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SLC22A18 (solute carrier family 22 member 18) is an imprinted gene, but its role in growth
and development is not clear. In the present study, we recorded the clinical information of six
male patients of six unrelated families. Real-time quantitative PCR, Sanger sequencing, and
DNAmethylation sequencingwere performed in these patients. The results suggested that the
patients with the clinical characteristics of allergic allergy, short stature, and fatty liver had a
lower expression of SLC22A18. One novel variant (chr11: 2899732 delA) with clinical
significance was found in the core promoter region of the patients. Overall, this study
found a syndrome associated with SLC22A18.
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INTRODUCTION

The prevalence of allergic diseases has been increasing worldwide over the past 60 years, affecting about
30% of the global population (Palomares et al., 2017). A phenomenon known as “allergic march” had
been firstly described by Fouchard in 1973. It is a process from infant eczema to food allergy, asthma, and
rhinitis resulting in poor quality of life in childhood (Sohi and Warner, 2008).

In clinical practice, a common triad, including variable allergies, short stature, and fatty liver, has not been
reported as a syndrome up to now. Previous studies on allergic diseasesmainly focused on the immunogenic
origin of allergic diseases, the clinical significance of “health hypothesis,” and the impact of maternal and
infant nutrition on allergic epidemics and paid little attention to the role of human imprinted genes.

SLC22A18 is an imprinted gene, which is involved in tumor suppression and lipid accumulation.
Diseases associated with SLC22A18 include lung cancer and breast cancer (Dao et al., 1998; Peters,
2014; Ito et al., 2019), but its role in childhood diseases is not clear.

In this study, we describe six male patients from six unrelated families with a triad symptom of
progressive postnatal slow growth, allergies, and fatty liver. After real-time quantitate PCR (RT-qPCR),
Sanger sequencing, and DNA methylation sequencing analysis, we showed that all the patients had a
lower expression of SLC22A18 that resulted from abnormal methylation-hampered promoter function.
These cases and analysis indicate a syndrome associated with SLC22A18.

METHODS

Cases
From Nov 2013 to Aug 2020, six male patients from six unrelated families who were admitted to the
pediatric endocrinology clinic presented a triad symptom of progressive postnatal slow growth,
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allergies, and fatty liver. After reviewing the patients’ family
history, we found that the patients’ grandfathers or fathers
also had similar growth experience compared with the
patients. Subsequently, the medical history, physical findings,
and the results of hematology, biochemistry, radiology, type B
ultrasonic test, and molecular biology tests were studied.
B-ultrasound examination found that the patients’ liver had
infiltration, suggesting that the patient had fatty liver. All
laboratory procedures for clinical samples have been reported
in advance. Blood, feces, and urine samples were taken; plasma
was separated in the EDTA bottles; and serum was separated in
the clotting blood bottles. This study was approved by the
Institutional Review Board and Ethics Committee. Written
consent from all patients was collected.

Real-Time Quantitate PCR
Whole blood of 10 patients (IDs: 19010101, 19010102, 19010104,
190101010, 19010111, LXY, DTY, LC, OYZY, and GJX) and 10
healthy controls were first processed with Red cell lysis buffer (Sangon
Biotech, Shanghai, China) and then treated with TRIzol (Invitrogen,
Carlsbad, CA, USA) to extract total RNA. Reverse transcription was
performed with HiScript First Strand cDNA Synthesis Kit (Vazyme,
Nanjing, China) to obtain cDNAs. Then qPCRwas performed onBio-
Rad CFX96 (Bio-Rad Laboratories Inc., Hercules, CA, USA) with
AceQ qPCR SYBR Green Master Mix (without ROX) (Vazyme,
Nanjing, China) according to the manufacturers’ protocols. ACTB
gene was used as the reference, and the primer sequences are listed in
SupplementaryTable S1. Cycling conditionswere as follows: 95°C for
5min, followed by 40 cycles of 95°C for 10 s and 60°C for 25 s.

DNA Methylation Sequencing and Data
Analysis
Genomic DNA was extracted from whole blood using TIANamp
Blood DNA Kit (Tiangen Biotech, Beijing, China), which was further
treated with EpiTect Fast DNA Bisulfite Kit (QIAGEN, Hilden,
Germany) for bisulfite conversion. The converted DNA was PCR-
amplified with primer sequences designed to cover the CpGs in two
promoter regions denoted as “Promoter 1” and “Promoter 2”
(Supplementary Table S2): each region included near 1,000 bp
centering around the transcription start sites (TSSs) of SLC22A18;
the TSS annotation was based on RefSeq release 109. The PCR
products were gel- and column-purified and used for DNA library
preparation. The library was prepared with KAPA HTP Library
Preparation Kit (KAPA Biosystems, Wilmington, MA, USA)
according to the manufacturer’s protocol. The library was further
amplified for 10 cycles, which was then subjected to deep sequencing
on the Illumina HiSeq platformwith 2 × 150 as the sequencingmode.

Raw reads were filtered to obtain high-quality clean reads by
removing sequencing adapters and low-quality reads using Trim
Galore (v0.5.0) with parameters--paired--rrbs--illumina--fastqc
(https://github.com/FelixKrueger/TrimGalore) (FastQC, 2010;
Martin, 2011). The clean reads were mapped to human
genome (hg38) using the Bismark (v0.7.0) software (Krueger
and Andrews, 2011). The methylation percentages for the CpG
sites were calculated by the Bismark methylation extractor script
from Bismark. Differentially methylated CpGs (DMCs) were

identified using methylKit with the q-value cutoff set to 0.01
(Akalin et al., 2012). Differentially methylated regions (DMRs)
between patients and healthy controls were identified within the
two promoter regions using methylKit, which had a q-value of
less than 0.01 and at least one DMC inside.

Sanger Sequencing
Genomic DNA was extracted from the whole blood of nine
patients (IDs: 16, 17, 20, 170609, 17071201, 19010101,
19010106, 19010109, and TANG) with the same method
described above. Two pairs of PCR primers were used to
amplify the promoter regions of SLC22A18 (Supplementary
Table S3), yielding close to 500 bp flanking the TSSs. PCRs
were performed in a 50-μl reaction containing 10 μM of each
primer, 100 ng of genomic DNA, and 25 μl of 2xFtaq PCR
MasterMix (Zoman Biotechnology, Beijing, China). Cycling
conditions were as follows: 95°C for 5 min, followed by 40
cycles of 95°C for 15 s, 60°C for 15 s, and 72°C for 50 s. The
PCR products were gel- and column-purified and then sequenced
with ABI 3730XL (Applied Biosystems, Foster City, CA, USA).

RESULTS

Clinical Features of the Six Cases
The patient in case 1 was short and light, and his father had marked
central obesity (Figure 1A). In case 2, the patient had short stature,
was lightweight, and has small hands and teethed at a normal age,
and his father hadmarked central obesity (Figure 1B). The patient of
case 3 is the brother of boy–girl twins. He was thinner and shorter
than his twin sister before 12 years old (left picture). However, after
1.5 years of recombinant human growth hormone (rhGH)
treatment, he is 9 cm taller than his twin sister (middle picture)
now. His father suffered from central obesity (Figure 1C). The
patient of case 4 was of short stature and lightweight and has small
hands. He teethed at a normal age, and his father hadmarked central
obesity (Figure 1D). The patient of case 5 has short stature without
spinal scoliosis, was lightweight, and has small hands, and his father
had marked central obesity (Figure 1E). The patient in case 6 was
short, with a body mass index (BMI) of 18.0, and had fatty liver, and
his father had central obesity (Figure 1F).

Case 1 The initial dose of rhGH is 2-3 IU/d over a period of 18
months and he received total 1248 IU of rhGH. During this
period, his height and weight increased by 12.9 cm (to 121.0 cm)
and 6.8 kg (to 23.0 kg). Then, he suspended injection rhGH since
his height became normal compared to his peers, after
approximately 10 months, his height and weight was still
121.0 cm and 23.0 kg, without any appropriate increase. Then
started using rhGH, 4 IU/d, 6 days/week. Up to date, when he was
9y9m, both of his height and weight were normal (137.9 cm, 30.3
kg). At this time, the dose of rhGH is 5 IU/d, 6 days/week.

Case 2When he was 3y10m years old, the injections were started
and lasted for approximately 1.5 years, by a frequency of rhGH 2 IU/
d, 6 days/week. Afterwards, he had a remarkable height increase
which is from 95.6 cm to 112.5 cm. Sometimes he suspended for 3
months because the great treatment effects. Last revisited at Jan, 1,
2019, his height was 128.5 cm (normal), and weight was 25.3 kg.
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Case 3When he was 12.3 years old, given himVitD3 supplements
and treated with rhGH 6 IU/d. The tratments were continued for
approximately 3 years (fromNov. 2015 to July. 2018). Last revisitedwas
at 14.8 years old, and his height was 171.0 cm and weight was 67.5 kg.

Case 4 To data, his height was 101.5 cm (-3SD) and weight was
17.0 kg (-1SD), when he was five years old. Injection of rhGHwith
2 IU/d was recommended. After 4 months, his height was 109.0
cm and weight was 17.0 kg, which means effective treatments,
however, he still had cough and lean body mass.

Case 5He received 5 IU/d rhGH, over a period of sixmonths, with
height increased from 137.5 cm to 145.0 cm, and weight was 34.7 kg
(normal height increases by 3.0 cm in six months). Treatment was
interrupted for the following sixmonths, resulting in no further growth.
We suggested the patient visiting E.N.T. department for his sleep
problems and traditional Chinese medicine for his poor of appetite.
Now, he is 158.0 cm and 46.0 kg, and his appetite has improved.

Case 6 When he was 11.5 years old, he started using rhGH (4
IU/d). Well, at that time of Aug 23, 2018 his height was 144.0 cm

FIGURE 1 | Clinical features of the six cases’ profiling.
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TABLE 1 | Summary of main clinical features and laboratory results of six cases with SLC22A18-associated syndrome.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Age (at first examination)
(year–month)

5 years +
3 months

3 years +
7 months

12 years 4 years + 2 months 11 years +
11 months

11 years + 2 months

Gender Male Male Male Male Male Male
Patient’s height (cm) 107.1 94.5 143.8 97.5 137.5 140
Patient’s weight (kg) 16.3 13.4 44.5 14.4 29.5 34.7
Patient’s BMI (kg/m2) 14.17 15.01 21.52 15.15 15.6 17.7
Birth’
history

Gestation
(weeks)

40w+2 40w−4 40w−3 39w+6 41 + 1 40w+4

Birth height (cm) 50 49 50 50 45 50
Birth weight (kg) 3.4 3.25 3.1 3.3 3.3 3.8

Father’s height (cm) 160 167 169.4 169.6 167.5 161.5
Father’s weight (kg) 74.3 70 91.7 108 83 84.5
Father’s BMI (kg/m2) 29.02 25.1 31.96 37.55 29.58 32.4
Father’s chronic medical illness Fatty liver central

obesity
Fatty liver Fatty liver central

obesity chronic
Fatty liver central
obesity chronic

Fatty liver central
obesity

Fatty liver central
obesity chronic

Mother’s height (cm) 152.7 155 152.8 154 154 158
Mother’s weight (kg) 47.2 47 53.9 54 53 50
Mother’s BMI (kg/m2) 20.2 19.6 23.1 22.8 22.3 20
Symptoms and signs
Low growth velocity + + + + + +
Short stature + + + + + +
low weight (low body mass) + + Normal + + Normal
Snoring + + + + + +
Adenoid hypertrophy + + + + + +
Allergic rhinitis + + + + + −

Asthma + − − + − +
IGF-1 (μg/ml) 354 (↓) 139 391 (↓) 240 178 (↓) 113 (↓)
IGFBP-3 (μg/ml) 5 4.79 5.7 4.1 4.8 4.4
VitD3 (ng/ml) (normal range ≥30) 28.3 (↓) 35.2 23.9 (↓) 20.9 (↓) 14.9 (↓) 22.9 (↓)
Peak of GH (μg/L) (normal
range >10)

8.4 (↓) 3.98 (↓) 2.4 (↓) 7.61 (↓) 19.3 (↑) 6.74 (↓)

Hemoglobin (normal range
120.0–140.0 g/L)

126 118 (↓) 152 127 145 112 (↓)

Neutrophils (%) (normal range
40.0–75.0)

49 32.1 74.5 54.6 59 63.7

Lymphocytes (%) (normal range
20.0–50.0)

36.5 54.9 13.5 30 32.5 25.9

Monocytes (%) (normal range
1.0–8.0)

8.4 (↑) 8.4 (↑) 8.4 (↑) 12.6 (↑) 4.7 10.1 (↑)

Eosinophils (%) (normal range
0.4–8.0)

5.2 5.2 3.1 2.5 2.9 0.0 (↓)

Determination of serum
allergens

Pollen Mite Pollen, egg Pollen Mite, egg

TG (mmol/L) (normal
range 0–5.2)

4.2 4.5 4.2 4.6 4.2 4.26

TC (mmol/L) (normal range
0–2.26)

0.7 0.6 0.9 1.25 0.5 1.46

HDL-C (mmol/L) (normal
range ≥1.04)

2.2 1.8 1.5 1.3 1.9 1.72

LDL-C (mmol/L) (normal
range ≤3.34)

1.9 2.6 2.6 3.04 2.37 2.4

APOA (g/L) (normal range
1.04–2.02)

1.76 1.97 1.5 1.3 1.54 1.68

APOB (g/L) (normal range
0.66–1.33)

0.5 (↓) 0.8 0.8 0.9 0.69 0.76

APOE (mg/L) (normal range
27–45)

55.9 (↑) 35.3 50.4 (↑) 62.0 (↑) 39 54.0 (↑)

FFAs (mmol/L) (normal range
0.1–0.6)

0.95 (↑) 1.15 (↑) 0.86 (↑) 0.86 (↑) 0.67 (↑) 0.94 (↑)

Glucose (mmo1/L) (normal
range 4.11–6.05)

4.8 4.5 5.4 4.6 4.3 4.9

HbA1c (%) (normal range 4–6) 4 4.1 5 4.3 4.2 5
Insulin (%) (normal range
2.6–24.9)

3.7 4.4 5.5 3.7 4.5 5.1

(Continued on following page)
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and weight was 37.3 kg. Suggested him using rhGH (5 IU/d) and
the treatment effects were very effective for height.

All cases were male with normal birth height and weight.
When these patients visited our department, they had low body
weight and slow growth, similar to idiopathic short stature (ISS).

All cases had hypertrophy of adenoid and tract allergy of the
upper respiratory tract. Besides, we found that the grandfathers or
fathers of the six patients also showed nearly the same combination
of short stature, allergic march, and fatty livers during their puberty.
Growth hormone deficiency (GHD) was found in five cases, except
in case 5. Patients had decreased vitamin D3 (VitD3) and insulin-like
growth factor-1 (IGF-1) and increased free fatty acid (FFA). MRI of
the pituitary showed no abnormalities, and the intelligence and
sexual development of these patients were normal (Table 1). These
patients were diagnosed with GHD or ISS, along with other
diagnoses such as an allergic reaction of the upper respiratory
tract, asthma, and fatty liver (Table 1). After VitD3

supplementation and rhGH treatment, their height increased by
>7 cm/year (Figure 2).

Quantification of SLC22A18 Expression
Level
RT-qPCR was used to measure the expression level of SLC22A18
in both patients and healthy controls. A significant difference in
expression was detected between patients and healthy controls
(Figure 3A). On average, the expression of SLC22A18 in the
healthy control group was 1.82 times higher than that in the
patient group.

Methylation Analysis and Variant Detection
in Promoter Regions of SLC22A18
Aberrantly, DNAmethylation is one of the most possible reasons
to drive the expression of SLC22A18 to become abnormal. Here,
we quantified the promoter methylation levels of three patients

(IDs: 19010102, 19010110, and LC) and three healthy controls by
deep sequencing. Deep sequencing generates 2.7 to 4.8 million
reads for each individual, leading to an ultra-high coverage
(>50,000× on average) for two specific promoter regions
(denoted as “Promoter 1” and “Promoter 2”), each of which
included nearly 1,000 bp centering around the TSSs of SLC22A18
(Supplementary Table S2). Using methylKit, DMRs were
identified in Promoter 1: 1) the core promoter was the most
differentially methylated between patients and healthy controls
with 21% methylation percentage change (p-value <0.001); 2) the
upstream 500 bp of the TSS had a marked elevated methylation
percentage (15%, p-value < 0.001); and 3) the downstream 500 bp
of the TSS had a relatively small increase in methylation (6%
change, p-value <0.001). On the contrary, the majority of CpG
sites in Promoter 2 were nearly 100% methylated, and thus no
noted change in methylation level was observed in Promoter 2
(Figure 3C). To identify variants that possibly lead to the low
expression of SLC22A18 in patients, Sanger sequencing was
performed for the two promoter regions described above.
Genomic DNA was extracted from the whole blood of nine
patients (IDs: 16, 17, 20, 170,609, 17,071,201, 19010101,
19010106, 19010109, and TANG), yielding close to 500 bp
flanking the TSSs that were subjected to Sanger sequencing.
The sequencing results were aligned to the human
reference genome (GRCh38) and visualized by novoSNP
(Weckx et al., 2005). A total of seven variants were
identified and, as expected, most of them (6) could be
found in dbSNP (i.e., rs365605, rs5789280, rs538924456,
rs397933484, rs366696, and rs367035) without clinical
significance (Sherry et al., 2001; Landrum et al., 2014).
Only one variant (chr11: 2899732 delA), located in the core
promoter region, has not been reported before (Figure 3B).
To further check if this novel variant could be related to the
expression of SLC22A18, the 100-bp DNA sequence flanking
this variant was submitted to JASPAR database (https://
jaspar.genereg.net/) to detect possible binding sites of

TABLE 1 | (Continued) Summary of main clinical features and laboratory results of six cases with SLC22A18-associated syndrome.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Liver and renal function Normal Normal Normal Normal Normal Normal
Fatty liver (ultrasonic B) − − + − − +
Pituitary MRI Normal Normal Normal Normal Normal Normal
Chronological age (CA) (year) 5.3 years 7 years 14 years 4 years 12 years 10.5 years
Bone age (BA) (year) 2.5 years 4.5 years 13.5 years 1.5 years+ 9 years− 8 years
X-ray of BA and CA BA < CA BA < CA BA � CA BA < CA BA < CA BA < CA
Diagnosis
Endocrinologist GHD GHD Short stature GHD ISS GHD

Puberty state Puberty state
Otolaryngologist Adenoid Adenoid Adenoid Adenoid Adenoid Adenoid
Pulmonary physicians Asthma
Gastroenterology Fatty liver Fatty liver
Treatment rhGH + + + + + +

Adenoidectomy + + − + − +
Antiallergic
therapy

+ − − + − +

Vitamin D3 + + + + + +

Note. BMI, body mass index; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FFA, free fatty acid; HbA1c,
glycated hemoglobin; GHD, growth hormone deficiency; rhGH, recombinant human growth hormone.
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transcription factors (Khan et al., 2018). To our surprise, 11
transcription factors (MEF2C, ZNF384, SOX15, LM140,
SOX15, SOX10, RORC, RORA, RORB, NR4A1, NR2F2, and
NR4A2) could bind to the regions containing the novel
variant under default parameters.

DISCUSSION

Individual children often havemultisystem diseases. The clinician
needs to be aware of these to ensure that the child is not
misdiagnosed. In the past, short stature and obesity in
children with allergic diseases are usually considered to be side
effects of glucocorticoid drugs. But now, our study generated
evidences showing that short stature and central obesity are not
related to the use of glucocorticoid drugs. Therefore, we need a
new theory to explain the pathological mechanisms of short
stature and/or obesity with allergies in children. In this report,

the triad of allergic march, short stature, and fatty liver is
associated with a patrilineal imprinted gene SLC22A18. It
should not simply be considered a side effect of glucocorticoid.

There is a progression, and the individual child can suffer from
one symptom to another. The most common is normal height
and weight at birth. In early childhood, allergies, reduced growth
rate, short stature, and abnormal fat metabolism [high FFA and
high apolipoprotein E (ApoE)] gradually appear. Around
adolescence, weight gain develops into central obesity and
fatty liver. And allergic symptoms almost always appear after
birth to the age of 7. Other symptoms of itching, sneezing, loss of
sleep, coughing, etc., are present. In our study, there is no obvious
abnormality in the appearance of our cases, and there is no sexual
developmental delay and intellectual disability in any of these
patients. The group of six patients could not be classified into the
above syndromes.

Several syndromes involving short stature are associated with
a number of imprinted genes, such as Prader–Willi syndrome

FIGURE 2 | Six cases with favorable effect to recombinant human growth hormone (rhGH) treatment. (A-F) is the height changes in six cases. The black line is the
standard height curve from top to bottom is 97, 50, and 3%, respectively. Height below the 3rd percentile is considered as Short Stature. The red line is the height
changes of these 6 patients after VitD3 and rhGH treatment.
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(PWS), Beckwith–Wiedemann syndrome (BWS), and
Silver–Russell syndrome (SRS). PWS is characterized by short
stature and obesity, somewhat similar in our patients. However,
inborn muscular hypotonia, imbecility, and cryptorchidism, and/
or micropenis are not observed in our cases (Cassidy et al., 2012).
BWS features varying degrees of symptoms like overgrowth,
macrosomia, macroglossia, hemihypertrophy, and asymmetric
facial features (Frédéric et al., 2018). SRS is characterized by
severe intrauterine and postnatal growth retardation, feeding
difficulties, short stature, triangular face, low ears, and bending
of the fifth finger (Spiteri et al., 2017). The group of six patients
could not be classified into the above syndromes.

Short stature is the most confusing common feature in the
cases of this study. During follow-up, six cases showed a favorable
effect of rhGH treatment. All patients grew faster and taller, but it
was almost impossible to avoid allergies, consistently elevated

plasma levels of IgE, FFA, and fatty liver formation. The
molecular mechanism is still unknown, and rare evidence can
be found by existing researches.

SLC22A18, located in the 11p15.5 domain, is an important
tumor-suppressor gene region. Alterations in this region have been
associated with the BWS, Wilms tumor, and lung, ovarian, and
breast cancers. Lee et al. found mutations in SLC22A18 in kidney
and lung cancers. By checking the genotypes and phenotypes of the
family members, the author speculated that SLC22A18 is a tumor
suppressor gene in the adult lung and an imprinted tumor
suppressor gene in the fetal kidney (Lee et al., 1998). Recent
studies revealed a novel link between SLC22A18 and fat
accumulation, and we speculated that paternal SLC22A18 gene
may be involved in the occurrence of this “triad” syndrome.
Previous reports found that the liver expresses SLC22A18 at the
mRNA and protein levels (Dao et al., 1998). Suppression of

FIGURE 3 | The focal point of a patrilineal imprinted gene SLC22A18. (A)Comparison of SLC22A18 expression levels between patients and healthy controls. There are 10
individuals in each group, and the expression levels were measured by RT-qPCR, and fold changes were calculated with the healthy controls as the reference. The p-value
indicated in the plot was based on a two-tailed Student’s t-test in the R language. (B) The left panel shows the IDs of patientswith this variant, and the reference sequence is on the
top. The solid red box highlights the variant where an “A” has been deleted. The visualization of Sanger sequencing results was done by novoSNP. (C) The percentage of
methylated and methylated CpG sites was represented by dark green and red, respectively. Patients and healthy controls were represented by light green and yellow bars,
respectively, on the right side. “TSS1” is located at position 2, 899, 721, “+” strand, chromosome 11; “TSS2” is located at position 2, 902, 282, “+” strand, chromosome 11.
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SLC22A18 promotes lipid accumulation in the liver by reducing
lipophagy (Jing and Gotoda, 2012; Yamamoto et al., 2013; Shingo
et al., 2019). Dysregulation of lipid metabolism in the liver is a
marker of nonalcoholic fatty liver disease (NAFLD), characterized
by excessive accumulation of fat in the liver. These findings may
explain the development of fatty liver in our cases.

Given these findings and the biological importance of
SLC22A18, the DNA sequence and the RNA levels of SLC22A18
were investigated among these patients. It was found that high
methylation and low expression of SLC22A18 could relate to the
occurrence of a triad of slow growth, allergies, and fatty liver in
these patients during their growth and development. Therefore, it
is suggested that SLC22A18 is a possible gene that plays an
important role in the pathogenesis of this syndrome.

In summary, this study found that the triad, variable allergy,
short stature, and fatty liver, is associated with the lower mRNA
expression levels of SLC22A18, deleted “A” in SLC22A18 core
promoter, and the high methylation levels in my cases. All of that
possibly affect the normal transcription of SLC22A18, meanwhile
resulting in IGF-1 low activity and involvement of high FFA in
metabolic inflammation. Therefore, our study raises the clinical
need for the naming of SLC22A18 syndrome. Last but not least,
additional case samples are needed to reinforce our hypothesis;
and further researches of SLC22A18, such as epigenetics or
functional genetic experiments of an animal model, will reveal
the molecular mechanisms and etiology.
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