Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Acetylacetonato- $\kappa^2 O, O'$)chloridotrimethanolatoniobium(V)

Leandra Herbst,* Renier Koen, Andreas Roodt and Hendrik G. Visser

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300 South Africa

Correspondence e-mail: leandra9herbst@yahoo.com

Received 28 May 2010; accepted 7 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.068; data-to-parameter ratio = 21.9.

In the title compound, $[Nb(CH_3O)_3(C_5H_7O_2)Cl]$, the Nb^V atom is coordinated by two O atoms from the chelating acetylacetonate ligand, three O atoms from the methanolate groups and one chloride ligand. The octahedral environment around niobium is slightly distorted with Nb-O distances in the range 1.8603 (15)–2.1083 (15) Å and an Nb–Cl distance of 2.4693 (9) Å. The O–Nb–O angles vary between 80.74 (6) and 100.82 (7)°, while the *trans* Cl-Nb-O angle is $167.60(5)^{\circ}$. There are no hydrogen bonds observed, only an intermolecular C-H···O interaction.

Related literature

For synthetic background, see: Davies et al. (1999). For applications of acetylacetone in industry, see: Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010); Viljoen et al. (2008, 2009a,b, 2010); Steyn et al. (2008). For related niobium complexes, see: Sokolov et al. (1999, 2005); Antinolo et al. (2000); Dahan et al. (1976).

Experimental

Crystal data [Nb(CH₃O)₃(C₅H₇O₂)Cl] $M_r = 320.57$ Orthorhombic, Pbca a = 12.296 (5) Å b = 12.915 (4) Å c = 15.470 (5) Å

V = 2456.7 (16) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 1.20 \text{ mm}^-$ T = 100 K $0.36 \times 0.30 \times 0.19 \text{ mm}$ $R_{\rm int} = 0.030$

28601 measured reflections

3083 independent reflections

2757 reflections with $I > 2\sigma(I)$

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.673, T_{\max} = 0.805$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	141 parameters
$wR(F^2) = 0.068$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$
3083 reflections	$\Delta \rho_{\min} = -0.87 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O1-Nb1	1.8640 (15)	O4-Nb1	2.1083 (15)
O2-Nb1	1.8811 (16)	O5-Nb1	2.0842 (15)
O3-Nb1	1.8603 (15)	Cl1-Nb1	2.4693 (9)
O3-Nb1-O1	100.82 (7)	O1-Nb1-O5	91.53 (7)
O3-Nb1-O2	99.96 (7)	O2-Nb1-O5	88.43 (7)
O1-Nb1-O2	99.45 (7)	O3-Nb1-O4	85.71 (7)
O3-Nb1-O5	163.63 (6)	O2-Nb1-Cl1	167.60 (5)

Table 2 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8C\cdots O4^{i}$	0.98	2.46	3.442 (3)	176
Summature and a (i) .	. 1 1	1.1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN), the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2289).

References

- Antinolo, A., Carrillo-Hermosilla, F., Fernandez-Baeza, J., Otero, A., Palomares, E., Rodriguez, A. M. & Sanchez-Barba, L. F. (2000). J. Organomet. Chem. 603, 194-198.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572-5578
- Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dahan, F., Kergoat, R., Senechal-Tocquer, M. C. & Guerchais, J. E. (1976). J. Chem. Soc. Dalton Trans. pp. 2202–2209.
- Davies, H. O., Leedham, T. J., Jones, A. C., O'Brien, P., White, A. J. P. & Williams, D. J. (1999). Polyhedron, 18, 3165–3172.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.
- Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sokolov, M., Gushchin, A. L., Tkachev, S. V., Naumov, D. Yu., Nunez, P., Gili, P., Platas, J. G. & Fedin, V. P. (2005). *Inorg. Chim. Acta*, **358**, 2371–2376.

- Sokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85–92.
- Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.
- Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem., 536–537, 197–205.
- Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.
- Viljoen, J. A., Roodt, A. & Muller, A. J. (2008). Acta Cryst. E64, 838-839.
- Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603-m604.
- Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515.
- Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368.

supplementary materials

Acta Cryst. (2010). E66, m801-m802 [doi:10.1107/S1600536810021719]

(Acetylacetonato- $\kappa^2 O, O'$)chloridotrimethanolatoniobium(V)

L. Herbst, R. Koen, A. Roodt and H. G. Visser

Comment

Acetylacetone and its analogues find applications in homogenous catalysis and the separations industry (Steyn *et al.*, 1992; 1997; Otto *et al.*, 1998; Roodt & Steyn, 2000; Brink *et al.*, 2010). This study forms part of ongoing research to investigate the intimate mechanism of the reactions of *O*,*O*'- and *N*,*O* -bidentate ligands with transition metals used in the nuclear industry, specifically hafnium, zirconium, niobium and tantalum (Viljoen *et al.*, 2008; 2009a,b; 2010; Steyn *et al.*, 2008).

Pale-yellow cubic crystals of the title complex crystallize from a methanol reaction solution containing niobium(V) chloride and acetylacetone after several days (Davies *et al.*, 1999). The asymmetric unit consists of a niobium(V) atom surrounded by three methanolate groups, a chloride ligand and a *O*,*O*'- bonded acetylacetonato ligand (Figure 1). The octa-hedral environment around niobium is slightly distorted with Nb–O distances varying between 1.8603 (15) and 2.1083 (15) Å, while the Nb–Cl distance is 2.4693 (9) Å. The O–Nb–O angles vary between 80.74 (6) and 100.82 (7) ° while the *trans* Cl–Nb–O angle is 167.60 (5) °. All the bond distances and angles are similar to other relevant niobium(V) structures (Sokolov *et al.*, 1999; 2005; Antinolo *et al.*, 2000 and Dahan *et al.*, 1976). The niobium compounds pack in a head-to-tail fashion along the *bc* plain.

There are no classical hydrogen bonds observed in this structure. However, the structure is stabilized by C8–H8C..O4* (* = -1/2+x, 1/2-y, 1-z) intermolecular interactions with C—H = 0.98, H···O = 2.46 and C···O = 3.442 (3) Å and C—H···O angle = 176° .

Experimental

The reaction was performed under modified Schlenk conditions under an argon atmosphere. NbCl₅ (0.3134 g, 1.16 mmol) was carefully dissolved in absolute methanol (5 ml) (Care: exothermic reaction). Acetylacetone (0.119 ml, 1.16 mmol) was added to the solution. The colourless solution was stirred for 1 h at room temperature and the solution was left to stand at 252 K for a few days after which pale-yellow crystals, suitable for X-ray diffraction were obtained.

Refinement

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98Å and $U_{iso}(H) = 1.5U_{eq}(C)$ and $1.2U_{eq}(C)$, respectively. The highest residual electron-density peak is 0.93 Å from Cl1.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.

$(Acetylacetonato-\kappa^2 O, O') chlorido trime than olatonio bium (V)$

Crystal data

[Nb(CH ₃ O) ₃ (C ₅ H ₇ O ₂)Cl]	F(000) = 1296
$M_r = 320.57$	$D_{\rm x} = 1.733 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 9878 reflections
a = 12.296 (5) Å	$\theta = 2.6 - 28.4^{\circ}$
b = 12.915 (4) Å	$\mu = 1.20 \text{ mm}^{-1}$
c = 15.470(5) Å	T = 100 K
$V = 2456.7 (16) \text{ Å}^3$	Cuboid, pale-yellow
Z = 8	$0.36\times0.3\times0.19~mm$

Data collection

3083 independent reflections
2757 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
$h = -12 \rightarrow 16$
$k = -14 \rightarrow 17$
$l = -18 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.068$	H-atom parameters constrained
<i>S</i> = 1.16	$w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 3.5334P]$ where $P = (F_o^2 + 2F_c^2)/3$
3083 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
141 parameters	$\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$

0 restraints 0 constraints $\Delta \rho_{min} = -0.87 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to $\theta = 28.24^{\circ}$ with 99.1% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.00363 (19)	0.09540 (17)	0.76165 (14)	0.0195 (4)
H1A	-0.0385	0.1594	0.7676	0.029*
H1B	0.0228	0.0692	0.8191	0.029*
H1C	-0.04	0.0435	0.7311	0.029*
C2	0.3610 (2)	0.07674 (19)	0.54112 (15)	0.0217 (5)
H2A	0.3222	0.0834	0.4861	0.033*
H2B	0.3847	0.0049	0.5488	0.033*
H2C	0.4247	0.1224	0.5409	0.033*
C3	0.26952 (19)	0.38799 (16)	0.74055 (15)	0.0195 (4)
H3A	0.2855	0.43	0.6894	0.029*
H3B	0.3309	0.3915	0.7809	0.029*
H3C	0.2039	0.4145	0.7689	0.029*
C4	0.2957 (2)	0.37805 (19)	0.41139 (16)	0.0231 (5)
H4A	0.3083	0.44	0.4466	0.035*
H4B	0.2605	0.3978	0.357	0.035*
H4C	0.3654	0.3443	0.399	0.035*
C5	0.22378 (18)	0.30466 (16)	0.45973 (14)	0.0158 (4)
C6	0.14339 (18)	0.24919 (17)	0.41581 (14)	0.0174 (4)
Н6	0.1304	0.2657	0.3569	0.021*
C7	0.08152 (17)	0.17147 (16)	0.45334 (13)	0.0148 (4)
01	0.09963 (13)	0.11572 (11)	0.71426 (9)	0.0162 (3)
02	0.29097 (12)	0.10497 (12)	0.60982 (10)	0.0161 (3)
O3	0.25251 (13)	0.28363 (11)	0.71528 (9)	0.0158 (3)
O4	0.24286 (13)	0.29502 (11)	0.54083 (10)	0.0155 (3)
05	0.09160 (13)	0.14211 (11)	0.53257 (9)	0.0158 (3)
Cl1	0.02912 (4)	0.32547 (4)	0.64105 (3)	0.01788 (11)
Nb1	0.178955 (15)	0.198214 (14)	0.638103 (11)	0.01144 (7)

supplementary materials

C8	-0.00329 (19)	0.11656 (18)	0.40125 (14)	0.0200 (4)
H8A	-0.0015	0.0424	0.4147	0.03*
H8B	0.0113	0.1268	0.3396	0.03*
H8C	-0.0752	0.1445	0.4154	0.03*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0207 (11)	0.0218 (10)	0.0160 (10)	-0.0056 (9)	0.0046 (8)	-0.0002 (8)
C2	0.0221 (11)	0.0254 (11)	0.0175 (10)	0.0029 (9)	0.0043 (9)	-0.0018 (8)
C3	0.0185 (11)	0.0155 (9)	0.0245 (11)	-0.0016 (8)	-0.0015 (9)	-0.0023 (8)
C4	0.0237 (12)	0.0247 (12)	0.0209 (11)	-0.0011 (9)	0.0053 (9)	0.0094 (9)
C5	0.0175 (10)	0.0160 (10)	0.0139 (10)	0.0040 (8)	0.0042 (8)	0.0037 (7)
C6	0.0192 (10)	0.0226 (10)	0.0105 (9)	0.0033 (9)	0.0009 (8)	0.0023 (8)
C7	0.0155 (10)	0.0178 (9)	0.0112 (9)	0.0054 (8)	-0.0003 (8)	-0.0029 (7)
01	0.0187 (8)	0.0174 (7)	0.0125 (7)	-0.0016 (6)	0.0030 (6)	0.0022 (6)
O2	0.0161 (7)	0.0180 (7)	0.0140 (7)	0.0021 (6)	0.0020 (6)	0.0010 (6)
O3	0.0194 (8)	0.0148 (7)	0.0132 (7)	-0.0018 (6)	-0.0011 (6)	-0.0007 (5)
O4	0.0173 (7)	0.0170 (7)	0.0123 (7)	-0.0024 (6)	0.0009 (6)	0.0025 (5)
O5	0.0198 (8)	0.0165 (7)	0.0112 (7)	-0.0032 (6)	-0.0013 (6)	-0.0006 (5)
Cl1	0.0170 (2)	0.0169 (2)	0.0198 (3)	0.00236 (19)	0.00092 (19)	0.00026 (18)
Nb1	0.01376 (11)	0.01214 (10)	0.00841 (10)	-0.00081 (6)	0.00045 (6)	0.00115 (6)
C8	0.0199 (11)	0.0250 (11)	0.0150 (10)	0.0007 (9)	-0.0035 (8)	-0.0043 (8)

Geometric parameters (Å, °)

1.414 (3)	C5—O4	1.282 (3)
0.98	C5—C6	1.397 (3)
0.98	C6—C7	1.387 (3)
0.98	С6—Н6	0.95
1.416 (3)	С7—О5	1.289 (3)
0.98	С7—С8	1.497 (3)
0.98	O1—Nb1	1.8640 (15)
0.98	O2—Nb1	1.8811 (16)
1.419 (2)	O3—Nb1	1.8603 (15)
0.98	O4—Nb1	2.1083 (15)
0.98	O5—Nb1	2.0842 (15)
0.98	Cl1—Nb1	2.4693 (9)
1.497 (3)	C8—H8A	0.98
0.98	C8—H8B	0.98
0.98	C8—H8C	0.98
0.98		
109.5	O5—C7—C6	123.9 (2)
109.5	O5—C7—C8	116.1 (2)
109.5	C6—C7—C8	120.0 (2)
109.5	C1—O1—Nb1	150.52 (14)
109.5	C2—O2—Nb1	141.71 (14)
109.5	C3—O3—Nb1	144.27 (14)
	1.414 (3) 0.98 0.98 0.98 1.416 (3) 0.98 0.98 0.98 0.98 1.419 (2) 0.98 0.98 0.98 1.497 (3) 0.98 0.98 0.98 0.98 1.497 (3) 0.98 0.98 1.497 (3) 0.98 0.98 1.495 109.5 109.5 109.5 109.5 109.5	1.414(3)C5—O4 0.98 C5—C6 0.98 C6—C7 0.98 C6—H6 $1.416(3)$ C7—O5 0.98 O1—Nb1 0.98 O2—Nb1 0.98 O2—Nb1 0.98 O2—Nb1 0.98 O4—Nb1 0.98 O5—Nb1 0.98 C5—H8A 0.98 C8—H8B 0.98 C8—H8C 0.98 C5—C7—C6 109.5 O5—C7—C8 109.5 C6—C7—C8 109.5 C1—O1—Nb1 109.5 C2—O2—Nb1 109.5 C2—O2—Nb1 109.5 C3—O3—Nb1

O2—C2—H2A	109.5	C5—O4—Nb1	133.45 (14)
O2—C2—H2B	109.5	C7—O5—Nb1	133.79 (14)
H2A—C2—H2B	109.5	O3—Nb1—O1	100.82 (7)
O2—C2—H2C	109.5	O3—Nb1—O2	99.96 (7)
H2A—C2—H2C	109.5	O1—Nb1—O2	99.45 (7)
H2B—C2—H2C	109.5	O3—Nb1—O5	163.63 (6)
O3—C3—H3A	109.5	O1—Nb1—O5	91.53 (7)
O3—C3—H3B	109.5	O2—Nb1—O5	88.43 (7)
НЗА—СЗ—НЗВ	109.5	O3—Nb1—O4	85.71 (7)
O3—C3—H3C	109.5	O1—Nb1—O4	170.09 (6)
НЗА—СЗ—НЗС	109.5	O2—Nb1—O4	86.60 (7)
НЗВ—СЗ—НЗС	109.5	O5—Nb1—O4	80.74 (6)
C5—C4—H4A	109.5	O3—Nb1—Cl1	87.49 (6)
C5—C4—H4B	109.5	O1—Nb1—Cl1	88.76 (5)
H4A—C4—H4B	109.5	O2—Nb1—Cl1	167.60 (5)
C5—C4—H4C	109.5	O5—Nb1—Cl1	82.03 (5)
Н4А—С4—Н4С	109.5	O4—Nb1—Cl1	84.06 (5)
H4B—C4—H4C	109.5	С7—С8—Н8А	109.5
O4—C5—C6	123.7 (2)	С7—С8—Н8В	109.5
O4—C5—C4	116.2 (2)	H8A—C8—H8B	109.5
C6—C5—C4	120.0 (2)	С7—С8—Н8С	109.5
C7—C6—C5	123.8 (2)	H8A—C8—H8C	109.5
С7—С6—Н6	118.1	H8B—C8—H8C	109.5
С5—С6—Н6	118.1		
O4—C5—C6—C7	-5.6 (3)	C1—O1—Nb1—Cl1	5.1 (3)
C4—C5—C6—C7	172.5 (2)	C2—O2—Nb1—O3	-109.4 (2)
C5—C6—C7—O5	0.0 (3)	C2—O2—Nb1—O1	147.7 (2)
C5—C6—C7—C8	179.7 (2)	C2—O2—Nb1—O5	56.4 (2)
C6-C5-O4-Nb1	3.5 (3)	C2—O2—Nb1—O4	-24.4 (2)
C4—C5—O4—Nb1	-174.66 (15)	C2—O2—Nb1—Cl1	16.8 (4)
C6-C7-O5-Nb1	8.1 (3)	C7—O5—Nb1—O3	26.9 (3)
C8—C7—O5—Nb1	-171.59 (14)	C7—O5—Nb1—O1	166.10 (19)
C3—O3—Nb1—O1	-120.8 (2)	C7—O5—Nb1—O2	-94.49 (19)
C3—O3—Nb1—O2	137.5 (2)	C7—O5—Nb1—O4	-7.67 (19)
C3—O3—Nb1—O5	17.5 (4)	C7—O5—Nb1—Cl1	77.56 (19)
C3—O3—Nb1—O4	51.7 (2)	C5—O4—Nb1—O3	-169.00 (19)
C3—O3—Nb1—Cl1	-32.5 (2)	C5—O4—Nb1—O2	90.7 (2)
C1—O1—Nb1—O3	92.3 (3)	C5—O4—Nb1—O5	1.77 (19)
C1—O1—Nb1—O2	-165.5 (3)	C5—O4—Nb1—Cl1	-81.08 (19)
C1	-76.9 (3)		

Hydrogen-bond	l geometrv	(Å.	°)
ilyarogen bona	geometry	(11)	

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C8—H8C···O4 ⁱ	0.98	2.46	3.442 (3)	176
Symmetry codes: (i) $x-1/2, -y+1/2, -z+1$.				

Fig. 1