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Summary 
Intracellular antigens must be processed before presentation to CD8 + T cells by major 
histocompatibility complex (MHC) class I molecules. Using a recombinant vaccinia virus (Vac) 
to transiently express the K d molecule, we studied the antigen processing efficiency of 26 
different human tumor lines. Three cell lines, all human small cell lung carcinoma, consistently 
failed to process endogenously synthesized proteins for presentation to Kd-restricted, Vac-specific 
T cells. Pulse-chase experiments showed that MHC class I molecules were not transported by 
these cell lines from the endoplasmic reticulum to the cell surface. This finding suggested that 
peptides were not available for binding to nascent MHC molecules in the endoplasmic reticulum. 
Northern blot analysis of these cells revealed low to nondetectable levels of mRNAs for MHC- 
encoded proteasome components LMP-7 and LMP-2, as well as the putative peptide transporters 
TAP-1 and TAP-2. Treatment of cells with interferon 3/enhanced expression of these mRNAs 
and reversed the observed functional and biochemical deficits. Our findings suggest that 
downregulation of antigen processing may be one of the strategies used by tumors to escape 
immune surveillance. Potential therapeutic applications of these findings include enhancing antigen 
processing at the level of the transcription of MHC-encoded proteasome and transporter genes. 

I t has long been known that elements of the cellular im- 
mune system are capable of specifically recognizing and 

destroying tumor cells (1, 2). In part, this reflects the ac- 
tivity of CD8 + T cells (TcI~s+) (3-7), which recognize class 
I molecules of the MHC-bearing peptides of 8-10 residues 
derived from proteins located in the cytosol (8-11). There 
are now numerous examples of both mouse and human 
TcDs + that specifically recognize tumor cells and have ther- 
apeutic activity after adoptive transfer, in some cases inducing 
a complete remission (12-16). 

Despite the potential for T cells to eradicate neoplasms, 
it is obvious from the progressive growth of most cancers 
that many tumors escape recognition by TcDs +. The reasons 
for this are only partly understood. There is evidence that 
some tumor cells express low levels of class I molecules in 
vivo and in vitro (17). Poor class I expression by tumor cells 
in mice and humans have generally been attributed to low 
levels of class I c~ chain gene transcription (18, 19). Attempts 
have been made to enhance c~ chain transcription by transfec- 
tion or transduction of class I ol chains into tumors (20, 21), 
or by use of DNA-hypomethylating or -alkylating agents (22). 
These studies, directed at increasing the immunogenicity of 
the tumors involved, have met with mixed success. Studies 

by Weis and Seidman (23) reported that after the transfec- 
tion of tumor cells with MHC class I genes there was no 
increase in cell surface expression of class I molecules despite 
a 20-60-fold increase in mRNA for the inserted class I genes. 
Based on recent discoveries, it seems possible that this was 
due to limiting amounts of antigenic peptides, which are re- 
quired for proper assembly of class I c~ chains with 32" 
microglobulin (B2-m) 1 in the endoplasmic reticulum, before 
transport of the complex to the plasma membrane. 

Antigenic peptides are believed to be generated from a cyto- 
solic pool of proteins. Association of these peptides with class 
I c~ chains and 32-m is thought to occur in an early secre- 
tory compartment (24-26). There is circumstantial evidence 
that two MHC gene products, called LMP-7 and LMP-2 (for- 
merly known as RING 10 and RING 12, respectively; see 
reference 27), physically associated with a large nuclear and 
cytosolic proteolytic structure (termed the proteasome), 
somehow alter the function or location of the proteasome 
to favor either the production of antigenic peptides or their 

1 Abbreviations used in this paper: B2-m, B2-microglobulin; CM, culture 
media; HA, hemagglutinin; NP, nucleoprotein; SCLC, small cell lung 
carcinomas. 
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delivery to class I molecules (28-30). Two other gene prod- 
ucts, now designated TAP-1 and TAP-2 (for transporter as- 
sociated with antigen processing), are encoded in the region 
of the MHC,  and are members of the ABC transporter family 
(31-36). TAP-1 (previously known as KING 4, Y3, and PSF-1) 
and TAP-2 (previously known as KING 11, Y1, and PSF-2) 
are clearly needed for cells to efficiently process antigen. 
Whether  these proteins directly transport peptide from the 
cytosol, or act in another manner, remains to be established. 

To examine the capacity of human tumor cell lines to pro- 
cess cytosolic antigens for Tcos+ recognition, we devised a 
method for screening a large number of tumor cell isolates 
that is independent of both the HLA type of the tumor and 
the presence, or absence, of specific cellular proteins. This 
method exploits the capacity of vaccinia virus (Vac) to infect 
a wide variety of human tumor cells (37). Using a recom- 
binant Vac encoding the mouse H-2 K a class I molecule (K a- 
Vac), we could test human tumor cell lines for presentation 
of  viral antigens to mouse Ka-restricted, Vac-specific TCD8 + 
populations and thus study antigen processing capabilities 
of human tumor cells per se. 

Materials and Methods 

Tumor Cells. All cell lines used in these studies were generated 
by A. F. Gazdar, J. D. Minna, and their coworkers (University of 
Texas Southwestern, Dallas, TX), with the exception of SW480, 
LS174T, HT-29, WiDr, MDA-231, MCF7, BT-20, Hs578T, SK- 
BR-3, and MDA-468, which were obtained from American Type 
Culture Collection (Rockville, MD), and CY 6T, which was gener- 
ated in our laboratory. 

Viruses. The production of a Vac recombinant containing the 
K d gene (Ka-Vac) has been described (38). Note that this recom- 
binant differs from a previously published Vac-K d (39) at position 
114. The gene we used represents the corrected version of the K d 
gene in plasmid pH33 in which the wild-type GLN at position 
114 is replaced by a HIS. This residue is located in the floor of the 
K d Ag binding site, and greatly influences the ability of K d to 
present viral antigens. The pKCKdwt construct was provided by 
Jaulin Kourilsky (Institut Pasteur, Paris, France). The A/Puerto 
Rico/8/34 (PK8) influenza virus infectious stock was generated 
using the allantoic cavity of embryonated hen eggs and virus con- 
centration using chicken red cell agglutination. The Vac recom- 
binants containing the PK8 nucleoprotein (NP) and hemagglu- 
tinin (HA) genes have been described (40). 

Effector Cells. Polyclonal TcDs+ populations were generated 
from 6-8-wk-old female BALB/c mice by intravenous injection of 
5 x 106 PFU of Vac or Vac-NP virus. After at least 2 wk, spleens 
were removed, dispersed to single cell suspensions with a 
homogenizer (Dounce), and stimulated in vitro with either Vac- 
or PK8-infected BALB/c splenocytes at a ratio of 2:1. Cells were 
then cultured in culture media (CM) consisting of Iscove's modified 
medium with 7.5% FCS (Biofluids, Kockville, MD) to generate 
Tcos+. LAK cells were prepared as previously described (41). 

Cytotoxicity Assays. Target cells were infected with 10 PFU/cell 
of vacdnia virus expressing the K d class I molecule for 60-90 min, 
incubated in CM at 37~ for 3 h, then labeled with NaSlCrO4 
for 1 h. Target cells were then mixed with TcDs+. After 4 h of 
incubation the amount of released SlCr was determined by 3' 
counting. Percent specific lysis was calculated as follows: 100x [(ex- 
perimental cpm - spontaneous cpm)/(maximal cpm - sponta- 
neous cpm)]. 
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FACS | Analysis and Antibodies. Cytofluorographic analysis was 
done using a FACScan 440 @ (Becton Dickinson & Co., Mountain 
View, CA). Cultured tumor cell lines were harvested with 0.02% 
EDTA, washed, then stained for 30 min with culture supernatant 
containing mAb supernate from H28-E23 (anti-HA antigen). 
Where designated, cells were stained with the mAb TW2.3, which 
recognizes an intracellular vaccinia-specific antigen (J. Cox et al., 
manuscript in preparation). To enable antibody access to the an- 
tigen, cells were fixed with paraformaldehyde and made permeable 
by including 0.1% saponin (wt/vol) during all manipulations. In 
all cases, cells with the appropriate isotype-matched control anti- 
body were used. mAb binding to cells was followed by binding 
with goat anti-mouse FITC-conjugated antibody (Boehringer 
Mannheim Biochemicals, Indianapolis, IN). 

Metabolic Radiolabeling Experiments. Pulse-chase experiments 
were performed as previously described (42). Briefly, 6 x 106 cul- 
tured tumor cells were incubated in methionine-free DMEM for 
30 min at 37~ then incubated with 100/zCi [3sS]Met (Amer- 
sham Corp., Arlington Heights, IL) for 10 min. Ice-cold PBS was 
then immediately added to a portion of the cells. These cells repre- 
sent the 0-min time point. Warmed medium containing 2 mg/ml 
of unlabeled Met was added to the remaining cells, which were 
then incubated at 37~ for the amount of time specified. Deter- 
gent extracts from radiolabeled cells were then normalized to con- 
tain equal amounts of acid-precipitable counts, and incubated with 
protein A-Sepharose previously loaded with the mAb specified. One 
half of each sample was digested overnight with 5 mU Endo H 
(Boehringer Mannheim Biochemicals). The other half of the sample 
was mock digested. Samples were then analyzed by SDS-PAGE using 
a 12% polyacrylamide gel and the buffer system of Laemmli. Gels 
were fixed, incubated with Amplify (Amersham Corp.), dried, and 
exposed to preflashed Kodak XAR-5 x-ray film (Kodak, Rochester, 
NY) for autoradiography. 

Northern Blot Analyses. To generate specific probes for trans- 
porter and proteasome genes, total RNA was isolated by the guani- 
dine isothiocyanate-cesium chloride centrifugation method. Specific 
probes were generated from RNA isolated from an EBV-transformed 
B cell line, or from the 501 melanoma cell line (both cell lines were 
established in our laboratory). First-strand eDNA was synthesized 
from 10 mg total RNA with an oligo(dT) primer. 30-35 cycles 
of PCK amplification was performed using the conditions: 94~ 
for 30 s, 60~ for 30 s, 72~ for 1 min followed by an extension 
cycle of 10 rain at 72~ The specific primers used had sequences 
as follows: GACAAGAGCCACAGGTATTTGG and TGATGA- 
GAAGCACTGAGCGG for TAP-1 (formerly RING 4, Y3, or 
PSF-1), TACCTGCTCATAAGGAGGGTGC and ATTGGGATA- 
TGCAAAGGAGACG for TAP-2 (formerly KING 11, Y1, or 
PSF-2), TCGCCTTCAAGTTCCAGCATC~ and CCAACCATC- 
TTCCTTCATGTGG for LMP-7 (formerly RING 10), and TTG- 
TGATGCa3TTCTGATTCCCG and CAGAGCAATAGCGTCTGT- 
GG for LMP-2 (formerly RING 12). PCK products were subjected 
to electrophoresis in 1.5% agarose gels, the correct sizes of bands 
were isolated, purified by glass powder methods (Genedean; BIO 
101, La Jolla, CA), and used as probes for Northern hybridizations. 
PCK product identity was confirmed by cutting with restriction 
enzymes and comparing predicted fragment sizes with those found 
in our preparations. The/~-actin cDNA probe was purchased from 
Clonetech (Palo Alto, CA). The probes were labeled by the random 
priming method using random hexamers. For Northern blot, 10 
#g of total KNA was subjected to electrophoresis in a 1% agarose 
formaldehyde gel and transferred to a nylon membrane (Zeta-Probe; 
Bio-Rad Laboratories, Richmond, CA). Hybridization was done 
in a 40% formamide hybridization solution (Northern hybridiza- 
tion buffer; 5 Prime ~ 3 Prime, Inc., West Chester, PA) at 42~ 
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Figure 1. Screening of human tumor lines for antigen 
processing defects. Cell lines studied were cultured human 
tumor cells tested for their ability to present Vac antigens 
to Kd-restricted, Vac-specific TCDS+. Numbers cor- 
respond to the following tumor lines and histologies: C, 
colon; B, breast; A, adenocarcinoma of the lung; Q, squa- 
mous cell carcinoma of the lung; L, large cell carcinoma 
of the lung; N, neuroendocrine tumor of the lung; M, 
mesothelioma; O, carcinoid of the lung; and S, SCLC 
of the lung. Tumor designations are as follows: I, SW480; 
2, LS174% 3, HT-29; 4, WiDr, T2 (see reference 9); 5, 
MDA-231; 6, MCF7; 7, BT-20; 8, Hs578T; 9, SK-BR-3; 
10, CY 6"1~ 11, MDA-468; 12, H23; I3, H157; 14, H358; 
I5, H1334; I6, Hl155; 17, H28; 18, H460; 19, H720; 
20, Hmesol; 21, H187; 22, H510A; 23, N417; 24, H146; 
25, H1092; 26, H82. 

overnight. Membranes were then washed three to four times in 
2x SSC at 60~ for 30 min, and autoradiography was then 
performed. 

Pepticle Pulsing Ext~ments. The peptide used (NP 147-155 from 
influenza A/Puer to  Rico/8/34) was synthesized on a peptide syn- 
thesizer (Milligen/Biosearch, Burlington, MA) and HPLC purified 
with confirmation of sequence by fast atom bombardment (M-Scan 
Inc., West Chester, PA). 3 x 106 tumor cells in a volume of 1 
ml of CM were pulsed with 1 #M of peptide during SlCr labeling 
for 90 min at 37~ Cells were then washed three times and used 
in a StCr release assay as described above. 

Results 

Screening the Antigen Processing Capabilities of Human Tumor 
Lines. Fig. 1 depicts a composite of three experiments (A, 
B, and C) in which 26 different tumor cell lines were in- 
fected for 4 h with Kd-Vac, and tested for lysis by Vac-specific 
TCDS+. In each experiment, the T2 cell line was included 
as a negative control. T2 cells lack a one-megabase region 
of the MHC that contains the portion coding for the TAP 
genes and proteasome component molecules, and are known 
to be deficient in their ability to process viral antigens for 
Tc,s+ recognition (43, 44). These experiments revealed that 
tumor cell lines vary widely in their abilities to process and 
present viral antigens to TCDS+. While some cell lines from 
a variety of tumor histologies were lysed at high levels by 
Vac-specific CTLs, a number of the lines were lysed at low 
levels. These included tumor cell lines derived from several 
histologies, including colon (WiDr and CY6T), breast (MDA 
468), lung mesothelioma (Hmesol), and most consistently, 
lung cancers of the small cell histology. Notably, three of 
these small cell lung carcinomas (SCLC), H82, H146, and 
H1092, were consistently (six/six experiments) recognized 
at levels similar to, or even lower than, T2 cells (Fig. 1 C l i  O. 

The failure of Vac-specific TCDS+ tO lyse the various 
tumor cells cannot be attributed to low levels of expression 
of Vac gene products. Cytofluorography after indirect im- 
munofluorescence staining was used to assess whether tumor 
lines were infected with Vac and productive of viral protein. 
As K d on the cell surface was potentially dependent on the 
function of antigen processing machinery, the surface expres- 
sion of a marker gene, the PR8 HA glycoprotein (Vac-HA), 
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was studied. The HA molecule was transported by the in- 
fected cell to the cell surface where its expression was assessed 
using an HA-specific mAb. Representative results are depicted 
in Fig. 2. Tumor lines poorly recognized by TcDs+ expressed 
similar or more viral antigens than those well recognized by 
TcDs +, and no obvious correlation between viral gene ex- 
pression and degree of TcDs + recognition was observed. In- 
deed, by this analysis, SCLC generally expressed high levels 
of viral antigens relative to the other tumor cell lines studied. 
Evidence that SCLC were well infected by Vac was corrobo- 
rated by a second approach (not shown). In several SlCr re- 
lease assays, a portion of target cells were assayed for binding 
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Representative experiment showing that expression of viral 
antigen does not correlate with lysability of lung cancer lines. In this ex- 
periment, cells were infected with 10 PFU/cell of the Vac-HA virus or 
with Vac-K a virus. Vac-HA-infected cells were stained for surface expres- 
sion of the HA molecule and the mean channel numbers (MCN) by FACS �9 
analysis are plotted on the x-axis. Isotype-matched control Ab staining 
was always below a MCN of 10 (dotted line). Plotted on the y-axis is the 
percent specific SlCr released (E/T 30:1) by cells infected by Vac-K d. Note 
that the SCLC cell lines H82, H146, and H1092 were productive of the 
viral gene product HA, indicating that these cells are infectable by Vac, 
but that they were not lysed by anti-Vac TcDs+ cells. 



Figure 3. Assembly and transport of MHC class I mol- 
ecules in the H82 SCLC cell line. (A) Experiment to study 
synthesis and transport of K d molecules. Detergent ex- 
tracts from pS]Met-labeled, Ka-Vac-infected cells were 
immunoprecipitated with the HB-159 Ka-specific mAb, 
and left untreated, or digested with Endo H as indicated 
before analysis by SDS-PAGE. Cells were chased for 0, 
40, or 80 min after pulse labeling to monitor class I exo- 
cytosis. (B) Experiment to examine synthesis and trans- 
port of K a molecules after SCLC line was pretreated with 
IFN-% Experiment was performed as in A but cells were 
pretreated with 1,000 U/ml of rhlFN-y for 48 h before 
assay. (C) Experiment to study the behavior of native class 
I molecules. Experiment was as in B, except cells were 
uninfected and were immunoprecipitated with W6/32. 
(D) Experiment to test assembly of native class I mole- 
cules, with and without pretreatment with IFN-3,. Unin- 
fected cells radiolabeled as in A and chased for 0 (pulse) 
or 120 rain (chase) were immunoprecipitated with the 
W6/32 mAb, specific for c~ chains complexed with B2-m 
or the B2-m-specific mAb L368 (ATCC designation HB 
149). Where designated, cells were pretreated with 1,000 
U/ml of rhlFN-'y for 48 h before assay. 

of mAb TW 2.3, which recognizes an intracellular vaccinia 
virus protein (Yewdell, J. W., unpublished observation). All 
SCLC lines were found to be well infected with Vac relative 
to controls. Additionally, all of the SCLC lines were efficiently 
lysed relative to other cell lines by LAK cells, as determined 
by SlCr release assay (not shown). This demonstrates that 
the failure of virus-specific TcDs+ to lyse SCLC is not due 
to a general resistance of the cells to lysis by immune cells, 
or their failure to release SlCr after a lethal hit has been re- 
ceived. Thus, the failure of TcDs + to lyse Vac-infected SCLC 
appeared to be due to a genuine defect in antigen presenta- 
tion, and not other factors. 

Assembly and Transport of Class I Molecules in SCLC Cell 
Lines. To further characterize the antigen presentation deficit 
in SCLC, pulse-chase methodology was utilized to study the 
biosynthesis and intracellular transport of class I molecules. 
Class I molecules were immunoprecipitated from detergent 
extracts from cells pulse radiolabeled with [3sS]Met for 10 
min, and chased for up to 80 min. In Fig. 3 A, detergent 
extracts from Kd-Vac-infected cells were immunoprecipitated 
with the anti-Ka-specific mAb SF1-1.1.1 (ATCC designation 
HB 159), which is directed against the ol chain of the K a 
molecule. One half of each immunoprecipitate was then 
digested with endo-~-N-acetylglucoseaminidase H (Endo H), 
which cleaves N-linked oligosaccharides in the simple, high- 
mannose forms that exist before the modifications associated 
with transport of class I o~ chains through the later portions 
of the Golgi complex. Samples were then analyzed by SDS- 
PAGE for the characteristic increase in ot chain mobility ob- 
served after removal of N-linked oligosaccharides. As seen 
in Fig. 3 A, K a molecules remained sensitive to digestion 
with Endo H throughout the 80-min chase period. 

Northern Blot Analysis of TAP and LMP. Retention of class 
I molecules in an Endo H-sensitive form has been observed 
in cells that fail to express TAP or MHC-proteasome subunit 
gene products (45-47). It was therefore of interest to mea- 
sure the expression of these genes in SCLC. Lacking suitable 

antibody reagents to directly measure the expression of these 
gene products, we performed Northern blots prepared from 
total mlkNA that were then probed for the expression of 
the genes indicated. As seen in Fig. 4, mRNA for each of 
the four genes was detected in a cell line with normal an- 
tigen presentation capacity, but not in T2 cells, whose dele- 
tion encompasses all four genes, mlkNA was also not de- 
tected in each of the SCLC cell lines deficient in antigen 
presentation. Low or absent steady-state levels of mlkNA in- 
dicates either that transcription is downregulated or that there 
was a shortening of the half-life of these messages. Lack of 
detection of message by Northern blot analysis, however, 

Figure 4. Northern blot analyses of TAP and LMP genes. Lanes cor- 
respond to various tumor cells as follows: (a) Hl155 (positive control), 
(b) Hl155 treated with 1,000 U IFN-3~ for 48 h, (c) T2 (negative control), 
(d) T2 with IFN-3,, (e) H82, ~ H82 with IFN-% (g) H146, (h) H146 
with IFN-% 0) H1092, and (1~ H1092 with IFN-"/. The same blots stripped 
and reprobed with B-actin are shown below. Note that mRNA levels for 
TAP and proteasome components were not detected in SCLC lines unless 
these lines were pretreated with IFN-% 
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dearly does not indicate a deletion of the genes in these cells, 
since treatment of ceils with IFN-3~ for 48 h induced the ex- 
pression of large quantities of mRNA encoding the four genes. 
Note also that IFN-3, increased mRNA levels in control cells 
(Hl155 is shown), but not in T2 cells. These findings are 
consistent with prior reports that expression of these genes, 
like class I ol chain genes, are IFN-~/inducible (34, 48). 

Effect of lFN-~" on Class I Asserably and Transport. In addi- 
tion to enhancing mRNA levels of LMP and TAP genes, 
IFN-7 treatment of SCLC cells greatly altered the intracd- 
lular trafficking ofdass I molecules. As seen in Fig. 3 B, IFN-~/ 
induced the transport of a substantial portion of K d mole- 
cules from the early portion of the secretory pathway through 
the Golgi complex, since approximately half of the class I 
molecules immunoprecipitated became resistant to Endo H 
digestion within 80 min of their synthesis (Fig. 3, C and 
D). In the absence of IFN-% SCLC cells do not synthesize 
dass I molecules reactive with the W6/32 mAb, which recog- 
nizes only tx chains associated with Bz-m (Fig. 3 D). Con- 
sistent with this finding, a mAb specific for 152-m precipi- 
tates only B2-m without any complexed cz chains. Thus, 
these cells either fail to assemble class I c~ chains, fail to pro- 
duce a chains (18), or both. After treatment of cells with 
IFN-% a large amount of assembled molecules reactive with 
W6/32 or anti-Bz-m mAbs are detected (Fig. 3 D), and 
these molecules rapidly (tt/2 < 20 min) acquire Endo H re- 
sistance (Fig. 3 C). The near absence of radiolabded/32-m 
at time 0 in class I o~ chain immunoprecipitated by W6/32 
(Fig. 3 D, lane 3) was consistently observed. This may be 
due to the binding of nascent, radiolabeled a chains to a rela- 
tively large pool of unlabeled B2-m already present in the 
endoplasmic reticulum. Thus, the vast majority of the W6/32- 
reactive class I appears to be bound to nonradiolabeled B2-m 
at time 0, although the pool of radiolabeled Bz-m is ulti- 
mately bound by W6/32-reactive a chains after 120 min (Fig. 
3, D chase). The radiolabeled ~z-m in Fig. 3, lane 4, 
coprecipitates radiolabled class Iot chain, which is apparently 
not recognized by the W6/32 mAb, and thus may not yet 
be fully folded at time 0. 

IFN-y Enhances Presentation of Endogenously Produced An- 
tigen. We next tested the effect of IFN-'), on the capacity 
of SCLC to present viral antigens to Ka-restricted, Vac- 
specific TcDs+. As seen in Fig. 5, IFN-7 greatly enhanced 
the antigen-presenting capacity of the SCLC, but not T2, 
cells. In this experiment, the K a restriction of TcDs+ rec- 
ognition was demonstrated by the failure of TcDs+ to lyse 
IFN-3,-treated cells infected with a Vac recombinant that does 
not express K d. Thus, IFN-3' did not act by making the cells 
more susceptible to lysis by NK cells that might be present 
in the secondary splenic effector populations. 

In addition to the interaction between TCR and MHC 
class I-peptide complexes, interactions between other mole- 
cules on T cell and target cell surfaces can contribute to delivery 
of the lytic signal (49). While such interactions might be 
expected to be minimized in the interaction of mouse TcDs + 
with human target cells, it remained possible that the effect 
of IFN-3, on SCLC antigen presentation reflected the enhanced 
expression of accessory adhesion molecules. We therefore ex- 
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Figure 5. IFN-3" enables SCLC calls to present endogenous antigen. 
Vac-Kd-infected SCLC lines H82, H146, and H1092 ( � 9  were not lysed 
by Ka-restricted, anti-Vac Tc,s +, although a control cell line was lysed 
(represented by Hl155 in this experiment [controls]). Treatment with 1,000 
U IFN-7 for 48 h before infection enabled SCLC calls (A), but not T2 
cells (control) to present viral antigens. Cell lines pretreated with IFN-7 
but infected with a control Vac not expressing K d (A) were not killed, 
controlling for nonspecific killing induced by IFN-'y pretreatment alone. 
(Control) Hl155 without IFN-3, pretreatment after infection with wild- 
type Vac is shown ((>). 

amined the effect of IFN-~/on the presentation of an ex- 
ogenously added synthetic peptide to Ka-restricted TcDs+ 
specific for the peptide. As seen in a representative experi- 
ment using H82 cells, IFN-3/had no discernible effect on 
peptide presentation (Fig. 6, left), despite the fact that it was 
clearly able to enhance presentation of Vac antigens to Vac- 
specific Tcos+ (Fig. 6, right). 

While the ability of non-IFN-3,-pretreated, Vac-Ka-infect - 
ed cells to present exogenously provided peptide seems para- 
doxical since K a is inef~ciently transported to the cell sur- 
face under these circumstances, a similar phenomenon is 
observed in other antigen processing-deficient cells. This ob- 
servation has been attributed to surface expression of "empty" 
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Figure 6. IFN-y pretreatment 
does not enhance presentation of 
exogenously provided Peptide. In 
this experiment, H82 cells (_+ ex- 
ogenously pulsed peptide) were 
tested for lysis by TcDs + specific 
for influenza virus NP Peptide 
(left, effector cells generated by in 
vivo priming with Vac-NP and in 
vitro secondary stimulation with 
FLU-PRS) or Vac antigens (right, 
effector cells generated by in vivo 
priming with Vac-NP and in vitro 
secondary stimulation with Vac- 
WT). (+ pept) Cells were pulsed 
with a synthetic Peptide corre- 
sponding to NP residues 147-155 
that represent the bona fide deter- 

minant recognized by Ka-restricted, NP-specific TCDS+. (7) Cells were 
pretreated with IFN-3~ for 48 h before the assay. Similar results were ob- 
tained in a repeat assay. The same experiment was performed twice in 
experiments that included other SCI.C cell lines (H146 and H1092) with 
similar results. 



class I molecules (i.e., devoid of natural peptides) (50), the 
idea being that the transport of such molecules, while too 
low to detect by FACS | staining or immunoprecipitation, 
is sufficient to present the 200 or so peptides required for 
a TcDs+ to lyse a target cell (51). 

Discussion 

Class I molecules are poorly expressed on many different 
types of human tumor cells in vivo (17). Our findings indi- 
cate that this poor expression can be accompanied by a 
markedly decreased capacity to present endogenously syn- 
thesized proteins, and for SCLC at least, greatly diminished 
expression of four MHC genes that encode proteins thought 
to be necessary for efficient antigen processing. Although it 
is generally considered that most cell types are capable of con- 
stitutively processing and presenting antigens to TcDs+, this 
has been directly established only with cells of immune lin- 
eage. The present studies do not address the question of 
whether poor antigen processing is associated with transfor- 
mation or outgrowth of the tumor, or whether this poor 
processing is representative of the natural regulation of class 
I expression in the tissue of origin. This question may be 
particularly difficult to answer with SCLC since the identity 
of the precise cell of origin is not known. Whatever the case 
may be, the fact remains that SCLC cell lines processed an- 
tigen poorly in the studies reported here. The therapeutic 
implications of these findings are that poor class I expression 
and poor antigen processing capability must be meliorated 
if SCLC and other possible tumor histologies sharing these 
characteristics are to be made susceptible to TcDs§ im- 
munotherapy. It is unlikely that the poor antigen processing 
capacity exhibited by SCLC cells is an artifact resulting from 
cell culture, since immunohistochemical studies show that 
SCLC expresses very low or undetectable levels of class I in 
vivo (52). 

The great enhancement of antigen processing upon IFN-3, 
treatment of SCLC suggests that TCDS+ recognition of 
tumor cells could be enhanced by the specific upregulation 
of the antigen processing machinery in tumor cells. Such 
TcDs+ might recognize tumor-specific antigens, or perhaps 
tissue-specific antigens in cases where tumors arise from tissues 

that are deficient in antigen processing. We recently described 
a mouse tumor (MCA 101) whose antigen processing capacity 
was similarly enhanced by IFN-y treatment (53). Expression 
of IFN-3' in this tumor from a transfected gene resulted in 
the autocrine enhancement of antigen processing, and allowed 
the cells to induce a tumor-specific Tcns+ response. Most 
importantly, TcDs+ cells grown out of IFN-3,-transduced 
tumors were therapeutic against nonmodified tumor cells (54). 
Thus, it might be possible to obtain a beneficial TcDs+ re- 
sponse by enhancing antigen processing machinery in a subset 
of tumor cells in vivo, or by injection of tumor cells that 
have been gene modified to enhance antigen processing in 
vitro. Such strategies might also be appropriate for infectious 
diseases in cases where the fore!gn organism infects cells with 
low antigen processing capability. 

Genetic or pharmaceutical therapies directed at the enhance- 
ment of antigen processing may exploit the beneficial effects 
of IFN- 7. However, since IFN-7 has been shown to be an- 
tiproliferative to T and NK cells, other ways of enhancing 
antigen processing and presentation might prove to be more 
therapeutically useful. It seems likely that the genes involved 
in antigen processing and presentation share common regula- 
tory elements. When these regulatory elements are elucidated, 
new therapies could be developed for specific upregulation 
of antigen processing in cancer and infectious disease. Con- 
versely, downregulation of these gene products may prove 
useful in tissue transplantation or in autoimmune disease. 

In addition to SCLC, we found in recent studies that some 
tumor cell lines of other histologies were unable to present 
viral antigens to TcDs+. In a number of lines studied the 
defects have turned out to be nonfunctional 32-m (Restifo, 
N. P., manuscript in preparation). The underlying deficits 
in other cell lines being studied remain to be established. The 
robust nature of T2 cells (and other antigen processing- 
deficient mutants) suggests that none of the antigen processing 
machinery is required for cell viability. In this event, it is 
to be expected that some tumor cells will possess mutations 
or deletions resulting in a functional deficiency in one or more 
of the dedicated components of antigen processing. Charac- 
terization of naturally occurring antigen processing mutants 
may help to identify novel gene products that function in 
the efficient processing of endogenously synthesized proteins. 
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Note added in proof: Two recent reports indicate that the LMP-2 and LMP-7 gene products are not necessary 
for the presentation of some antigens (55, 56). The function of these gene products in antigen processing, 
therefore, remains to be established. 
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