition is the direct analogy of the enthalpy–entropy compensation factor:

χ =

[
Hint

ij

]
[
Hint

ij

]
+
[

T·Sint
ij

] (2)

The meaning remains the same as in the original formulation and simply quantifies
the contributions of the energetic and entropic terms in the total Gibbs free energy of
interaction. Indeed, the dominance of the energetic component of the interaction in the
system is indicated by values higher than 0.5. In the case of values lower than half, the
entropic contribution overrides the enthalpic one.
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3. Results and Discussion

The direct impulse for this work was the observed incongruences in the reported
solubility data of coumarin provided by Huang et al. [59,60] (set A) and Akay et al. [61] (set
B). Particular interest was narrowed to the alcohols used as neat solvents. The published
values differ dramatically, especially for elevated temperatures. This problem was already
raised by Akay et al. [61], who honestly provided data comparison. The authors offered
general explanations for the observed inconsistencies, relating them mainly to the accuracy
of the analytical method or solution–solid equilibrium establishment. However, the scien-
tific audience was left with two distinct sets of solubility data. The observed deviations
of the reported values most probably cannot characterize the same physical system, and
some serious methodological issues are at play. Although it is difficult to compare different
datasets due to the different experimental conditions, according to Huang et al. [59,60], the
solution–solid equilibrium in the case of coumarin can be achieved after 8 h, which includes
3 h without agitation for the settling of undissolved particles. In the case of Akay et al. [61],
the sample agitation and incubation time was 18 h. It is noteworthy that in this study the
samples were equilibrated for an even longer period (24 h).

Since solubility data are used for very detailed thermodynamic analysis, conflicting
values lead to completely different system characteristics. It is then of crucial importance
to critically assess the solubility data, especially since they directly affect the validity of
the preferential solvation analysis performed [61] in terms of the inverse Kirkwood–Buff
integrals formalism. The most straightforward way, of course, would be a repetition of the
experiments with the hope that new measurements would resolve the observed conflict,
including eventual recomputations of coumarin-preferential solvation. However, without
avoiding this goal, the motivation of this work is a bit wider, aiming to develop a general
theoretical approach that might be used for testing solubility data consistency. Coumarin
is merely an exemplary case that is used for validation purposes and to direct further
experiments. In our local solubility database, there are many more such cases, and their
identification for data curation might be interesting for a broad scientific audience. In this
context, it is worth citing at this point a precedent that took place in the circumstance of the
critical evaluation of maleic acid solubility [62]. Hence, a theoretical tool suitable for data
consistency analysis seems to be valuable.

3.1. The COSMO-RS-DARE Solubility Computations

There are several first-principle approaches that might be adopted for the purpose
of consistency tests of available solubility data. From our perspective, the method of first
choice is the COSMO-RS framework [39,42], which is often applied for characteristics of
bulk systems using only information about molecular structure. Unfortunately, solubility
computations using this method suffer, in many cases, from serious inaccuracies [44,45,50],
although some systems can be characterized with quite satisfactory correctness [43,50].
Previously published reports [44,45,51] suggested that one possible way is to enhance the
default COSMO-RS computation with the inclusion of information about intermolecu-
lar interactions occurring in the saturated systems by providing the structures of binary
clusters. This is carried out via the COSMO-RS-DARE framework, formulated as an exten-
sion of COSMO-RS for modeling systems showing concentration-dependent alterations
of qualitative and quantitative compositions. As mentioned in the Methods Section, this
approach offers very high accuracy at a cost of two fitting parameters for every system.
However, these parameters have a deeper meaning, and the origin of their introduction
is also quite clear. Indeed, the proper definition of a solute–solvent system requires an
adequate representation of solute conformations. This includes not only the monomeric
forms of flexible compounds but also structures altered by direct contacts with the con-
stituents of the bulk system. In the case of neat solvents, two types of such clusters can
play the most important role, namely, solute–solute and solute–solvent interactions. The
third type, which is the solute–solute interaction, is ignored in the case of solubility com-
putations [44,45]. It was already documented [63] that the restriction to include just pairs
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is quite sufficient for a proper representation of intermolecular clusters in the solubility
computations. The same approach is applied here for the determination of values of these
two fitting parameters defined by Equation (1). The obtained values characterizing set
A and set B are collected in Table 1. In addition, in Figure 1, the temperature trends of
corresponding Gint values are plotted for these systems. First of all, it is worth emphasizing
that, according to expectations, a high linearity of all plots is observed. This is a fortunate
circumstance justifying the computation of only two parameters per system. Furthermore,
one can see that discrepancies in the solubility values between the two considered sets of
data seriously affect the intermolecular interaction parameter, Gint(T). There are observed
opposite trends of all black and gray lines, suggesting reverse temperature trends. The
interactions in set A decrease with the rise of temperature, whereas for set B an opposite
conclusion is drawn. This is associated with the discrepancies in the obtained Hint and Sint

data, as provided in Table 1. In the case of water and ethanol, the values of Hint are positive
for set B, contrary to the values obtained for set A. A similar change in the sign is observed
for the entropic contribution, Sint.

Table 1. Results of COSMO-RS-DARE computations characterizing coumarin solubility in neat
methanol (MeOH), ethanol (EtOH), 1-propanol (1PrOH), 2-propanol (2PrOH), 1-butanol (1BuOH),
1-pentanol (1PeOH), 1-octanol (1OcOH), and water (W). Three analyzed datasets are denoted as
(A) [59,60], (B) [61], and (C)–this work. The last column comprises the values of the enthalpy–entropy
compensation factor computed according to Equation (2).

Solvents Hint

[kcal/mol]
Sint

[cal/mol/K)
R2 χ

MeOH (A) −23.09 69.80 0.996 0.64
EtOH (A) −24.91 72.07 0.997 0.66

1PrOH (A) −26.14 74.82 0.999 0.67
2PrOH (A) −29.32 84.01 0.997 0.69

W (A) −17.30 46.73 0.995 0.57
EtOH (B) 7.02 −33.77 1.000 0.35

W (B) 5.48 −24.99 0.967 0.29
MeOH (C) −22.77 68.54 0.994 0.63
EtOH (C) −26.17 76.03 0.984 0.67

1PrOH (C) −26.87 76.80 0.986 0.67
2PrOH (C) −31.22 89.90 0.980 0.70
1BuOH (C) −32.44 91.39 0.980 0.71
1PeOH (C) −40.38 117.41 0.988 0.75
1OcOH (C) −38.76 111.22 0.993 0.75
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In conclusion to this part, it is worth emphasizing that the application of COSMO-RS-
DARE for the determination of interaction parameters clearly distinguishes set A from set B.
Although there seems to be an internal consistency within each of these sets, the comparison
of solubility with data measured by Huang et al. [59,60] in structurally similar solvents
suggests the consistency of set A with the general trends of the computed values of Gint(T).
Hence, based on this observation, one should cautiously accept that set A more reliably
characterizes coumarin solubility in selected alcohols. To further support this conclusion, it
is worth inspecting the accuracy of the performed first-principle solubility computations.
The correlation between the estimated and experimental values is presented in Figure 2 and
suggests that the COMSO-RS-DARE predictions are very accurate, in contrast to the default
COSMO-RS predictions. Hence, the high reliability of the COSMO-RS-DARE computations
of solubility in neat solvents supports the application of this approach for the inspection of
dataset consistency.
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3.2. The Experimental Validation of Theoretical Consistency Test

The final approval of the considered method must always come from experiments.
Hence, the validity of the consistency test of coumarin solubility data performed in the
theoretical manner was inspected by performing a sequence of new experiments for a series
of seven alcohols. Four were used to directly reproduce the solvents belonging to set A,
and in addition, three new solvents were included to extend the set of structurally similar
solvents. The obtained values are plotted in Figure 3, and numerical data are collected
in the Supplementary Materials (Table S1). In the left panel of Figure 3, the results of the
mole fraction solubility of coumarin in neat alcohols, except for ethanol, are collected. The
coumarin solubility in this solvent is plotted in the right panel of Figure 3, along with the
one belonging to set B [61]. The presented results clearly confirm the observations made
due to the performed COSMO-RS-DARE analysis. The results of our measurements of
coumarin solubility in ethanol are almost identical to those included in set A, with very
similar temperature solubility trends. Although the results of our measurements tend to
be slightly lower for the more elevated temperatures compared to the data provided by
Huang et al. [59,60], the error is within a few percent. The same conclusion can be drawn
from the analysis of the rest of considered systems.
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Figure 3. Solubility values of coumarin measured in pure alcohols. The notation is consistent with
the one used in Figure 1.

The COSMO-RS-DARE was also applied for the interpretation of the new solubility
data reported in this work, and the resulting intermolecular parameters are collected in
Figure 1 and Table 1, documenting a coherent pattern of our measurements and those
included in set A [59,60]. However, the mentioned slight deviation between these two sets
at higher temperatures also results in slightly lower values of Hint and Sint, as documented
in Table 1.

For the final test of the consistency of the coumarin solubility data, the values of the
enthalpy–entropy compensation factor, χ, were determined for all considered series. In the
solubility literature, this parameter is used in the context of apparent solvation enthalpy and
entropy determined using the van’t Hoff model. Here, formally, the same formula is applied,
but the thermodynamic values are represented by interaction parameters determined using
COSMO-RS-DARE. Hence, the values collected in Table 1 and plotted in Figure 4 were
computed using Equation (2) for T = 298.15 K. A modest linear trend of χ in relation to the
number of carbon atoms in the solvent molecules of neat alcohols is observed. This allows
for at least qualitative characteristics and is supposed to be sufficient for the identification
of outliers. Indeed, the values of χ computed for sets A and C suggest that the energetic
contribution has a dominant effect on the total Gibbs free energy of interaction, and the
entropic term computed for room temperature reaches roughly one third of the interaction
energetics. Conclusions drawn from the data of set B are exactly the opposite, suggesting
stronger contributions of the entropic term, which seems to be unlikely.
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3.3. COSMO-RS-DARE Parameters Interpretation

Although this paper was prepared with a very simple and practical aim, which is
solubility data curation, the application of COSMO-RS-DARE offers many interesting
details regarding the mechanism of solubility. Hence, some additional information is
provided here for the enhancement of the solubility interpretation of coumarin in neat
alcohols. Using this sophisticated methodology requires prior generation, optimization,
and clustering of pairs formed between the solute and solvent molecules. The most stable
clusters are collected in Figure 5, along with energetic and geometric characteristics.
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It is interesting to note that based on the data provided in Figure 5 it can be concluded
that the elongation of the aliphatic chain affects the mutual orientation of the interacting
alcohol molecules with respect to coumarin, but it only slightly alters the geometry of the
hydrogen bond. The more carbon atoms in the alcohol molecule, the stronger the contri-
bution of dispersion interactions and the overlapping of interacting molecules. Indeed,
methanol is exposed outside and is placed in the plane with respect to coumarin. Starting
from butanol, the alcohol molecules were placed above the plane of coumarin, enabling
interactions of aliphatic chains with coumarin rings. Coumarin is highly aromatic, which
is granted by the six-carbon ring. Hence, long enough chains are strongly attracted by
delocalized electrons, which is responsible for strengthening the stability of intermolecular
interactions, as documented by the values of the Gibbs free energy of reaction, leading to
given pairs in the given solution at room temperature.

The application of COSMO-RS-DARE has one serious disadvantage, which is the
necessity to introduce two fitting parameters accounting for interactions between new
pseudo-conformers constituting solute–solvent complexes. The first question is whether
these new species are different from monomeric conformers. The answer to this question
is provided in Figure 6, which collects σ-profiles computed for the coumarin monomer
and molecules involved in pair formation. The σ-profiles, which have a simple meaning of
histograms collecting distributions of charge density, are in line with chemical intuition. As
depicted in Figure 6, three regions can be distinguished, characterizing hydrogen bond-
ing properties and hydrophobicity. The comparison of the plots provided for coumarin
monomer, dimer, and pairs with methanol or octanol suggests that intermolecular interac-
tions seriously affect charge density distributions.
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According to expectations, the HB donicity of coumarin is negligible irrespective
of the form (monomeric or dimeric). A slightly higher HB acceptability of coumarin is
expected due to the presence of electronegative centers. However, the strong aromaticity
of coumarin is associated with its high hydrophobic character. It is interesting to note
that hydrophobic interactions are seriously affected by the intermolecular interactions
of coumarin. Indeed, dimers adopting stacked conformations are significantly less hy-
drophobic compared to the free monomer. Moreover, the interactions with long-chain
alcohols reduce the hydrophobicity of such coumarin conformers due to the abovemen-
tioned structure of such heteromolecular complexes. On the contrary, interactions with
methanol increase the hydrophobicity of coumarin due to the induction effect being the
consequence of hydrogen bond formation. Furthermore, there is also a visible influence of
the hydrogen bond formation on the HB acceptability of coumarin involved in pairs. It is
quite understandable that interaction with methanol depletes its acceptability for further
hydrogen bonding. On the other hand, dimers are as much prone to HB formation as
monomers. There is also an interesting trend of HB donicity with affinities of coumarin to
alcohols. The higher the ∆Gr (lower affinity), the stronger the alteration of HB acceptability.
Hence, conclusions drawn from the exemplary σ-profiles provided in Figure 6 emphasize
the necessity of including new species of coumarin in the description of saturated solutions
in alcohols, and omitting them is one of the sources of the failed solubility computations of
the default COSMO-RS approach.

However, a problem remains with the parameters introduced by COSMO-RS-DARE,
the values of which are to be derived based on experimental data. It is reasonable to expect
that some external characteristics might help in estimating the values of these interaction
parameters. One such example was already provided in the case of ethenzamide [50], for
which a linear relationship was found between the COSMO-RS-DARE parameters and
pairs affinity. The general problem with finding relationships of this type is the interplay
of the shortcomings of the COSMO-RS model and the improper systems definition in the
solubility computations. For chemically different solutes dissolved in solvents of different
physicochemical properties, these two contributions are not equal, making it harder to find
molecular descriptors suitable for accounting for the values of Gint.

However, the situation is not as hopeless as it might seem. Here, a structurally similar
set of solvents is studied with the same solute. In such a restricted chemical space, finding
appropriate molecular descriptors for Gint computation seems to be feasible. To demon-
strate this possibility, several descriptors were computed using the PaDEL software [64] and
related to the interaction parameters resulting from the COSMO-RS-DARE computations.
Additionally, the Hansen solubility parameters (HSP) expressing dispersion (δd), dipolar
(δp), and hydrogen-bonding forces (δHB) were retrieved from Hansen Solubility Parameters:
A User’s Handbook [65] and used for the determination of the solubility space distance (Ra)
values between coumarin and alcohols (Equation (3)).

Ra =

√
4
(
δsolute

d − δsolvent
d

)2
+
(
δsolute

p − δsolvent
p

)2
+
(
δsolute

HB − δsolvent
HB

)2
(3)

Although the HSP concept is very popular in polymer studies, it has also been widely
applied for describing the solubility behavior of low-molecular-weight compounds in
popular neat and multicomponent organic solvents, including aliphatic alcohols [66–71].
It is noteworthy that HSP were also applied in the case of coumarin for describing the
solubilizing effects of choline-based natural deep eutectic solvents [72]. Therefore, HSP and
Ra were included in the set of descriptors considered in this study.

Since Gint is temperature-dependent and the above molecular descriptors are not, the
linear regressions were defined separately for each temperature used in our measurements.
In Figure 7, the regression plots for room temperature are exemplified.
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Figure 7. Exemplary regressions documenting the quality of the linear relationships between the
COSMO-RS-DARE interaction parameter, Gint, and molecular descriptors SpMin2_Bhm (Burden modified
eigenvalue descriptor) and Ra (distance between solute and solvent in the Hansen solubility space).

Among many molecular descriptors computable in PaDEL, the Burden modified
eigenvalue descriptor, SpMin2_Bhm, was found to be linearly correlated with Gint. This is
a relative mass weighted 2D molecular index related to the smallest absolute eigenvalue
of a Burden modified matrix [73–75]. Since, there is a very good correlation between
SpMin2_Bhm and δp (R2 = 0.94) or δHB (R2 = 0.97), the physical meaning of this parameter
is associated with the polarity and hydrogen bond formation abilities of the solvent. As
evidenced in Figure 7, the values of the distance between the solute and solvent in the
Hansen solubility space can also be used as a measure of Gint. This fortunate circumstance of
a linear relationship enables computations of Gint, which might be further used in COMSO-
RS-DARE calculations. The results of such computations are provided in Figure 8, which
also includes the results of the default solubility predictions. It is worth mentioning that
the models are statistically meaningful. The values of the SpMin2_Bhm and Ra descriptors
used for the Gint calculation and the statistical characteristics of the regression between xest

and xexp are provided in the Supplementary Materials (Tables S2 and S3).
The mean average percentage error of the solubility values computed using Gint

estimated with the aid of the SpMin2_Bhm descriptor was 15.2% (RMSD = 0.021), whereas
the analogical value corresponding to Ra was equal to 14.0% (RMSD = 0.016). This is less
precise compared to the Gint values fully fitted to the experimental data but much higher
if confronted with a 240% mean average percentage error (RMSD = 0.19) for the default
COSMO-RS computations of coumarin solubility.
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and COSMO-RS-DARE approaches. The back-computed solubility values with Gint parameters
fully fitted to experimental data were augmented by the ones resulting from the linear relationships
provided in Figure 7.

4. Conclusions

It was already demonstrated in previous reports that COSMO-RS-DARE offers a
substantial improvement in solubility computations over default COSMO-RS predictions.
Although it requires experimental data for finding the values of its parameters by a fitting
procedure, the linear dependence between the enthalpic and entropic contributions of
interaction Gibbs free energy enables using just two parameters for very accurate back-
computations of experimental solubility data. In this report, a new range of applications of
COMOS-RS-DARE is demonstrated. The observed discrepancies in the reported solubility
of coumarin in ethanol were resolved based on the temperature trends of interaction Gibbs
free energy values. Outliers can be clearly identified based on interaction parameters, either
by the inspection of Gint(T) temperature trends or the values of temperature-independent
components, Hint and Sint. Importantly, Gint was found to be correlated with popular
molecular features related to polarity and hydrogen-bonding forces, which is consistent
with chemical intuition. A univocal validation of this approach was conducted by providing
the results of new measurements of coumarin in neat alcohols. Four solvents were selected
for the direct duplication of molar fraction solubility under saturated conditions, and
an additional three were considered for the inspection of the broader trend within the
aliphatic alcohol series. The consistency of the data was discussed, not only in terms
of the comparison of the remeasured solubility data with those already published but
also within the series of structurally similar solvents. The proposed procedure not only
extends the range of applicability of COSMO-RS-DARE but provides a real and useful tool
for consistency tests of already published solubility data. This can be a valuable guide
for planning solubility measurements, reducing experimental efforts for data duplication
or verification and building a coherent solubility database. The procedure can be easily
extended to multicomponent mixtures of solvents.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27165274/s1, Table S1: The solubility values of coumarin
(CAS: 91-64-5) expressed as molar fractions (×103) along with the standard deviation values (n = 3),
Table S2: Statistical characteristics of linear regressions exemplified in Figure 8 and used for back-
computations of solubility using COSMO-RS-DARE approach, Table S3: Collection of molecular
descriptors used for determination of linear regression.
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coumarins in solution and polymer matrices. Molecules 2012, 17, 3259–3276. [CrossRef]
28. Cohen, B.; Huppert, D. Excited state proton-transfer reactions of coumarin 4 in protic solvents. J. Phys. Chem. A 2001, 105,

7157–7164. [CrossRef]
29. Sokolova, I.V.; Loboda, L.I. Structure of protonated forms of coumarin and its hydroxy derivatives. J. Struct. Chem. 1983, 23,

848–854. [CrossRef]
30. Hirano, A.; Arakawa, T.; Shiraki, K. Arginine increases the solubility of coumarin: Comparison with salting-in and salting-out

additives. J. Biochem. 2008, 144, 363–369. [CrossRef]
31. Klamt, A.; Eckert, F.; Hornig, M.; Beck, M.E.; Brger, T. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J.

Comput. Chem. 2002, 23, 275–281. [CrossRef] [PubMed]
32. Grant, D.J.W.; Mehdizadeh, M.; Chow, A.H.L.; Fairbrother, J.E. Non-linear van’t Hoff solubility-temperature plots and their

pharmaceutical interpretation. Int. J. Pharm. 1984, 18, 25–38. [CrossRef]
33. Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-

DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [CrossRef]
34. Manzurola, E.; Apelblat, A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-L-lactate, calcium gluconate,

magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127–1136. [CrossRef]
35. Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J.

Phys. Chem. 1980, 84, 975–979. [CrossRef]
36. Wilson, G.M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86,

127–130. [CrossRef]
37. Renon, H.; Prausnitz, J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144.

[CrossRef]
38. Jouyban, A.; Acree, W.E. Prediction of drug solubility in ethanol-ethyl acetate mixtures at various temperatures using the

Jouyban-Acree model. J. Drug Deliv. Sci. Technol. 2007, 17, 159–160. [CrossRef]
39. Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation

phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [CrossRef]
40. Klamt, A.; Eckert, F. COSMO-RS: A novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid

Phase Equilib. 2000, 172, 43–72. [CrossRef]
41. Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102,

5074–5085. [CrossRef]
42. Eckert, F.; Klamt, A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 2002, 48, 369–385. [CrossRef]
43. Przybyłek, M.; Miernicka, A.; Nowak, M.; Cysewski, P. New Screening Protocol for Effective Green Solvents Selection of

Benzamide, Salicylamide and Ethenzamide. Molecules 2022, 27, 3323. [CrossRef] [PubMed]
44. Cysewski, P.; Przybyłek, M.; Rozalski, R. Experimental and theoretical screening for green solvents improving sulfamethizole

solubility. Materials 2021, 14, 5915. [CrossRef]
45. Cysewski, P.; Przybyłek, M.; Kowalska, A.; Tymorek, N. Thermodynamics and intermolecular interactions of nicotinamide in

neat and binary solutions: Experimental measurements and COSMO-RS concentration dependent reactions investigations. Int. J.
Mol. Sci. 2021, 22, 7365. [CrossRef]
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