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Abstract: A kind of photonic crystal magnetic field sensor is proposed and investigated numerically.
The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with
magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing
is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and
full width at half maximum increase with the number of infiltrated air holes. The figure of merit of
the structure is defined to evaluate the sensing performance comprehensively. The best structure
corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid
is obtained.
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1. Introduction

Magnetic fluid (MF) is a kind of stable colloidal solution consisting of surfactant-coated nanoscale
magnetic particles [1]. It has both the magnetic properties of magnetic materials and the fluidity of
liquids, which shows a variety of magneto-optical characteristics including Faraday rotation, tunable
refractive index, and magneto-birefringence [2–5]. Many optical devices based on MF have been
proposed in the past decades [6–12]. Compared with the traditional devices, MF-based optical devices
have the advantages of high sensitivity and a small size, which makes them promising for broad
applications in the fields of photonics and sensing [13–19].

In 2014, Yang et al. proposed and experimentally demonstrated a magnetic field sensor based
on the tilted fiber Bragg grating coated with MF and found that the maximum resonant wavelength
shift can reach 106 pm at a magnetic field strength of 32 mT [20]. In 2015, Liu et al. put forward
an optical magnetic field sensor with temperature compensation capability, which is based on an optical
microfiber taper combined with MF [21]. Its corresponding sensitivity is 0.171 nm/Oe in the range
of 20–70 Oe at 25 ◦C. In 2015, Pu et al. proposed and experimentally demonstrated a late-model
magnetic field sensor based on a microfiber coupler surrounded with MF, which also has the potential
applications for designing other tunable all-in-fiber photonic devices, such as the magneto-optical
modulator and filter [22].

It is well-known that light with a frequency lying within the photonic band gap can be guided
or spatially localized by the photonic crystal (PC) structure with certain line or point defects [23,24].
PC waveguides combined with novel materials (i.e., magnetic materials and graphene) have been
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proposed for tuning the slow light [25–28], which refers to light with a low group velocity, and is
expected to become instrumental in enabling applications in quantum computing, ultrafast all-optical
information processing, and so on. Meanwhile, because of the high quality factor [29], the PC cavity is
a good candidate for realizing narrow-bandwidth filters [30], optical switches [31], cavity quantum
electrodynamics [32], and sensors [33–35]. The resonant wavelength of the PC cavity is highly sensitive
to the effective refractive index (RI) of the cavity defect. When the RI of the PC cavity varies slightly,
a measurable resonant wavelength shift can be detected [36,37]. In this work, a kind of PC magnetic
field sensor based on shoulder-coupled cavity infiltrated with MF is proposed. Compared to other
cavity coupling configurations, the shoulder-coupled cavity can have a stronger coupling strength [38],
which is desirable for detecting the shift of the resonant wavelength in transmittance spectra.

2. Device Configuration and Sensing Principle

2.1. Device Configuration

Figure 1 is the schematic of the silicon slab PC structure with shoulder-coupled cavity. The aslant
shoulder-coupler cavity in between the two W1 waveguides is formed by removing two air holes
adjacent to the central air hole along the oblique direction. The sizes of the center air hole and
two terminal air holes along the aslant cavity (marked in green and blue in Figure 1) are optimized.
The center air hole and the air holes around the removed ones (marked in green, blue, and red in
Figure 1) are infiltrated with MFs according to various infiltration schemes. The lattice constant
a = 423 nm, the radius of normal air holes is r = 0.32a, and the thickness of the PC slab is h = 0.55a.
The RI of silicon is nSi = 3.48 at λ = 1550 nm. Light is injected into the shoulder-coupled cavity through
the input W1 waveguide, and the leaky light from the cavity is monitored at the end of the output
W1 waveguide.
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Figure 1. Schematic of the sensor configuration.

2.2. Sensing Principle

Due to the waveguide-microcavity coupling, the resonant wavelengths will appear as peaks
in the transmission spectrum. When the magnetic field is applied, the RI of the MF will change,
as does the effective RI of the MF-infiltrated cavity. To be general, the local magnetic field factor α//
is employed to express the magnetic field qualitatively [39–41]. The value of α// lies in the range of
0 < α// < 1 and is inversely proportional to the strength of the externally applied magnetic field.
In other words, α// = 1 corresponds to a zero magnetic field, while α// = 0 indicates an infinite
magnetic field. Thus, the resonant wavelength of the structure is related with λ = kα// × n(α//),
where kα// is a constant, and n(α//) is the magnetic-field-dependent effective RI of the MF-infiltrated
cavity. Thus, through monitoring the resonant wavelength shift of the shoulder-coupled cavity, the
externally magnetic field can be measured. For numerical simulation, the MF RIs at different local
magnetic field factors α// (corresponding to different magnetic field strengths) in [27] is utilized.



Sensors 2016, 16, 2157 3 of 8

3. Modeling Methodology and Structure Optimization

3.1. Modeling Methodology

The finite-difference time-domain (FDTD) method [42,43] is used to investigate the sensing
structure numerically. The type of mesh generation is non-uniform automatically. The number of mesh
points per wavelength (ppw) is set at 22 in this work, i.e., each grid is divided into 22 × 22 points
per wavelength. The perfectly matched layer (PML) is used. The 2D effective index method instead
of 3D calculation is employed. The variational method [43] is utilized to calculate the 2D effective
index, which depends on the type and polarization of the source, the distribution of the vertical index,
the thickness of the slab, and the central wavelength. The 2D effective index is obtained to be 2.86 for
the TE-like fundamental mode of the 1550 nm source.

3.2. Optimization of Shoulder-Coupled Cavity

For the coupling between the W1 waveguide and the aslant cavity, the cavity structural parameter
along the light path is most crucial. Therefore, the radiuses of the center hole (rc) and terminal
holes (ro) of the aslant cavity (marked in green and blue in Figure 1) are chosen to optimize the
resonant transmission. To optimize the radius of center hole rc, rc varies from 0.06a to 0.16a with an
increment of 0.02a (ro is fixed at 0.32a, i.e., same as the normal air hole). The corresponding resonant
wavelength and peak transmittance as functions of the radius of the center hole is shown in Figure 2a.
Figure 2a indicates that the transmission is maximum for rc = 0.10a. Therefore, rc = 0.10a is
chosen to optimize the radius of terminal hole ro. ro varies from 0.40a to 0.50a with an increment
of 0.02a. The corresponding resonant wavelength and peak transmittance as functions of the radius
of the terminal hole is shown in Figure 2b. Figure 2b indicates that the transmission is maximum
for ro = 0.48a. For both optimization processes, the resonance is pushed to a higher frequency
(blue-shift) with the increase in the hole radius. At the optimized structure parameters of rc = 0.10a
and ro = 0.48a, the distinctive transmission peak at a wavelength of 1525.43 nm is plotted in Figure 2c.
The full width at half maximum (FWHM) of the transmission peak is 0.20 nm. The quality factor
defined as Q = λ0/FWHM (λ0 is the peak wavelength) is 7602, which is larger than those of other
similar PC sensors [44–46]. The quality factors for the sensors in [44–46] are reported to be 400, 3000,
and 2966, respectively.
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//α  (viz. the RI of the MF 

ranging from 1.8787 to 1.9879) when only the center air hole is infiltrated with MF is shown in Figure 

5a. Figure 5a reveals that the position of the resonant wavelength shifts towards a long wavelength 

as the magnetic field factor increases (i.e., the magnetic field strength decreases). 

Similarly, all other structures are simulated, and the corresponding results are shown in Figure 

5b. Figure 5b shows that the resonant wavelength changes with the local magnetic field factor 
//α  

linearly for all cases. In order to investigate the effect of infiltration schemes on the magnetic field 

Figure 2. (a) Resonant wavelength and peak transmittance as functions of the radius of the center hole
when ro = 0.32a; (b) the radius of the terminal hole when rc = 0.10a; (c) the transmission of the
TE-like fundamental mode for rc = 0.10a; and ro = 0.48a.

For the optimized structure, the steady-state field distribution of light propagation at wavelengths
of 1520.43, 1525.43 and 1530.43 nm are simulated and plotted in Figure 3. Figure 3 displays the
on-resonance state happens for incident wavelength of 1525.43 nm, while the cases for incident
wavelengths of 1520.43 and 1530.43 nm are off-resonance states (noticing the great difference of color bar
between the top/bottom and middle panels). The electric field intensity within the shoulder-coupled
cavity at the on-resonance state is about 2500 times larger than that at the off-resonance states. For the
off-resonance states, most of the incident light is reflected from the PC cavity, as can be seen in
Figure 3a.
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4. Sensing Results and Discussion

The peak transmission wavelength-shift with magnetic field factor for various MF-infiltrated
structures are investigated systematically. The infiltration schemes are illustrated in Figure 4.
The calculated output transmission spectrum at different magnetic field factors α// (viz. the RI
of the MF ranging from 1.8787 to 1.9879) when only the center air hole is infiltrated with MF is shown
in Figure 5a. Figure 5a reveals that the position of the resonant wavelength shifts towards a long
wavelength as the magnetic field factor increases (i.e., the magnetic field strength decreases).

Similarly, all other structures are simulated, and the corresponding results are shown in Figure 5b.
Figure 5b shows that the resonant wavelength changes with the local magnetic field factor α// linearly
for all cases. In order to investigate the effect of infiltration schemes on the magnetic field sensitivity
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(S = dλ0/dα//), the magnetic field sensitivity S (corresponding to the slopes of the curves in
Figure 5b) as a function of the number of infiltrated air holes (N = 1, 2, 3, 8, 9, 10 and 11) is explicitly
plotted in Figure 6. The corresponding FWHM is also plotted in Figure 6. Figure 6 shows that the
magnetic field sensitivity S increases remarkably with the number of infiltrated air holes. In addition,
the FWHM varies from 0.239 to 2.991 nm with the number of infiltrated air holes. For the pragmatic
applications, the higher the magnetic field sensitivity is and the narrower the FWHM is, the better
the sensing performance of the structure is. Therefore, there is a trade-off between the magnetic field
sensitivity S and FWHM. The figure of merit (FOM) of the structures defined as FOM = S/FWHM is
employed to evaluate the sensing performance comprehensively [47,48]. The corresponding results are
shown in Figure 7. Figure 7 indicates that the FOM is maximum for the structure with N = 8. Therefore,
the infiltration scheme corresponding to N = 8 (see Figure 4) is optimal.
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hole infiltrated with MF; (b) resonant wavelength shift with local magnetic field factor α// for different
MF-infiltrated structures.
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5. Conclusions 

A late-model silicon slab PC magnetic field sensor is proposed here. The shoulder-coupled 

cavity is designed for MF infiltration. The structure is optimized to obtain better sensing performance. 

Different MF infiltration schemes are investigated systematically. In view of sensing applications, the 

trade-off between the magnetic field sensitivity and FWHM is found for varying the number of 

infiltrated air hole according to the designed infiltrated schemes. Comprehensively, the optimum 

FOM of the sensing structures is found for the infiltration scheme with N = 8. The advantage of the 

proposed magnetic field sensor lies in its small size and potentiality for integrated devices. Besides, 

the structure of the PC cavity can allow for an even larger degree of multiplexing on monolithic 

substrates, which is an inherent advantage for optical integrated circuits, integrated optical devices, 

and monolithic integration. 
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5. Conclusions

A late-model silicon slab PC magnetic field sensor is proposed here. The shoulder-coupled cavity
is designed for MF infiltration. The structure is optimized to obtain better sensing performance.
Different MF infiltration schemes are investigated systematically. In view of sensing applications,
the trade-off between the magnetic field sensitivity and FWHM is found for varying the number of
infiltrated air hole according to the designed infiltrated schemes. Comprehensively, the optimum
FOM of the sensing structures is found for the infiltration scheme with N = 8. The advantage of the
proposed magnetic field sensor lies in its small size and potentiality for integrated devices. Besides,
the structure of the PC cavity can allow for an even larger degree of multiplexing on monolithic
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