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Background: Ferroptosis is a unique iron-dependent form of cell death and bladder
cancer (BCa) is one of the top ten most common cancer types in the world. However, the
role of ferroptosis in shaping the tumor microenvironment and influencing tumor
clinicopathological features remains unknown.

Methods: Using the data downloaded from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO), we comprehensively evaluated the ferroptosis patterns of 570
BCa samples based on 234 validated ferroptosis genes reported in the FerrDb database
and systematically correlated these ferroptosis patterns with tumor microenvironment
(TME) cell-infiltrating characteristics. The ferroptosis score was constructed to quantify
ferroptosis patterns of individuals using principal component analysis (PCA) algorithms.

Results: Four distinct ferroptosis patterns and two gene clusters were finally determined.
Significant differences in clinical characteristics and the prognosis of patients were found
among different ferroptosis patterns and gene clusters, so were in the mRNA
transcriptome and the landscape of TME immune cell infiltration. We also established a
set of scoring system to quantify the ferroptosis pattern of individual patients with BCa
named the ferroptosis score, which was discovered to tightly interact with clinical
signatures such as the TNM category and tumor grade and could predict the
prognosis of patients with BCa. Moreover, tumor mutation burden (TMB) was
positively correlated to the ferroptosis score, and the low ferroptosis score was related
to a better response to immunotherapy using PD-1 blockade. Finally, we also found there
existed a positive correlation between the sensitivity to cisplatin chemotherapy and
ferroptosis score.

Conclusions: Our work demonstrated and interpreted the complicated regulation
mechanisms of ferroptosis on the tumor microenvironment and that better
understanding and evaluating ferroptosis patterns could be helpful in guiding the
clinical therapeutic strategy and improving the prognosis of patients with BCa.

Keywords: ferroptosis, tumor microenvironment, tumor mutation burden, bladder cancer, immunotherapy

Edited by:
Yu Xiao,

Wuhan University, China

Reviewed by:
Emanuele Giurisato,

University of Siena, Italy
Lifeng Zhang,

Changzhou No.2 People’s Hospital,
China

*Correspondence:
Zheng Liu

lz2013tj@163.com
Jia Hu

jiahutjm@163.com
Shao-Gang Wang

sgwang0701@hust.edu.cn

†These authors have contributed
equally to this work and share first

authorship

‡These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 10 December 2021
Accepted: 24 February 2022
Published: 21 March 2022

Citation:
Xia Q-D, Sun J-X, Liu C-Q, Xu J-Z,

An Y, Xu M-Y, Liu Z, Hu J and
Wang S-G (2022) Ferroptosis Patterns

and Tumor Microenvironment
Infiltration Characterization in

Bladder Cancer.
Front. Cell Dev. Biol. 10:832892.
doi: 10.3389/fcell.2022.832892

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8328921

ORIGINAL RESEARCH
published: 21 March 2022

doi: 10.3389/fcell.2022.832892

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.832892&domain=pdf&date_stamp=2022-03-21
https://www.frontiersin.org/articles/10.3389/fcell.2022.832892/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.832892/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.832892/full
http://creativecommons.org/licenses/by/4.0/
mailto:lz2013tj@163.com
mailto:jiahutjm@163.com
mailto:sgwang0701@hust.edu.cn
https://doi.org/10.3389/fcell.2022.832892
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.832892


INTRODUCTION

Ferroptosis is a unique iron-dependent form of cell death and is
morphologically, biochemically, and genetically distinct from
apoptosis, necrosis, pyroptosis, and autophagy (Dixon et al.,
2012). Abundant and accessible cellular iron is necessary to
induce ferroptosis (Dixon et al., 2012). The first discovered
ferroptosis inducers are erastin (Dolma et al., 2003) and RSL3
(Yang and Stockwell, 2008), and then, a variety of ferroptosis
inducers have been found in succession such as sorafenib,
sulfasalazine, FIN56, and so on (Liang et al., 2019). System
Xc− inhibition and glutathione (GSH) peroxidase 4 (GPX4)
inhibition are the two main mechanisms that induce
ferroptosis (Liang et al., 2019). System Xc− is the glutamate/
cystine antiporter which can facilitate the exchange of cystine and
glutamate across the plasmamembrane (Bridges et al., 2012). The
inhibition of system Xc− can decrease the intracellular cysteine
level, which is the precursor for glutathione synthesis (Yang et al.,
2014). GPX4 is an indispensable enzyme which catalyzes the
reduction of lipid hydroperoxide within a complex cellular
membrane environment, which utilizes glutathione as an
essential cofactor for its enzymatic activity (Brigelius-Flohé
and Maiorino, 2013). Therefore, the inhibition of both system
Xc− and GPX4 will result in the accumulation of iron-dependent
lipid hydroperoxides and increased level of reactive oxygen
species (ROS), and finally, lead to cell death (Chan et al.,
2019). Ferroptosis is regulated by several molecular pathways
such as the transsulfuration pathway and mevalonate pathway
(Yang and Stockwell, 2016), and a variety of ferroptosis regulators
participate in these pathways (Liang et al., 2019). In recent years,
ferroptosis has been discovered to be related to many human
diseases such as acute kidney injury, Huntington disease,
periventricular leukomalacia, and so on, among which cancer
was the one that researchers paid most attention to (Liang et al.,
2019). Different cancers seem to exhibit significantly different
susceptibility to ferroptosis (Mou et al., 2019); therefore,
increasing the sensitivity to ferroptosis and developing new
therapies targeted at ferroptosis could be an intriguing and
challenging research field in the future.

Bladder cancer (BCa) is one of the top ten most common
cancer types in the world and accounted for approximately
550,000 new cases and 200,000 deaths in 2018 (Richters et al.,
2020). In the United States alone, in 2019, the number of new
cases and deaths were 80,470 and 17,670, respectively (Siegel
et al., 2019). Advanced age, male sex, tobacco smoking, and
occupational exposure to some chemical agents are the main risk
factors for the incidence of BCa (Sylvester et al., 2021). According
to the depth of tumor invasion and infiltration, BCa can be
divided into non-muscle invasive bladder cancer (NMIBC) and
muscle invasive bladder cancer (MIBC). Patients with NMIBC
are treated with endoscopic resection and adjuvant intravesical
therapy, including intravesical chemotherapy and intravesical
bacillus Calmette–Guérin (BCG) immunotherapy (Sylvester
et al., 2021). Patients with MIBC can choose radical
cystectomy (RC) and lymphadenectomy, pre- and post-
operative radiotherapy, neoadjuvant immunotherapy, as well
as chemotherapy depending on the risk classification (Witjes

et al., 2021). However, the efficacy of various treatments for BCa
remains unideal and new therapeutic strategies need to be
developed.

Recently, several studies have focused on the interaction
between ferroptosis and BCa. A variety of ferroptosis-related
signatures were established based on ferroptosis regulator genes
(FRGs) to predict the landscape of the epithelial-mesenchymal
transition (EMT) status, the tumor microenvironment (TME),
and the prognosis of patients with BCa, and it seems that these
signatures had their unique roles in evaluating their response to
chemotherapy and immunotherapy (Cui et al., 2021; Sun et al.,
2021; Yan et al., 2021). However, the establishment of these
signatures was confined to limited ferroptosis regulator genes and
many other novel validated ferroptosis-related genes were
ignored. So, in this article, we evaluated the genetic variation
of 23 ferroptosis regulators in BCa among a total of 412 samples
from the TCGA-BLCA cohort, explored the FerrDb database to
find validated ferroptosis genes (VFGs), divided the patients with
BCa into four ferroptosis patterns according to the expression
levels of VFGs and performed survival analysis, and then we
further explored the TME cell infiltration characteristics in
distinct VFG patterns and surprisingly found VFG patterns
were tightly connected with TME. Next, we discovered 367
VFG cluster-related differentially expressed genes (DEGs),
classified the patients into two distinct genomic subgroups,
and explored the interaction between VFG patterns and gene
patterns. Finally, we established a set of scoring system termed the
ferroptosis score to quantify the ferroptosis pattern in individual
patients and explored the characteristics of ferroptosis in tumor
somatic mutation, immunotherapy, and chemotherapy.

MATERIALS AND METHODS

Data Retrieval and Processing
Ferroptosis regulator genes (FRGs) were obtained from Liu
et al. (2020). Ferroptosis-related genes with validated
evidences were obtained from FerrDb (http://www.zhounan.
org/ferrdb/). RNA-sequencing data of BCa patients were
searched from The Cancer Genome Atlas (TCGA database,
https://portal.gdc.cancer.gov/) and the Gene Expression
Omnibus (GEO database, https://www.ncbi.nlm.nih.gov/gds/
?term=). Notably, datasets without detailed corresponding
survival information or with a small sample size were
excluded. Finally, two eligible high-quality bulk-seq cohorts,
TCGA_BLCA and GSE13507, were enrolled in this study.
Among them, transcriptome profiles in TCGA_BLCA
datasets were downloaded in the fragments per kilobase of
transcript per million mapped reads (FPKM) format. Then, we
transformed the FPKM values of each sample into transcripts
per kilobase million (TPM) values. Normalized matrix files
with corresponding clinical information of GSE13507 were
downloaded. We merged these two datasets and used the
combat algorithm to eliminate the batch effects by R
package “sva”. The mutation atlas was also downloaded
from the TCGA database. The copy number variation
matrix was obtained from UCSC-Xena (http://xena.ucsc.
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edu/). All the original data were processed and analyzed by the
R program version 4.1.1.

Differential Expression Status, Mutation
Atlas, and Copy Number Variation of FRGs
We first systematically investigated the expression, mutant, copy
number variant status of the FRGs. Differentially expressed
analysis was performed between normal tissue and tumor
tissue in both TCGA_BLCA and GSE13507. The mutation
atlas of these FRGs was extracted from the original matrix and
visualized. The copy number variation atlas was annotated and
visualized in the genome cycle plot.

Role of FRGs in Bladder Cancer and the
Unsupervised Cluster of VFGs
Having merged the gene matrix and eliminating the batch effects,
we performed both univariate cox regression and log-rank test to
check the prognostic value of the FRGs. Then, we performed the
Spearman correlation test between every two FRGs to investigate
the co-expression status between FRGs. Subsequently, we
conducted an unsupervised cluster of all the VFGs in FerrDb,
and the number of clusters was determined according to the
algorithm of consensus clustering. Notably, this unsupervised
clustering was conducted by R package “ConsensusClusterPlus”,
and all the procedures were repeated 1,000 times to ensure and
verify the stability of the unsupervised cluster.

Survival Differences, Potential Functions,
and Immune Infiltrations of the VFGClusters
Having obtained the classification clustered by the VFG, we
performed survival analysis to investigate the survival
differences between VFG clusters. Kaplan–Meier survival
curves were plotted, and the log-rank test was conducted.
Principle components analysis (PCA) was applied to check the
discrimination between different VFG clusters. In addition, gene
set variation analysis (GSVA) was used to compare the
differential enhanced functions or pathways between different
VFG clusters. Finally, single sample gene set enrichment analysis
(ssGSEA) was used to estimate the immune infiltration and
immune-related functions of each sample. The Wilcoxon test
was applied to compare the differential immune infiltration and
immune-related functions between VFG clusters.

Differentially Expressed Genes Between
VFG Clusters and the Establishment of the
Ferroptosis Score
Differentially expressed analysis was performed between every
two VFG clusters to seek the DEGs. Subsequently, we took an
intersect of these DEGs in different comparisons and obtained the
final DEGs. GO enrichment analysis and KEGG enrichment
analysis were conducted to further investigate the potential
functions and mechanisms of these DEGs. Subsequently,
univariate cox regression was carried out to seek those DEGs

with prognostic value. Following this, an unsupervised cluster was
performed again based on the left DEGs to quantify the detailed
ferroptosis patterns in BCa patients. Then, we performed
principal component analysis (PCA) to distinguish the
molecular characteristics of these DEGs with prognostic value
and obtained a ferroptosis score formula according to the PCA:

Ferroptosis score � ∑(PC1 + PC2).
Among the formula, PC1 and PC2 separately mean the
expression score in two dimensions of the DEGs. Thus, the
sum of these two scores was named the ferroptosis score,
which can represent the ferroptosis patterns to some extent.

Further Verification and Functional
Investigation of the Ferroptosis Score
In all included samples with detailed survival information, we set
the threshold according to the best cut-off value in the TCGA_
BLCA cohort calculated by the “surv_cutpoint” function in R
package “survminer”. Here, the best cut-off is -0.0410544, and
then all patients including TCGA_ BLCA and GSE13507 cohorts
were divided into high or low ferroptosis score groups. Cohorts
that are higher than -0.0410544 are defined as the high ferroptosis
score group and those that are lower are the low ferroptosis score
group. Survival analysis in all patients, TCGA_BLCA cohort, and
GSE13507 cohort, was separately conducted to check whether
this ferroptosis score was associated with survival. Then we
divided all patients into several sub-groups according to their
clinicopathological characteristics, including age, gender, grade, T
stage, N stage, and M stage. Then survival analysis was applied in
each sub-group to investigate the universality of this ferroptosis
score. In addition, in the TCGA_BLCA cohort, we calculated the
tumor mutation burden (TMB) of each patient according to its
somatic mutation profiles. Then we further investigated the
correlation between TMB and the ferroptosis score, and
combined these two factors to predict the survival of patients
with BCa. Following this, we separately summarized the mutation
atlas of the patients with low-/high ferroptosis scores and
compared the mutant frequencies of each gene between the
high ferroptosis score group and low ferroptosis score group
by the χ2 test.

More importantly, as the biological process of ferroptosis is
associated with both chemotherapy and immunotherapy, we
further explored the association between the drug sensitivity to
chemotherapy (cisplatin, doxorubicin, methotrexate,
vinblastine) which was predicted by the R package
“pRRophetic” (Geeleher et al., 2014). Notably, here we
performed three methods to predict the response to
immunotherapy: TCIA (Charoentong et al., 2017), TIDE
(Jiang et al., 2018), and submap (Hoshida et al., 2007). The
drug response to chemotherapy and immunotherapy was
compared between the high- or low-ferroptosis score groups
by the Wilcoxon test or χ2 test. In addition, we calculated the
ferroptosis score of each patient in IMvigor-210 cohort to
externally validate the predicted response to immunotherapy.
Response to anti-PD-L1 immunotherapy in IMvigor-210
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FIGURE 1 | Landscape of genetic and expression variation of ferroptosis regulators in BCa. (A)Mutation frequency of 23 ferroptosis regulator genes in 412 patients
with BCa from the TCGA-BLCA cohort. Each column represented individual patients. The upper barplot showed TMB. The number on the right indicated the mutation
frequency in each regulator gene. The right barplot showed the proportion of each variant type. The stacked barplot below showed a fraction of conversions in each
sample. (B) CNV variation frequency of ferroptosis regulator genes in GSE13507 cohort. The height of the column represented the alteration frequency. The
deletion frequency, green dot; The amplification frequency, red dot. (C) Location of CNV alteration of ferroptosis regulator genes on 23 chromosomes using GSE13507
cohort. (D) Expression of 22 ferroptosis regulator genes between normal bladder tissues and tumor tissues in the TCGA-BLCA cohort. Tumor, red; Normal, blue. Each

(Continued )
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cohort was also compared between the high- or low-ferroptosis
score groups.

Statistical Analysis
All the data processing and statistical analysis were conducted by
R software version 4.1.1. All the p-values were on two sides, and
p-value< 0.05 was considered with statistical significance.

RESULTS

Landscape of Genetic Variation of
Ferroptosis Regulators in Bladder Cancer
In this study, 23 genes were identified to play critical roles in
regulating ferroptosis and were defined as ferroptosis regulator
genes (FRGs), including cyclin-dependent kinase inhibitor 1
(CDKN1A), nuclear factor, erythroid 2 like 2 (NFE2L2),
Fanconi anemia complementation group D2 (FANCD2),
transferrin receptor (TFRC), dipeptidyl-dippeptidase-4
(DPP4), heat shock protein family A member 5 (HSPA5),
lysophosphatidylcholine acyltransferase 3 (LPCAT3),
cysteinyl tRNA synthetase (CARS), nuclear receptor
coactivator 4 (NCOA4), citrate synthase (CS), arachidonate
15-lipoxygenase (ALOX15), ribosomal protein L8 (RPL8),
glutaminase 2 (GLS2), solute carrier family 7 member 11
(SLC7A11), heat shock protein beta 1 (HSPB1), solute
carrier family 1 member 5 (SLC1A5), acyl-CoA synthetase
long-chain family member 4 (ACSL4), ER membrane protein
complex subunit 2 (TTC35/EMC2), metallothionein-1G
(MT1G), glutathione peroxidase 4 (GPX4), CDGSH iron
sulfur domain 1 (CISD1), spermidine/spermine N1-acetyl-
transferase 1 (SAT1), and ATP synthase membrane subunit
C locus 3 (ATP5MC3/ATP5G3) (Stockwell et al., 2017).
Among the 23 FRGs, 10 are negative regulators, including
CDKN1A, HSPA5, EMC2, SLC7A11, NFE2L2, MT1G, HSPB1,
GPX4, FANCD2, and CISD1, and 13 are positive regulators,
including SLC1A5, SAT1, TFRC, RPL8, NCOA4, LPCAT3,
GLS2, DPP4, CS, CARS, ATP5MC3, ALOX15, and ACSL4.

First, we summarized the incidence of copy number
variations (CNV) and somatic mutations of the 23 FRGs in
BCa. Mutations of FRGs occurred in 109 samples among a
total of 412 samples from the TCGA-BLCA cohort with a
frequency of 26.46%. We found that CDKN1A exhibited the
highest mutation frequency followed by NFE2L2 and
FANCD2, while EMC2, MT1G, GPX4, CISD1, SAT1, and
ATP5MC3 showed no mutation in BCa samples
(Figure 1A). Since CDKN1A had the highest mutation
frequency, we then explored whether mutations in
CDKN1A would influence the expression of other FRGs. As
shown in Supplementary Figure S1, the expression levels of
other FRGs were remarkably different between CDKN1A

mutation and wild samples, among which GLS2 and TFRC
expression were higher in CDKN1A mutation samples while
MT1G and RPL8 were just opposite (Supplementary Figures
S1A–D). Then, we investigated the CNV alteration in 23 FRGs
and found a prevalent CNV alteration in 22 FRGs, among
which most alterations were gained in copy number, while
ATP5MC3, SLC7A11, CISD1, GPX4, and MT1G had a greater
frequency of CNV loss (Figure 1B). The location of CNV
alteration of FRGs on chromosomes was shown in Figure 1C.
Next, we searched the GEO and TCGA databases for public
gene expression data in tumor, normal adjacent tumor tissue,
and normal tissue to find whether the above genetic variations
could influence the FRGs’ expression in BCa patients. We
discovered that both mutation and CNV alteration contributed
to the difference in expression levels of FRGs but CNV
alteration might play a more critical role. Most FRGs with
gain of CNV exhibited significantly higher expression in BCa
tumor tissues compared to normal adjacent tumor tissues or
normal bladder tissues, such as FANCD2, EMC2, and TFRC.
But when it came to FRGs with loss of CNV, the differences
between tumor tissue and normal adjacent tumor tissue or
normal bladder tissue were inconsistent with the variation in
CNV, which indicated that there existed other ways of
regulating the expression of FRGs except for CNV variation
(Figures 1D,E). The above analyses showed the high
heterogeneity of the genetic and expression alteration

FIGURE 1 | column represented individual samples. The upper line represented the type of tissues. The color of each pane represented the expression level. (E)
Expression of 19 ferroptosis regulator genes between normal bladder tissues, normal adjacent tumor tissues and tumor tissues in GSE13507 cohort. Tumor, blue;
Normal adjacent tumor, green; Normal, red. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median
value, and black dots showed outliers. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).

TABLE 1 | Annotation of 23 FRGs in the FerrDb database.

FRG Type Confidence

CDKN1A Suppressor Validated
HSPA5 Suppressor Validated
EMC2 Driver Validated
SLC7A11 Suppressor/Marker Validated
NFE2L2 Suppressor/Marker Validated
MT1G Suppressor Validated
HSPB1 Suppressor/Marker Validated
GPX4 Suppressor/Marker Validated
FANCD2 Suppressor Validated
CISD1 Suppressor Validated
SLC1A5 Driver Validated
SAT1 Driver/Marker Validated
TFRC Driver/Marker Validated
RPL8 Driver/Marker Validated
NCOA4 Driver Validated
LPCAT3 Driver Validated
GLS2 Driver Validated
DPP4 Driver Validated
CS Driver Validated
CARS Driver Validated
ATP5MC3 Driver/Marker Validated/Deduced
ALOX15 Driver/Marker Validated/Deduced
ACSL4 Driver Validated
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FIGURE 2 | Patterns of ferroptosis and biological characteristics of each pattern. (A,B) Principal component analysis for the expression profiles of common genes
before and after combination of GSE13507 and the TCGA-BLCA cohort. Before processing, two subgroups without intersection were identified, indicating the
GSE13507 and TCGA-BLCA samples were well distinguished based on the expression profiles of their common genes, while the two datasets merged together well
after processing. Samples from GSE13507 were marked with blue and samples from TCGA-BLCA marked with yellow. (C) Interaction between FRGs in BCa. The
circle size represented the effect of each ferroptosis regulator gene on the prognosis, and the range of values calculated by Log-rank test was p < 0.0001, p < 0.001, p <
0.01, p < 0.05 and p < 0.1, respectively. Red dots in the circle, risk factors of prognosis; Light green dots in the circle, protective factors of prognosis. The lines linking

(Continued )
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landscape of FRGs between normal and BCa samples,
indicating that the expression imbalance of FRGs played a
crucial role in the occurrence and progression of BCa.

Validated Ferroptosis Gene Patterns
Classified According to the Expression of
Validated Ferroptosis Genes
To further investigate the interaction between ferroptosis genes
and tumor characteristics, we explored the FerrDb database
established by Zhou et al. which collected nearly all the
ferroptosis regulators and markers reported in published
articles from PubMed up to 20 February 2020 (Zhou and Bao,
2020). In this database, genes were annotated as drivers,
suppressors, and markers according to their function reported
in the original article. And the confidence level was divided into
four categories sorted by experimental reliability and
reproducibility: validated, screened, predicted, and deduced

(Zhou and Bao, 2020). In Table 1, we summarized the 23
FRGs according to their annotations in the FerrDb database.
Next, we used Combat R packages to eliminate the heterogeneity
between the GEO dataset GSE13507 and TCGA-BLCA cohort
and enrolled them into a new meta-cohort. Before processing, we
could easily distinguish the two datasets by principal component
analysis (PCA) (Figure 2A), while the two datasets merged well
together after processing (Figure 2B). The detailed characteristics
of the included patients were shown in Table 2. Then we divided
the meta-cohort into two subgroups according to the expression
level of every FRG and performed survival analysis
(Supplementary Figures S2A–N). As shown in the figures, the
survival outcomes were significantly associated with the
expression levels of the fourteen FRGs, among which higher
expression level of ACSL4 and GPX4 predicted a better prognosis
while lower expression level of ALOX15, CDKN1A, DPP4,
FANCD2, HSPA5, HSPB1, MT1G, NCOA4, RPL8, SLC1A5,
SLC7A11, and TFRC revealed a survival advantage. The

FIGURE 2 | regulators showed their interactions, and their thickness showed the correlation strength between regulator genes. Negative correlation was marked with
blue and positive correlation with orange. The driver, driver/marker, suppressor, suppressor/marker were marked with dark green, purple, yellow, and gray, respectively.
(D) Consensus matrices of the meta-cohort for k = 4. (E) Principal component analysis for the transcriptome profiles of four ferroptosis patterns, showing a remarkable
difference on transcriptome between different ferroptosis patterns. (F) Unsupervised clustering of 234 validated ferroptosis genes in the meta-cohort. The VFGcluster,
project, age, gender, grade, and TNM category were used as patient annotations. Red represented high expression of regulators and blue represented low expression.
(G) Kaplan–Meier curves indicated ferroptosis patterns were markedly related to overall survival of 568 patients in meta-cohort, of which 244 cases were in VFGcluster A,
122 cases in VFGcluster B, 93 cases in VFGcluster C, and 109 cases in VFGcluster D (p = 0.015, Log-rank test).

TABLE 2 | Basic characteristics of the included patients.

Overall GSE13507 TCGA p

n 568 165 403
Status = Alive/Dead (%) 323/245 (56.9/43.1) 96/69 (58.2/41.8) 227/176 (56.3/43.7) 0.755
Age (mean (SD)) 67.22 (11.08) 65.18 (11.97) 68.06 (10.60) 0.005
Gender = Female/Male (%) 135/433 (23.8/76.2) 30/135 (18.2/81.8) 105/298 (26.1/73.9) 0.058
Grade (%) <0.001
High Grade 440 (77.5) 60 (36.4) 380 (94.3)
Low Grade 125 (22.0) 105 (63.6) 20 (5.0)
Unknown 3 (0.5) 0 (0.0) 3 (0.7)
T (%) <0.001
T1 83 (14.6) 80 (48.5) 3 (0.7)
T2 149 (26.2) 31 (18.8) 118 (29.3)
T3 210 (37.0) 19 (11.5) 191 (47.4)
T4 69 (12.1) 11 (6.7) 58 (14.4)
Ta 24 (4.2) 24 (14.5) 0 (0.0)
Unknown 33 (5.8) 0 (0.0) 33 (8.2)
M (%) <0.001
M0 351 (61.8) 158 (95.8) 193 (47.9)
M1 18 (3.2) 7 (4.2) 11 (2.7)
MX 197 (34.7) 0 (0.0) 197 (48.9)
Unknown 2 (0.4) 0 (0.0) 2 (0.5)
N (%) <0.001
N0 385 (67.8) 151 (91.5) 234 (58.1)
N1 54 (9.5) 8 (4.8) 46 (11.4)
N2 79 (13.9) 4 (2.4) 75 (18.6)
N3 8 (1.4) 1 (0.6) 7 (1.7)
NX 37 (6.5) 1 (0.6) 36 (8.9)
Unknown 5 (0.9) 0 (0.0) 5 (1.2)
Ferroptosis.scores (median [IQR]) 1.47 [−5.53, 5.78] 2.61 [−1.80, 4.84] −0.19 [−6.56, 7.11] 0.384
Group = High/Low (%) 314/254 (55.3/44.7) 115/50 (69.7/30.3) 199/204 (49.4/50.6) <0.001
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FIGURE 3 | TME cell infiltration characteristics in distinct VFG patterns. (A–F) GSVA enrichment analysis showing the activation states of biological pathways in
distinct ferroptosis patterns. The heatmap was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited
pathways. The project and VFGclusters were used as sample annotations. (A) VFGcluster A vs. VFGcluster B; (B) VFGcluster A vs. VFGcluster C; (C) VFGcluster B vs.
VFGcluster C; (D) VFGcluster A vs. VFGcluster D; (E) VFGcluster B vs. VFGcluster D; (F) VFGcluster C vs. VFGcluster D. (G) The abundance of each TME infiltrating
cell in four ferroptosis patterns. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and
black dots showed outliers. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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comprehensive landscape of FRGs’ interactions, connections, and
their prognostic significance for BCa patients was described in the
FRG network (Figure 2C). In the network we could find that not
only FRGs in the same categories (e.g., drivers and drivers,
suppressors and suppressors) exhibited a significant
correlation, but also a remarkable correlation was shown
between drivers, suppressors, and markers. The results
uncovered the latent cross-talk among the FRGs which might
play a crucial role in the prognosis of BCa patients and needed to
be further studied.

In order to dig deep into the relationship between ferroptosis
genes and tumor characteristics, we explored all 382 ferroptosis
genes reported in the FerrDb database, including 150 drivers, 123
markers, and 109 suppressors (Supplementary Tables S1–S4).
Then we screened out the 234 validated ferroptosis genes (VFGs)
from them to improve credibility. We used the
ConsensusClusterPlus R package to classify patients with
qualitatively different ferroptosis patterns based on the
expression levels of 234 validated ferroptosis genes, and four
distinct validated ferroptosis gene patterns were identified using
unsupervised clustering (Figure 2D, Supplementary Figures
S3A–H), including 244 cases in pattern A, 123 cases in
pattern B, 93 cases in pattern C and 110 cases in pattern D.
Then the cumulative distribution function (CDF) curve and scree
plot were used to verify the rationality of the grouping
(Supplementary Figure S3I, J). The track plot showed the
details of grouping (Supplementary Figure S3K). We named
these patterns as VFGcluster A-D, respectively. A dramatic
difference was found on the FRG transcriptional profile
among the four different VFG clusters (Figure 2E).
VFGcluster A was characterized by decreased expression level
of HSPA5, SLC7A11, NFE2L2, SAT1, NCOA4, MT1G, and
DPP4, and presented variable increase in other FRGs;
VFGcluster B exhibited a remarkable decrease in SLC7A11,
RPL8, and GLS2 and an increase in NFE2L2, NCOA4, DPP4,
ACSL4, and SAT1; VFGcluster C showed a significant increase in
CDKN1A, HSPA5, MT1G, SAT1, DPP4, and ACSL4, and
decrease in GLS2, ALOX15, and HSPB1; and VFGcluster D
was characterized by increased expression of NFE2L2, HSPB1,
SLC1A5, TFRC, NCOA4, and CS. We also noticed that
VFGcluster B-C had higher TNM categories compared with
VFGcluster A, but there existed no significant differences in
gender and age among the four VFGclusters (Figure 2F).
Survival analyses for the four VFGclusters revealed the
particularly prominent survival advantage in patients from
VFGcluster A (Figure 2G).

TME Cell Infiltration Characteristics in
Distinct VFG Patterns
In order to further explore the latent differences in biological
behaviors behind the distinct VFG patterns, we performed GSVA
enrichment analysis. As shown in Figures 3A,B, VFGcluster A
was dramatically enriched in pathways associated with
metabolism, such as glycerophospholipid metabolism, linolenic
metabolism, and drugmetabolismmediated by cytochrome P450.
VFGcluster B showed enrichment in stromal and carcinogenic

activation pathways such as MAPK signaling pathway, focal
adhesion, and ECM receptor interaction (Figure 3A), and it
also exhibited relative enrichment in pathways associated with
metabolism compared to VFGcluster C (Figure 3C). VFGcluster
C was related to pathways about stroma, tumorigenesis, and
infectious immunity (Figures 3B, 3C, 3F), while VFGcluster D
was remarkably enriched in metabolic and carcinogenic
activation pathways (Figures 3D–F). Then we analyzed the
TME cell infiltration and were surprised to find that
VFGcluster B and C were significantly enriched in nearly all
kinds of immune cells such as activated CD4+ T cell, activated
CD8+ T cell, activated dendritic cell, macrophage, MDSC, and
natural killer cell (Figure 3G). However, patients with these VFG
patterns did not show a corresponding survival advantage
(Figure 2F). It has been reported that the innate immune cells
as well as adaptive immune cells in TME could contribute to
tumor progression (Hinshaw and Shevde, 2019). Previous studies
have suggested that TME could be classified into three
distinguished immune phenotypes based on the basic immune
profiles: immune-inflamed phenotype, immune-excluded
phenotype, and immune-desert phenotype. The immune-
inflamed phenotype was characterized by abundant immune
cells presented in the tumor parenchyma as well as many
proinflammatory and effector cytokines. The immune-
excluded phenotype was also abundant in various immune
cells, however, the immune cells did not penetrate the tumor
parenchyma and were retained in the stroma surrounding the
tumor nests. The stroma could limit T-cell migration and their
normal function of anti-tumor. However, the immune-desert
phenotype was characterized by a lack of T cells in both the
parenchyma and the stroma of the tumor (Chen and Mellman,
2017). The results of GSVA analyses have displayed that
VFGcluster B and VFGcluster C were tightly connected with
stroma activation. Therefore, we speculated that VFGclsuter B
and VFGcluster C belonged to immune-excluded phenotype, in
which the stroma activation significantly suppressed the immune
cells’ normal anti-tumor function.

Generation of Ferroptosis Gene Signatures
and Functional Annotation
To further investigate the latent biological behavior of each VFG
pattern, we used limma R package to discover 367 VFG cluster-
related DEGs (Figure 4E). We performed GO and KEGG
enrichment analyses for the DEGs by using the clusterProfiler
R package. To our surprise, the results of GO enrichment analysis
showed a remarkable relationship with stroma and immunity in
all cellular component (CC), molecular function (MF), and
biological process (BP) patterns (Figures 4A,B). The genes in
KEGG analysis also exhibited enrichment in pathways related to
immunity, which was consistent with previous results (Figures
4C,D). The above results further proved that ferroptosis was an
indispensable component in modification of immunity and TME.
Then we performed unsupervised clustering analyses based on
the 367 VFG cluster-related DEGs to find out the potential
regulation mechanism. We successfully classified the patients
into two distinct genomic subgroups using the unsupervised
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FIGURE 4 | Generation of ferroptosis gene signatures and functional annotation. (A,B) Functional annotation for VFG cluster-related DEGs using GO enrichment
analysis. The color depth of the barplots and plots represented the number of genes enriched. The pathways were grouped by cellular component (CC), molecular
function (MF) and biological process (BP). (C,D) Functional annotation for VFG cluster-related DEGs using KEGG enrichment analysis. The color depth of the barplots
and plots represented the number of genes enriched. (E) 367 VFG cluster-related DEGs shown in the Venn diagram. (F) Unsupervised clustering of 367 VFG
cluster-related DEGs in meta-cohort and consensus matrices for k = 2. (G) Unsupervised clustering of overlapping 367 VFG cluster-related DEGs in meta-cohort to
classify patients into different genomic subtypes, termed as gene cluster A-B, respectively. The gene clusters, VFGclusters, project, age, gender, grade, and TNM
category were used as patient annotations. (H) Kaplan–Meier curves indicated ferroptosis genomic phenotypes were markedly related to overall survival of 568 patients
in meta-cohort, of which 243 cases were in gene cluster A and 325 cases in gene cluster B (p < 0.001, Log-rank test).
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FIGURE 5 | Establishment of the ferroptosis score and its interaction with tumor clinicopathological characteristics. (A) Expression of 18 FRGs in two gene clusters.
The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The
asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). The student’s t test was used to test the statistical differences between two gene
clusters. (B) Sankey diagram showing the changes of VFGclusters, survival status, gene cluster, and ferroptosis score. (C) Correlations between the ferroptosis
score and the known immune cells in meta-cohort using Spearman analysis. Negative correlation was marked with blue and positive correlation with red. (D) Differences
in the ferroptosis score among four VFGclusters in meta-cohort. The Kruskal Wallis H test was used to compare the statistical difference between four VFGclusters (p <
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clustering algorithm (Figures 4F,G, Supplementary Figures
S4A–H). The cumulative distribution function (CDF) curve
and screen plot also validated the rationality of the grouping
(Supplementary Figures S4I–K). We named the two different
subgroups as gene cluster A and B, respectively. In total, 243
patients were assigned to gene cluster A while 325 patients were
classified into gene cluster B. We observed that gene cluster B was
mainly composed of patients from VFGcluster A, and tumors in
gene cluster B had a better TNM category and were enriched in
low grade compared to gene cluster A (Figure 4G). Thus, it is not
difficult to explain the phenomenon that patients in gene cluster
B had a better prognosis (Figure 4H). We also found that the two
gene clusters were characterized by different signature genes
(Figure 4G). We also discovered a significant difference in
expression level among the majority of FRGs, which was
consistent with VFGclusters (Figure 5A).

Characteristics of Clinical Traits in
Ferroptosis Related Phenotypes
The above analyses revealed a remarkable correlation between
TME and ferroptosis based on the patient population.
Therefore, we next explored the latent ferroptosis pattern in
individual patients considering the individual heterogeneity
and complexity of ferroptosis. Based on these phenotype-
related genes, we constructed a set of scoring system named
the ferroptosis score to quantify the ferroptosis pattern of
individual patients with BCa. The Sankey diagram was used to
visualize the attribute changes of individual patients
(Figure 5B). To better understand the relationship between
ferroptosis signature and TME, we also tested the correlation
between the known immune cells and ferroptosis score
(Figure 5C). We found significant difference in the
ferroptosis score between VFGclusters using the Kruskal
Wallis H test (Figure 5D). VFGcluster A showed the
highest median score while VFGcluster B and C shared the
lowest median score, which indicated that the low ferroptosis
score might be related to stroma activation signatures.
Moreover, gene cluster B also exhibited a higher median
ferroptosis score compared to gene cluster A and the
difference was of statistical significance (Figure 5E). Next,
we further explored whether the ferroptosis score had a
predictive significance for the prognosis of patients. We
used survminer R package to determine the cut off value
-0.041 and divided the patients into two subgroups with
high and low ferroptosis score. We found a significant
survival advantage among patients with high ferroptosis
score in all of the GSE13507 cohort (Figure 5G), TCGA-

BLCA cohort (Figure 5F), and the meta-cohort
(Figure 5H). In the meta-cohort, the 5 year survival rate
with high ferroptosis score is almost twice than those with
low ferroptosis score (22.29% vs. 11.81%). Then, we
investigated the interaction between the ferroptosis score
and clinical signatures and found the ferroptosis score was
significantly related to the grade, TNM category, and final
survival status (Figures 6E–6N). We also found significant
differences of the ferroptosis score in the molecular subtypes of
BCa (Figure 6O). However, the distribution difference of the
ferroptosis score in age and gender did not show a statistical
significance (Supplementary Figures S5A–D). In addition, we
performed subgroup analyses and found the ferroptosis score
was a good predictor of survival especially for patients who
were male, with high grade and low TNM category (T1-T2,
N0-N3, M0) (Supplementary Figures S5E–S).

Characteristics of Ferroptosis in Tumor
Somatic Mutation, Immunotherapy and
Chemotherapy
Next, we sought to explore the relationship between the
ferroptosis score and TMB. We discovered that TMB was
positively correlated to the ferroptosis score. Compared to
other clusters, VFGcluster A had a higher ferroptosis score, so
did gene cluster B, which was consistent to above results
(Figures 5I,J). Then, we analyzed the distribution
differences of somatic mutation between the low and high
ferroptosis scores in the TCGA-BLCA cohort using maftools R
package. As shown in Figures 6C,D, in general, there were no
obvious distribution differences of TMB between the low and
high ferroptosis scores, but for some popular genes in BCa
studies such as FGFR3, the high ferroptosis score group
exhibited more extensive TMB than the low ferroptosis
score group. The previous studies have demonstrated that
TMB was tightly related to the results of immunotherapy
and the prognosis of patients (Chan et al., 2019; Valero
et al., 2021). Therefore, we first preformed survival analyses
to validate the linkage between TMB and clinical outcome and
were excited to find that patients with high ferroptosis score
and high TMB had a better prognosis, which indicated the
combination of ferroptosis score and TMB had a considerable
prognostic value for BCa patients (Figures 6A,B).

Then, we further explored whether the ferroptosis score had
a predictive significance for the outcome of immunotherapy.
As shown in Figures 7A–D, the expression of the main
immunotherapy targets PD-1, PD-L1, LAG-3, and CTLA-4
were significantly lower in patients with high ferroptosis score

FIGURE 5 | 0.001). (E) Differences in the ferroptosis score among two gene clusters in meta-cohort (p < 0.001, Wilcoxon test). (F) Survival analyses for low (204 cases)
and high (199 cases) ferroptosis score patient groups in the TCGA-BLCA cohort using Kaplan–Meier curves (p = 0.002, Log-rank test). (G) Survival analyses for low (50
cases) and high (115 cases) ferroptosis score patient groups in GSE13507 cohort using Kaplan–Meier curves (p = 0.017, Log-rank test). (H) Survival analyses for low
(254 cases) and high (314 cases) ferroptosis score patient groups in meta-cohort using Kaplan–Meier curves (p < 0.001, Log-rank test). (I) Linear regression analysis for
TMB and ferroptosis score. The dot represented each sample, and the color of the dot represented the VFGcluster. Blue, VFGcluster A; orange, VFGcluster B; red,
VFGcluster C; purple, VFGcluster D (R = 0.11, p = 0.023). (J) Linear regression analysis for TMB and ferroptosis score. The dot represented each sample, and the color of
the dot represented the gene cluster. Blue, gene cluster A; orange, gene cluster B (R = 0.11, p = 0.023).
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FIGURE 6 | Characteristics of ferroptosis in tumor somatic mutation and tumor stage. (A) Survival analyses for low (262 cases) and high (140 cases) TMB patient
groups in the TCGA-BLCA cohort using Kaplan–Meier curves (p < 0.001, Log-rank test). (B) Survival analyses for four groups grouped according to TMB and ferroptosis
score in the TCGA-BLCA cohort using Kaplan–Meier curves including 75 cases in the high TMB and high ferroptosis score group, 65 cases in the high TMB and low
ferroptosis score groups, 124 cases in the low TMB and high ferroptosis score group, and 138 cases in the low TMB and low ferroptosis score group. The high
TMB and high ferroptosis score group showed significantly better overall survival than the other three groups (p < 0.001, Log-rank test). (C,D) Waterfall plot of tumor
somatic mutation established by those with low ferroptosis score (C) and high ferroptosis score (D). Each column represented individual patients. The upper barplot
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compared to those with low ferroptosis score. Next, we
evaluated the interaction between the ferroptosis score and
the response to immune checkpoint inhibitors treatment. We
found that the low ferroptosis score was related to a better
response to anti-PD-1 and anti-CTLA-4 immunotherapy.
After Bonferroni correction, there still existed a remarkable
correlation between the low ferroptosis score and response to
anti-PD-1 immunotherapy although there was a lack of
statistical significance (Figure 7E). Then we divided the
patients into four subgroups according to the use of anti-
CTLA-4 and anti-PD-1 immunotherapy: CTLA-4 positive PD-
1 positive, CTLA-4 positive PD-1 negative, CTLA-4 negative
PD-1 positive, and CTLA-4 negative PD-1 negative. As shown
in Figures 7F–I, in CTLA-4 positive PD-1 negative and CTLA-
4 negative PD-1 negative subgroups, the high ferroptosis score
was related to a better immunotherapy response, while in
CTLA-4 positive PD-1 positive and CTLA-4 negative PD-1
positive subgroups the results were exactly opposite, which
further proved that ferroptosis had a tighter relationship with
immunotherapy targeted at PD-1 compared to other immune
checkpoint inhibitors. Anti-PD-L1 immunotherapy has also
been proven effective for patients with metastatic urothelial
carcinoma in a multicenter, single-arm phase 2 trial using
atezolizumab (IMvigor 210, NCT02108652) (Rosenberg et al.,
2016). Using the data acquired from IMvigor 210 cohort, we
further verified the interaction between the ferroptosis score
and immune phenotypes. We found there existed significant
differences in the proportion of three immune phenotypes
between low and high ferroptosis groups (Supplementary
Figure S6A). The immune-desert phenotype exhibited the
highest ferroptosis score, whereas the immune-inflamed
phenotype showed the lowest ferroptosis score
(Supplementary Figures S6B), which was in accordance
with the previous results. In general, a lower ferroptosis
score predicted a better immunotherapy response, and vice
versa (Figure 7J–M). Next, we would like to find out whether
the ferroptosis score was also connected with response to
chemotherapy. We screened out several commonly used
chemotherapy drugs in BCa and explored the interaction
between the half maximal inhibitory concentration (IC50)
and ferroptosis score. We found that the low ferroptosis
score was related to low IC50 in cisplatin, doxorubicin, and
vinblastine (Figures 7N, O, Q), which means a higher
sensitivity to chemotherapy. While methotrexate was just
the reverse (Figure 7P). Then we further discovered that
IC50 for cisplatin was positively correlated to the

ferroptosis score (Figure 7R). In summary, the above
results showed the unique role of the ferroptosis score in
predicting the efficacy of immunotherapy and chemotherapy.

DISCUSSION

Nowadays, increasing evidences have demonstrated that
ferroptosis could play a vital role in cancer therapy and
predicting the prognosis of patients with cancer (Mou et al.,
2019), including BCa. For example, Yan et al. has established a
prognostic signature based on 6 ferroptosis regulator genes which
could not only predict the progression of BCa patients but also the
landscape of macrophage infiltration and EMT status (Yan et al.,
2021). Moreover, a ferroptosis-related long non-coding RNA
(FRlncRNA) signature comprising 13 prognostic FRlncRNAs
established by Cui and his colleagues also had an independent
prognostic significance for the overall survival of BCa patients.
However, previous studies paid more attention to limited
ferroptosis regulator genes and did not go deep into the
comprehensive effect of ferroptosis in BCa as well as
interaction between TME cell infiltration and ferroptosis,
which were necessary to guide more effective immunotherapy
strategies or therapies targeted at ferroptosis.

In this article, we first summarized the landscape of genetic
variation of 23 FRGs in BCa among 412 samples from the TCGA-
BLCA cohort, then we explored the FerrDb database to collect all
382 ferroptosis genes ever reported, screened out 234 validated
ferroptosis genes, combined the GEO dataset GSE13507 and
TGCA-BLCA cohort into a new meta-cohort, and divided the
patients in the meta-cohort into four ferroptosis patterns named
VFGcluster A-D using unsupervised clustering according to the
expression levels of these validated ferroptosis genes. To our
surprise, we not only found significant differences in clinical
characteristics and the prognosis of patients among the four
distinct VFG clusters, but also found remarkable differences in
TME immune cell infiltration. TME comprises both cancer cells
and immune cells including T cells, B cells, natural killer cells (NK
cells), macrophages, dendritic cells (DCs), and myeloid-derived
suppressor cells (MDSCs) (Binnewies et al., 2018). It was
intriguing that VFGcluster B and C were abundant in almost
all kinds of immune cells but did not exhibit consistent survival
advantage. Therefore we classified the VFGcluster B and C into
immune-excluded phenotype, also called ‘cold’ tumor, in which
the majority of cytotoxic T lymphocytes (CTLs) were arrested in
the margin of the tumor mass instead of the core region, thus

FIGURE 6 | showed TMB. The number on the right indicated the mutation frequency in each gene. The right barplot showed the proportion of each variant type. (E)
Differences in the ferroptosis score between high and low tumor grade groups in meta-cohort (p < 0.001, Wilcoxon test). (F) Proportion of patients with different tumor
grade in low or high ferroptosis score groups. High grade/low grade: 91%/9% in the low ferroptosis score groups and 65%/35% in the high ferroptosis score groups. (G)
Differences in the ferroptosis score among Ta, T1-T2, and T3-T4 groups in meta-cohort (p < 0.001, Kruskal Wallis H test). (H) Proportion of patients with Ta, T1-T2, and
T3-T4 stage tumor in the low or high ferroptosis score groups. (I) Differences in the ferroptosis score among N0, N1-N3, and NX groups in meta-cohort (p < 0.001,
Kruskal Wallis H test). (J) Proportion of patients with N0, N1-N3, and NX stage tumor in low or high ferroptosis score groups. (K) Differences in the ferroptosis score
among M0, M1, and MX groups in meta-cohort (p < 0.001, Kruskal Wallis H test). (L) Proportion of patients with M0, M1, and MX stage tumor in the low or high
ferroptosis score groups. (M) Differences in the ferroptosis score between alive and dead groups in meta-cohort (p < 0.001, Wilcoxon test). (N) Proportion of alive
patients in the low or high ferroptosis score groups. (O)Differences in the ferroptosis score among three subtypes of BCa including basal, luminal and neuronal subtypes
(Kruskal Wallis H test).
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FIGURE 7 | Role of ferroptosis patterns in immunotherapy and chemotherapy. (A) Differences in the expression of PD-L1 between the high and low ferroptosis
score groups in meta-cohort (p < 0.001, Wilcoxon test). (B) Differences in the expression of CTLA-4 between high and low ferroptosis score groups in meta-cohort (p <
0.001, Wilcoxon test). (C) Differences in the expression of LAG-3 between high and low ferroptosis score groups in meta-cohort (p < 0.001, Wilcoxon test). (D)
Differences in the expression of PD-1 between high and low ferroptosis score groups inmeta-cohort (p < 0.001,Wilcoxon test). (E) The similarity of gene expression
profiles between ferroptosis score and BCa patients treated with immune checkpoint blockade (ICB). CTLA4-noR, patients no respond to anti-CTLA4 treatment,
CTLA4-R, patients respond to anti-CTLA4 treatment, PD1-noR, patients no respond to anti-PD-1 treatment, PD1-R, patients respond to anti-PD-1 treatment. (F–I)
Violin diagram showed the differences of response index between high and low ferroptosis score groups in four subgroups. (F) If no immunotherapy was conducted, the
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having poor response to immunotherapy (Binnewies et al., 2018).
Although both the immune cells and cancer cells in the TME
share similar growth signals and metabolic properties, there still
exist differences in the sensitivity to ferroptosis among these cells.
For example, it seems that anti-tumor T cells are sensitive to
ferroptosis while MDSCs exhibit resistance to ferroptosis, andM1
macrophages show higher resistance to ferroptosis than M2
phenotypes (Xu et al., 2021). Therefore, it is conceivable that
the TME immune cell infiltration is tightly related to the VFG
patterns. We also performed GSVA enrichment analysis and
found the pathways related to tumorigenesis and stroma
activation were remarkably enriched in VFGcluster B and C.
Various studies have demonstrated that stroma could prevent
CTL from entering the tumor core and suppress their anti-tumor
function. Cells in the stroma such as fibroblasts could not only
synthesize and secret collagen to formmechanical separation, but
also secretes signaling molecular like transforming growth factor
β (TGF-β), which was proved immunosuppressive. The
combination of TGF-β blocking antibody and anti-PD-L1
reduced TGF-β signaling in stromal cells, facilitated T-cell
penetration into the center of the tumor, and significantly
restored anti-tumor immunity and suppressed tumor
progression (Mariathasan et al., 2018). Therefore, the results of
GSVA enrichment analysis were consistent with VFGcluster
patterns.

Further, in this study, we explored the mRNA transcriptome
differences between distinct VFG patterns and also found a
remarkable relationship with stroma and immunity-related
pathways. These differentially expressed genes were considered as
ferroptosis-related signature genes. Then we classified the patients
into two distinct genomic subtypes based on the 367 VFG cluster-
related DEGs and found the gene clusters were tightly connected
with VFGcluster patterns. These results demonstrated again that
ferroptosis was an important signature to distinguish different TME
landscapes. Therefore, a comprehensive assessment of the
ferroptosis patterns will enhance our understanding of TME cell-
infiltrating characterization.

Next, considering the individual heterogeneity and complexity of
ferroptosis, it was necessary for us to explore the latent ferroptosis
pattern in individual patients. Thus, we constructed a set of scoring
system named the ferroptosis score to quantify the ferroptosis
pattern of individuals with BCa. We found immune cells in TME
were significantly related to the ferroptosis score and there also
existed differences in the ferroptosis score among distinct VFG

clusters. VFGcluster A showed the highest median score while
VFGcluster B and C shared the lowest median score, which
suggested the ferroptosis score was a reliable and effective tool to
assess the individual ferroptosis patterns and could also be used to
evaluate the landscape of TME immune cell infiltration. Moreover,
we also discovered that the ferroptosis score was tightly interacted
with clinical signatures such as the TNM category and tumor grade
and could predict the prognosis of patients with BCa, especially for
patients who were male, with high grade and low TNM category.

Our study also found that TMB was positively correlated to the
ferroptosis score. The previous studies have reported that TMB could
serve as a latent biomarker of the response to immunotherapy using
checkpoint inhibitors in multiple cancers such as lung cancer and
mesothelioma (Harber et al., 2021; Sholl, 2021). Therefore, we would
like to figure out whether the ferroptosis score could predict the
response to immunotherapy and guide clinical treatment strategies.
Many patients have benefited from immunotherapy using immune
checkpoint inhibitors such as PD-1, PD-L1, and CTLA-4 blockade,
but many more patients did not see pronounced clinical response to
immunotherapeutic intervention (Binnewies et al., 2018). PD-1/PD-
L1 blockade has demonstrated a significant benefit in patients with
unresectable and metastatic BCa in the second-line setting, either as
monotherapy or in combination with chemotherapy or CTLA-4
checkpoint inhibition (Witjes et al., 2021). The results of the phase II
trial using the PD-1 inhibitor pembrolizumab reported a complete
pathological remission (pT0) in 42% and pathological response
(<pT2) in 54% of patients (Necchi et al., 2018), whereas another
single-arm phase II trial with atezolizumab showed a pathologic
complete response rate of 31% (Powles et al., 2019). These results
suggested that the response rate still needed to be improved and it was
important to screen out patients who were appropriate for
immunotherapy. Our results found that the lower ferroptosis
score was connected with higher expression of main
immunotherapy targets like PD-1, PD-L1, LAG-3, and CTLA-4
and a better response to immunotherapy using PD-1 blockade.
Therefore, we showed that ferroptosis patterns played a non-
negligible role in distinguishing different TME and ferroptosis
signature integrated with various biomarkers comprising TMB,
immune checkpoint expression, landscape of TME immune cell
infiltration and stromal activation, and could be an effective
predictive strategy for immunotherapy.

Many drugs used for cancer treatment have been confirmed to
work as ferroptosis inducer in their anti-tumor function, such as
cisplatin and sorafenib (Liang et al., 2019). Therefore, in our

FIGURE 7 | high ferroptosis score resulted in a better prognosis compared to low ferroptosis score (p < 0.001, Wilcoxon test). (G) If only anti-PD1 immunotherapy was
used, the high ferroptosis score resulted in a worse prognosis compared to low ferroptosis score (p = 0.031, Wilcoxon test). (H) If only anti-CTLA4 immunotherapy was
used, the higher ferroptosis score group tended to get a better therapeutic response compared to low ferroptosis score group (p = 0.0044, Wilcoxon test). (I)When anti-
PD1 and anti-CTLA4 immunotherapy methods were simultaneously adopted, the high ferroptosis score group might get significantly worse prognosis compared to low
ferroptosis score group (p < 0.001, Wilcoxon test). (J) Differences in ferroptosis score between immunotherapy benefit and no benefit groups in meta-cohort (p = 0.025,
Wilcoxon test). (K) The proportion of patients benefit from immunotherapy in low or high ferroptosis score groups. (L) Differences in ferroptosis score between
immunotherapy response and nonresponse groups in meta-cohort (p < 0.001, Wilcoxon test). (M) The proportion of patients who response to immunotherapy in low or
high ferroptosis score groups. (N–Q) Differences in IC50 of chemotherapy drugs between high and low ferroptosis score groups in meta-cohort. N cisplatin (p < 0.001,
Wilcoxon test). (O) doxorubicin (p < 0.001, Wilcoxon test). (P)methotrexate (p < 0.001, Wilcoxon test). (Q) vinblastine (p = 0.046, Wilcoxon test). (R) Linear regression
analysis for cisplatin sensitivity and ferroptosis score. The dot represented each sample, and the color of the dot represented the level of risk. Blue, low risk; red, high risk
(R = 0.26, p < 0.001).
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study, we evaluated the relationship between the ferroptosis score
and sensitivity to different chemotherapy drugs and found IC50
for all these drugs exhibited a significant difference between the
high and low ferroptosis score groups, which indicated that the
ferroptosis score could also be a feasible indicator for the response
to chemotherapy. Since cisplatin-based chemotherapy was a
conventional treatment for patients with BCa (Sylvester et al.,
2021; Witjes et al., 2021), we further performed regression
analysis for the ferroptosis score and IC50 for cisplatin and
confirmed that there really existed a positive correlation
between the sensitivity to cisplatin chemotherapy and
ferroptosis score. Overall, the ferroptosis score could also be
an effective predictive strategy for chemotherapy, which could
help in selecting drug resistant patients before treatment.

In general, our study provided a comprehensive insight into
the interaction between ferroptosis, TMB, TME immune cell
infiltration, chemotherapy, and immunotherapy. We
demonstrated that different VFG patterns could help in
distinguishing the landscape of TME immune cell
infiltration and clinical characteristics among patients,
which was further verified using the ferroptosis score within
individuals. We also demonstrated that the ferroptosis score
could be used to evaluate the clinicopathological features
including the TNM category, tumor grade, TMB, and
genetic variation. Moreover, the ferroptosis score could also
function as a predictive indicator for the survival of patients.
Finally, we also evaluated the ability of the ferroptosis score to
predict the response to immunotherapy using immune
checkpoint inhibitor and chemotherapy, which might help
in improving therapeutic strategies, screening patients
eligible for immunotherapy or chemotherapy and guiding
individual precision therapy in the future.

However, we also realize that there still exist several
shortcomings and limitations in our study. First, the current
omics data only provide the level of mRNA but the ferroptosis
process relies on proteins, which will bring in some inaccuracies.
Second, although we have used the data acquired from IMvigor
210 cohort to further verify the role of ferroptosis patterns in
immunotherapy, the number of clinical samples is limited and
our study is a lack of verification from other clinical data sets
apart from the public data which will be helpful to further
confirm our conclusions, and whether ferroptosis has a similar
role in other types of cancer hasn’t been verified. Therefore, we
are prepared to collect some clinical samples to further verify our
conclusions, and assess the role of ferroptosis in other urinary
system tumors. Third, since some new studies were published and
novel ferroptosis-related genes were reported recently, the
ferroptosis-related genes we used for analyses could not be
comprehensive enough, which might bring a bias into our

study. Finally, the specific mechanisms behind the interaction
between ferroptosis patterns and TMB immune cell infiltration
remain unclear, so cell biological experiments should be
performed for further validation in the future.

In conclusion, our work demonstrated and interpreted the
complicated regulation mechanisms of ferroptosis on the tumor
microenvironment. The differences in ferroptosis patterns in
population or individual patients could significantly influence
the heterogeneity in tumor clinicopathological features and TME,
thus influencing the response to immunotherapy and
chemotherapy. Therefore, better understanding and evaluating
ferroptosis patterns could be helpful in guiding the clinical
therapeutic strategy and improving the prognosis of patients
with BCa.
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