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Abstract

Recording from deep neural structures such as hippocampus noninvasively and yet with

high temporal resolution remains a major challenge for human neuroscience. Although

it has been proposed that deep neuronal activity might be recordable during cognitive

tasks using magnetoencephalography (MEG), this remains to be demonstrated as the

contribution of deep structures to MEG recordings may be too small to be detected or

might be eclipsed by the activity of large-scale neocortical networks. In the present

study, we disentangled mesial activity and large-scale networks from the MEG signals

thanks to blind source separation (BSS). We then validated the MEG BSS components

using intracerebral EEG signals recorded simultaneously in patients during their presur-

gical evaluation of epilepsy. In the MEG signals obtained during a memory task involv-

ing the recognition of old and new images, we identified with BSS a putative mesial

component, which was present in all patients and all control subjects. The time course

of the component selectively correlated with stereo-electroencephalography signals

recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This

finding complements previous studies with epileptic activity and opens new possibilities

for using MEG to study deep brain structures in cognition and in brain disorders.
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1 | INTRODUCTION

Magnetoencephalography (MEG) is a noninvasive technique that mea-

sures the electromagnetic fields generated by the brain with a milli-

second time scale. MEG is widely used to analyze cortical activity in a

variety of scientific and clinical settings (Baillet, 2017; Bartolomei

et al., 2006; Hämäläinen et al., 1993; Wacongne et al., 2011). In most

of these applications, a challenging inverse problem needs to be

solved in order to determine the neuronal sources generating the

recorded MEG signal (Fokas et al., 2004; Friederici et al., 2000;

Hillebrand et al., 2005). Neuronal sources located relatively near the

sensors (i.e., at the cortical surface) are notoriously easier to identify
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than sources located more distally (Huotilainen et al., 1998; Mosher

et al., 1993). Sources located in deep neuronal structures such as

mesial structures provide the more challenging case, and the reliability

of their identification is a matter of ongoing debates (Bénar

et al., 2021; Pu et al., 2018; Ruzich et al., 2019). Biophysical models

have suggested how, under certain conditions, it might be possible to

identify the magnetic activity originating from deep structures and to

separate the activity of various closed-field sources (Attal et al., 2012;

Meyer et al., 2017; Stephen et al., 2005). Some empirical studies have

reported deep MEG sources taken to reflect hippocampal activity

(Barry et al., 2019; Costers et al., 2020; Fellner et al., 2019; Guderian

et al., 2009; Taylor et al., 2011; Xu et al., 2020). This interpretation

hinged primarily on the link between the activity of interest and the

behavioral performance in a cognitive task, but the studies lacked a

neuronal ground truth that could confirm the origin of the signals.

Intracerebral recordings, in the form of stereo-electroencephalography

(SEEG; Bancaud et al., 1970), give an unrivaled opportunity for measur-

ing directly time-resolved neuronal activities in human deep brain struc-

tures. This invasive technique is commonly used as part of the

presurgical diagnosis procedure in drug-resistant epilepsy to delineate

the epileptogenic network (Bartolomei et al., 2017). It has been suc-

cessfully employed in cognitive studies, allowing to track both evoked

and oscillatory activities (Barbeau et al., 2008, 2017; Despouy

et al., 2020; Hagen et al., 2020; Jonas et al., 2016; Lachaux et al., 2005;

Nelson et al., 2017; Tallon-Baudry et al., 2005). Because the SEEG sig-

nal is recorded locally within the implanted structures, it can be taken

as a unique ground truth to which noninvasive measures can be con-

fronted to, although recent studies have suggested that recording EEG

or MEG responses to intracranial stimulation may represent a ground

truth for source localization algorithms (Mikulan et al., 2020; Parmigiani

et al., 2021). Still, in order to optimize the measure of correspondence

between MEG and intracranial data, their recordings should be simulta-

neous (Rampp et al., 2010; Shigeto et al., 2002; Sutherling et al., 2001).

Simultaneous recordings are the only ones that allow computing time-

resolved correlations between depth and surface signals (Boran

et al., 2020; Crespo-García et al., 2016; Dalal et al., 2009; Dubarry

et al., 2014; Korczyn et al., 2013; Pizzo et al., 2019), thus ensuring that

the very same activity is measured on both recordings. Studies based

on simultaneous recordings present the strongest evidence supporting

the detectability of deep activity (Crespo-García et al., 2016; Dalal

et al., 2009; Korczyn et al., 2013), with a strong correlation between

contacts placed in the hippocampus and the MEG signals (Dalal

et al., 2009).

Surface signals are noninvasive but capture a complex mixture of

signals, where hippocampal activity proper might be present but hid-

den. Spatial filtering, either within a source localization framework or

with blind source separation (BSS), can help retrieving activity from

deep structures, disentangling it from more superficial signals that

present higher amplitudes on MEG (Attal et al., 2007; Attal &

Schwartz, 2013; Dubarry et al., 2014; Oswal et al., 2016; Pizzo

et al., 2019). Importantly, BSS exploits the sparsity of the brain

sources (Daubechies et al., 2009), which has been pointed out as a

key element for the identification of deep activity (Krishnaswamy

et al., 2017). In prior work from our laboratory involving patients with

temporal lobe epilepsy, we used independent component analysis, a

kind of BSS, to show that interictal spikes generated in the hippocam-

pus and amygdala were indeed detectable with MEG (Pizzo

et al., 2019). However, the amplitude of the epileptic spikes is much

higher than the spontaneous nonpathological activity and therefore

easier to detect from the surface. Using a cognitive paradigm, Dalal

and collaborators have shown zero-lag correlation for theta activity in

the hippocampus (Korczyn et al., 2013), although the possibility of

zero-lag phase synchrony with a third structure could not be ruled out

in that dataset.

Here, we sought to firmly establish the link between MEG and

SEEG signals evoked by a cognitive task. We used a well-tested experi-

mental paradigm that activates mesial structures during short-term

picture memorization and recognition. We acquired simultaneously

MEG and SEEG and used BSS to quantify the single-trial correlation

between BSS-MEG components and intracerebral data across a total of

six patients. Additionally, we recorded the MEG signals from six healthy

volunteers as a control. Based on the available biophysical models, we

hypothesized that the activation of mesial structures during memory

processes would be detected with MEG.

2 | METHODS

2.1 | Patients and records selection

We studied six patients (two females) by means of simultaneous

MEG-SEEG recordings. Table 1 shows the clinical information for each

patient. We also recorded and analyzed MEG data from six healthy

volunteers (three females, mean age 31.7 years SD ± 5.5) performing

the same protocol. This research has been approved by the relevant

Institutional Review Board (Comité de Protection des Personnes, Sud-

Méditerranée I, ID-RCB 2012-A00644–39). All participants signed a

written informed consent form regarding this research.

2.2 | Simultaneous SEEG-MEG recordings

The six patients were undergoing intracerebral stereotaxic EEG

(SEEG) investigation for presurgical evaluation of focal drug-resistant

epilepsies at the Epileptology and Cerebral Rhythmology Unit, APHM,

Marseille, France. We acquired SEEG and MEG recordings simulta-

neously during 15 min of resting state (patient relaxed with eyes

closed) and subsequently during a memory task (see below). The

methodology for the simultaneous recordings is detailed in previous

studies (Badier et al., 2017; Dubarry et al., 2014). MEG signals were

acquired on a 4D Neuroimaging™ 3600 whole head system with

248 magnetometers at a sampling rate of 2034.51 Hz. We acquired

between 161 and 223 SEEG contacts per patient (total contacts

recorded: 1206; mean of 201 contacts, SD ± 23) at 2048 Hz of sam-

pling rate, as well as EOG and ECG channels. The electrodes had a

diameter of 0.8 mm, and contained 10–15 contacts, each being 2 mm
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long and separated from each other by 1.5 mm (Alcis, Besançon, France).

The implantation of the intracranial SEEG was decided based on clinical

hypotheses regarding the location of the epileptogenic zone. A descrip-

tion of the SEEG setup is detailed by Pizzo et al. (Pizzo et al., 2019).

2.3 | Memory protocol

Each block of the recognition memory task started with an encoding

phase, during which 12 pictures were presented, one after the other,

and the participant was asked to memorize them. Each picture was a

simple colored drawing of a familiar item (e.g., a dog or a car) on a grey

background; pictures were obtained from the standardized database

Multipic (Duñabeitia et al., 2018). After a distracting video of 1 min

(silent excerpts from a documentary showing birds and landscapes),

the recognition phase involved a larger set of pictures from the same

source. Half of these pictures had been presented during the encoding

phase, while the other 12 were new never-presented pictures. Partici-

pants were asked to press a button with the right hand if they recog-

nized the image as having been presented earlier (“old”) during

encoding, or a button with the left hand if the image was “new” to

them. Stimuli presentation and response logging were controlled by

the software E-prime 3.0 (Psychology Software Tools, Pittsburgh, PA).

Each trial started with a fixation cross presented in the center of

the screen for 1000 ms, followed by the experimental picture, pre-

sented for 1000 ms in the encoding sub-block and for 1500 ms in the

recognition sub-block. The subsequent intertrial interval was fixed to

1000 ms. For each participant, a total of seven blocks were pro-

grammed to be displayed consecutively, using different images.

We selected 24 � 7 = 168 images to be used as experimental

materials from the database of Duñabeitia et al. (2018). They were

selected as having high name agreement (above 90%), and a relatively

short name (one, two, or three syllables in French). To ensure that the

observations were not driven by item-specific properties, different

experimental lists were created for each participant. The items were

separated into two matched groups of 84 items to serve as old and

new, alternatively across patients. Across the “old” and “new” groups
of items there were roughly equal numbers of natural and artifact

stimuli, with matched visual complexities; their names in French were

matched for name agreement, length in syllables, and (log) lexical fre-

quency of use (normative data from Duñabeitia et al., 2018 or New

et al., 2004). The 84-item groups were further broken down into

seven groups to be used in the different blocks, with items matched

for visual complexity and (log) lexical frequency across the seven

groups. All matching across picture groups was performed with the

MATCH utility (van Casteren & Davis, 2006). In the encoding phases,

the 12 items were presented in a random order; in the recognition

phases, the items were presented in a pseudo-random order, with the

constraint that there were never more than three “old” or “new”
items in a row.

2.4 | MEG and SEEG pre-processing

All data analysis was done using a combination of the in-house Any-

Wave software (Colombet et al., 2015; available at http://meg.univ-

amu.fr/wiki/AnyWave), the Fieldtrip toolbox (Oostenveld

et al., 2011), and custom-made Matlab scripts (The Mathworks Inc.,

Naticks, MA, USA). Each trial was epoched from 500 ms prestimulus

to 1500 ms poststimulus. After visual inspection, MEG and SEEG

channels with noise or flat signal were removed, as well as all trials

with artifacts in either the MEG or SEEG signal. Continuous data were

bandpass filtered between 0.5 and 120 Hz (FIR filter) and two notch

filters at 50 and 100 Hz were applied to remove line noise and its first

harmonic. To remove eye blinks, movements, and cardiac components

on MEG data, independent component analysis (ICA) was computed

on the cleaned data using the Infomax algorithm (Bell &

Sejnowski, 1995) implemented in AnyWave. Before ICA, we per-

formed a principal component analysis (PCA) to reduce the number of

dimensions to 100. Based on the time course and the scalp topogra-

phy, components related to cardiac activity or eye blinking were

rejected (Jung et al., 2000).

2.5 | Separation of neuronal sources

To identify and separate the different brain sources that contribute to

the MEG recordings, we used second-order blind identification (SOBI;

Belouchrani et al., 1993, 1997; Tang et al., 2005). SOBI takes advan-

tage of the temporal correlation within sources; it finds an unmixing

matrix by minimizing the sum-squared cross-correlation between one

component at time t and another component at time t + s, across a

set of time delays. This way, SOBI allows the identification of highly

temporally correlated neuronal sources (Belouchrani et al., 1993).

TABLE 1 Clinical information of each patient

Age Epilepsy Hand dominance Language organization

Patient 1 36 Bilateral temporo-mesial Bilateral Atypical bilateral

Patient 2 37 Bilateral temporo-mesial Right Left typical

Patient 3 17 Left operculo-insular Right Left typical

Patient 4 36 Right temporo-mesial Right Left typical

Patient 5 26 Bilateral extensive on heterotopia Left Right atypical

Patient 6 21 Left temporal Right Left typical
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For each patient, we concatenated all trials across all conditions,

seeking one unmixing matrix per participant. We applied PCA on the

preprocessed MEG data to reduce its dimensionality to 100. Then, we

computed SOBI using the Fieldtrip algorithm with 100 time delays

(�50 ms; Tang et al., 2005). For comparison purposes, we repeated

the analysis with 50 and 150 dimensions, without notable differences

in the results. Although only some of the components were putative

neuronal sources, we did not discard any of them at this point.

2.6 | Identification of components responding to
the stimulus

For each SOBI and SEEG channel, we checked if they had a significant

event-related potentials (ERP) based on all triggers (old and new). To

do so, for each channel, we tested that each time point across trials

was significantly different from zero with a t-test, obtaining a p value

and a t-value. Then, we used the local false discovery rate (LFDR;

Benjamini & Heller, 2007) with a LFDR alpha of .2 (Pizzo et al., 2019).

This resulted in a threshold on the t-values that takes into account

multiple comparisons between samples and components. Briefly,

LFDR identifies which values stand out from the noise, whose distri-

bution is assumed to be Gaussian. In our case, given a distribution

with all t-values, LFDR determines the threshold (one positive and

another negative) from which the values are considered statistically

significant. For example, we computed one LFDR for all SOBI compo-

nents during recognition (“old” trials), obtaining a single threshold for

all the datasets of a participant in that condition. To remove artefac-

tual single points, we selected only those points during the first sec-

ond after the stimulus and we imposed a minimum number of

consecutive significant time samples (10 ms in this work). We

repeated this process in each subject and condition, for SEEG and for

SOBI data separately.

2.7 | Selection of deep SOBI-MEG components

First, we rejected all the components with a noisy topography. To

determine putative deep SOBI components, we visually reviewed all

the components with a significant response and compared their

topographies across patients. We identified only one component with

a robust topography that was similar across patients and that

reflected a putative deep origin. The positive and negative poles of

the topography were far from each other, indicating an origin remote

from the recording sensors. We selected this SOBI component as a

putative deep SOBI-MEG.

2.8 | Differences between “old” and “new”
conditions

We evaluated whether each SEEG and SOBI component with a signif-

icant ERP was also modulated as a function of the experimental

conditions. For each patient and time point, we compared with a t-

test defined across trials the amplitude of the ERPs between old and

new conditions. Then, to correct for multiple comparisons, we com-

puted LFDR on the t-values for each dataset (i.e., each patient), lead-

ing in a test for all SEEG channels and SOBI components for

significant ERP differences.

2.9 | Depth-surface temporal correlation

We computed the zero-lag correlation (Matlab function corrcoeff )

between the SEEG and SOBI components on their continuous time-

series during stimuli presentation (around 8 min of recordings). The

use of many time points implies that even very low values of correla-

tion can be identified as significant. Here too, we used LFDR on the

correlation values to determine which pairs of SEEG-SOBI correla-

tions were statistically significant. To improve the distribution estima-

tion in the LFDR analysis, we included all the SEEG and SOBI-MEG

signals, not only those with a significant ERP. in. We applied a Fischer

transformation on the correlation coefficients to approximate a

Gaussian distribution (Pizzo et al., 2019). Then, we applied LFDR on

all the correlation values for each patient, considering as significant

those pairs with a correlation, in absolute value, higher that the LFDR

threshold.

2.10 | Partial correlation between SOBI-MEG and
SEEG across mesial structures

We determined the location of each SEEG contact using the software

GARDEL (available at https://meg.univ-amu.fr; Medina Villalon

et al., 2018). This tool allows automatic electrode localization and con-

tact labeling according to a given atlas. Here, we used the virtual epi-

leptic patient atlas (Wang et al., 2020), based on Destrieux

parcellation (Destrieux et al., 2010) and subdivided to correspond

more to anatomical and functional clinical areas. We selected three

regions located in the temporal lobe: anterior hippocampus, rhinal cor-

tex, and middle temporal gyrus. We chose these structures because

they were recorded in most of the patients (four out of five) and

because they presented differences between the old and new condi-

tions in all patients. For each region, we selected the contact with the

highest correlation with the SOBI-MEG. To discriminate the contribu-

tion of each region to the SOBI-MEG, we applied a partial correlation

analysis between the continuous data of the three SEEG contacts and

the SOBI-MEG (Marrelec et al., 2006). For each pair of signals, the

partial correlation aims to disentangle the information present only in

both signals (direct correlation) from the activity that originates in

other regions (indirect correlation).

To determine whether the values of partial correlation were sig-

nificantly different from zero we followed a surrogate approach

(Cohen, 2014). We used the continuous time-series (i.e., trials were

concatenated) to generate the surrogates. For each patient, we cre-

ated a subset of surrogate data (N = 1000) by randomly displacing in
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time the SEEG traces. Each SEEG signal was divided into two seg-

ments of random length and their order was switched. This way, the

temporal relationship between signals is broken, but their autocorrela-

tion is preserved (Pereda et al., 2005). We then computed the partial

correlation between the surrogate SEEG and the SOBI-MEG. The sur-

rogate results of each region approximate a normal distribution. Thus,

the p value of significance can be computed as the distance (in units

of standard deviation) from the original value to the mean of the sur-

rogate distribution. The threshold of significance was set to p = .025

for each patient and region.

2.11 | Source localization of SOBI-MEG

If SOBI correctly separates brain sources into different components,

the obtained component topographies are expected to be dipolar

(Delorme et al., 2012). Their localization can be estimated with an

equivalent current dipole. If two or more sources are simultaneously

coactivated, one SOBI component may reflect the combination of

these activities, that is, it represents a network rather than a single

source. In some cases, the SOBI components may correspond to a

bilateral activation of homologous brain regions that can be modeled

by symmetric dipoles (Bénar et al., 2021; Piazza et al., 2020). We

assumed the latter for the SOBI-MEG, representing a bilateral activa-

tion of the mesial network. Thus, to localize the source of each SOBI-

MEG topography, we applied a two-dipole fitting procedure that was

symmetric with respect to the longitudinal plane. For the forward

model, we used the shaped single shell approximation implemented in

FieldTrip (Oostenveld et al., 2011), which is based in Nolte's solution

(Nolte, 2003). Each point of a grid within the brain volume was associ-

ated to a triplet of orthogonal dipoles. We compared the projection of

the model composed by those triplets with the SOBI topography,

computing the goodness of fit (GOF) at each location as one minus

the ratio of the sum of squared difference between the SOBI map and

the model divided by the sum of square of the SOBI map. A confi-

dence interval was estimated by including all points between the max-

imum GOF minus the distance from the maximum GOF to 1 (Pizzo

et al., 2019):

GOF> max GOFð Þ� 1�max GOFð Þð Þ

3 | RESULTS

3.1 | Identification of putative deep sources on
MEG with SOBI

We performed simultaneous recordings of MEG and SEEG in six

patients with focal drug-resistant epilepsy. To identify the different

sources mixed on the MEG signals, we used SOBI on the MEG signals

recorded during the task. A visual review revealed one SOBI-MEG

component that was present in all patients, with similar topographies

(Figure 1) and ERPs (Figure 2). We selected this component as a

F IGURE 1 Second-order
blind identification (SOBI)
magneto encephalographic (MEG)
component of a putative deep
source. (a) Topography of the
putative deep SOBI-MEG for all
patients. The topography is
extracted from the mixing
matrixes obtained with the SOBI

algorithm and represents the
contribution of the SOBI source
to each sensor. (b) Topography of
the SOBI-MEG in all controls
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putative deep source. Its topography resembles a single dipole located

far from the surface, with the positive and negative poles of the radial

component of the magnetic field topography over the temporal lobes

(Figure 1a). The averaged explained variance of this component, that

is, its contribution to the total MEG recordings, was 5.86% (between

1.44% and 13.4%). Its ERP presents a complex pattern (Figure 2a). It

has the earliest response at 110 ms, which matches in time with the

N110 visual component recorded in many areas, including the fusi-

form gyrus and the inferior frontal gyrus (Barbeau et al., 2008). The

second component peaks at 250 ms, followed by a third peak of

inverse polarity (note that the polarity of the signal is arbitrary in

SOBI, as it depends on the interaction between spatial and temporal

components) and a maximum amplitude occurring between 400 and

600 ms (Figure 2a).

To confirm that the origin of the source was physiological and not

pathological, we repeated the same memory protocol for MEG

recordings obtained from six healthy volunteers. We identified a SOBI

component with the same pattern as the one found in patients, shar-

ing a similar deep topography (Figure 1b), and with the same time

response, characterized by the maximums of opposite polarities at

�250 and �500 ms (Figure 2b). In this group, the averaged explained

variance of the SOBI-MEG was 6.59% (between 3.15% and 11.95%).

F IGURE 2 Second-order blind identification (SOBI)–magneto encephalographic (MEG) response to recognition. Response of the SOBI-MEG
components represented in Figure 1. Solid and dashed traces are the averaged ERP (mean ± s.e.m. across trials) for old (recognition) and new
trials, respectively. Stars indicate statistically significant differences in amplitude between old and new trials (unpaired t-test corrected using local
false discovery rate [LFDR]).
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3.2 | SOBI-MEG differentiates old and new images

The hippocampal formation and surrounding areas have been shown

to present characteristic ERPs in recognition memory tasks, during

which their activity is modulated by object recognition (Axmacher

et al., 2010; Barbeau et al., 2008, 2017; Merkow et al., 2015; Rugg &

Curran, 2007). If the putative deep SOBI-MEG is related to the activ-

ity of mesial structures, a modulation of its ERP during the memory

task is expected. To test this hypothesis, we compared the ERP

responses in old versus new trials, testing for different amplitudes

between both conditions at each time point. In good agreement with

our hypothesis, we found statistically significant differences in five of

the six patients and in all healthy controls (Figure 2). This modulation

is observed at around 500 ms, with higher amplitudes, in absolute

value, for old images. This result coincides with the hippocampal P600

responses for memory recognition (Barbeau et al., 2008, 2017;

Merkow et al., 2015). Intriguingly, the differences between conditions

are not only observed in amplitude but also in delay. ERPs have the

same amplitude profile during the first 400 ms; then, there is an early

peak in the recognition of old images (around 500 ms) that appears

later in new images (around 600 ms, Figure 2). Together, these results

support the deep origin of the SOBI-MEG topography.

3.3 | SOBI-MEG correlates with mesial areas in
intracranial recordings

To further elucidate the putative origin of the SOBI-MEG component,

we resorted to the intracranial field potentials recorded simulta-

neously with MEG from different regions. We compared the time

courses of both datasets (SOBI-MEG and SEEG) by computing the

zero-lag correlation, within each patient, between the SOBI-MEG

topographies and all the recorded SEEG channels. A high correlation

between SOBI-MEG and SEEG would indicate that both signals carry

similar information, most likely because the source of the SOBI-MEG

is close to the recorded channel. In Figure 3b, we have summarized

the results for all patients, where color codes the correlation between

the SOBI-MEG and the SEEG channels within the electrode (there

were between 8 and 15 channels per electrode). For two patients

(Patients 4 and 6), the distribution of the correlation values and the

threshold of significance with LFDR is represented in Figure 3c. The

specific location of the contacts for each patient and their correlation

with SOBI-MEG is represented in Figure 3d.

In five out of six patients, the highest correlation values were

found in electrodes located in mesial structures, maximal in TB (with

contacts located in the anterior temporo-basal cortex, including the

rhinal cortex), followed by B (with contacts located in the head of hip-

pocampus), A (amygdala) and TP (temporal pole). Therefore, we

focused the analysis on the brain structures recorded with these elec-

trodes (Table 2). Note that electrodes TB, TP, and A were not

implanted in Patient 3, limiting the opportunities for observing corre-

lations with mesial structures. We also computed the contrast

between experimental conditions (i.e., old vs new items) for each

structure during the same window where the SOBI-MEG was modu-

lated (400–600 ms). We found differences in the hippocampus, rhinal

cortex and middle temporal gyrus of all patients with recordings in

these locations. We also found differences in amygdala, temporal pole

and inferior temporal sulcus in three out of the five patients implanted

in these regions (Table 2).

The three mesial structures showing differences between old and

new items in all the patients with available recordings were hippocam-

pus, rhinal cortex, and middle temporal gyrus (Figure 4a). In Figure 4b,

we show the averaged ERPs of the three regions for one patient. The

hippocampus has a positive maximum at 400 ms in both old and new

conditions, a component previously labeled hippocampal P600

(hP600; Barbeau et al., 2017). Moreover, this peak is followed by a

fast decay, with a negative peak at 570 and 670 ms for old and new

images, respectively. The rhinal cortex has a negative peak at 360 ms

that corresponds to the N360 previously reported in this area

(Barbeau et al., 2008, 2017). Similar to the hippocampus, the negative

peak is followed by a positive peak, with maxima at 510 and 650 ms

for old and new images respectively. The middle temporal gyrus has

the earliest response, with a double peak of opposite polarity at

150 and 210 ms. This activity may correspond to the visual response

that can be recorded in several occipitotemporal brain areas (Barbeau

et al., 2008). Moreover, following the dynamics of the other struc-

tures, it has a later response, with different delays for each condition.

In short, the negative and positive peaks of old images were at

400 and 580 ms, respectively, while they were at 460 and 680 ms for

new images.

The fact that the activity in these regions is correlated during the

cognitive task (Figure 4b) may affect the correlation between SOBI-

MEG and SEEG. A high correlation value may not indicate that we

have recorded the actual brain source but another region whose activ-

ity is correlated with the source of interest. To differentiate these sce-

narios, we computed the partial correlation between the SOBI-MEG

and the selected structures as recorded in SEEG (Figure 4c). This anal-

ysis tests whether the correlation between the SOBI-MEG and one

region is direct (high partial correlation) or undirect, meaning that the

common information is also in other regions (high correlation but low

partial correlation). We excluded Patients 3 and 5 from this analysis

because the three regions were not recorded in those cases. The

results confirmed the high partial correlation between the hippocam-

pus and rhinal cortex with the SOBI-MEG. The highest partial correla-

tion was found in the rhinal cortex (0.187 ± 0.145, mean ± SD),

followed by the hippocampus (0.086 ± 0.037) and the middle tempo-

ral gyrus (0.031 ± 0.016). The values were significant in all patients for

the hippocampus and rhinal cortex, but not the middle temporal gyrus

(surrogate analysis, see Section 2).

One limitation of the monopolar montage used in this analysis is

that activities arising from remote areas may affect the time course

recorded at a given sensor due to volume conduction and conse-

quently the correlation between them and the SOBI-MEG. We con-

verted the data with a bipolar montage, which aims to represent only

the local activity, and we repeated the partial correlation analysis

(Figure 4d) in the same sensors as in Figure 4c. The results
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corroborated the findings, with the highest partial correlation in the

rhinal cortex in all patients (0.167 ± 0.090), followed by the hippocam-

pus (0.037 ± 0.010) and the middle temporal gyrus (0.035 ± 0.019).

The latter was significant in only three of the four analyzed patients

(surrogate analysis). Finally, we focused on whether the memory

effect in SOBI-MEG was the same as in the regions analyzed in

Table 2. We measured the difference of the ERP between old and

new conditions in both SOBI-MEG and SEEG contacts (Figure 4e) and

we computed the correlation between them (Table 3). In good agree-

ment with the previous results (Table 3 and Figure 4c,d), the maximum

correlation value was found in the rhinal cortex in three out of four

patients where we recorded this structure (0.668 ± 0.156), followed

by middle temporal gyrus (0.584 ± 0.197) and hippocampus (0.534

± 0.161). Overall, these results suggested that the origin of the SOBI-

MEG is not a single structure, but it is the combination of multiple

coactivated sources, including the hippocampus and the rhinal cortex

(Figure 4f), confirming the notion of a mesial network.

3.4 | Source localization analysis places the origin
of the SOBI-MEG in the mesial temporal lobe

Finally, we performed a source localization analysis on the SOBI

topography. Although the topographies were dipole, that is,

F IGURE 3 Second-order blind identification (SOBI)–magneto encephalographic (MEG) correlated with mesial intracerebral recordings.
(a) General intracerebral implantation scheme and nomenclature. (b) Absolute value of zero-lag correlation between continuous time-series in the
SOBI-MEG and in stereo-electroencephalography (SEEG). On the y axis are the names of the SEEG electrodes. For each electrode, the channel
with the highest correlation is represented. Light grey indicates that the electrode was not implanted in the patient. (c) Distribution of correlation
values between all SOBI-MEG and SEEG pairs for two patients. Red crosses are the threshold of significance obtained with local false discovery
rate (LFDR). (d) Reconstructed 3D brain mesh for each patient with SEEG contacts and their color-coded correlation with SOBI-MEG. Blue lines
represent the contacts across each electrode, and both the color and size of the spheres indicate the correlation of that contact. Only significant
correlation values are displayed.
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suggesting only one source, a single dipole fit would localize the

source in the middle of the brain (rather implausible location,

Figure S1). Thus, we assumed that the SOBI-MEG represented a bilat-

eral activation of the mesial network (Piazza et al., 2020). We com-

puted the inverse problem with two dipoles that were symmetric with

respect to the sagittal plane (Figure 5). All points within the brain vol-

ume were considered as potential solutions, without constraining the

analysis to subcortical regions. The results revealed that the two

sources did not converge to the same location in the center of the

brain, but they were extended along the mesial cortex with a high

goodness of fit (GOF > 0.9; Figure 5). The distance of the dipoles at

the best location to the center of the brain, defined as the cross-point

of the fiducials, was between 36 and 71 mm (average 51 mm across

patients).

To further study how two sources give rise the observed dipolar

topography, we analyzed the contribution of each dipole of the sym-

metric pair. To do so, we solved the forward model at the best loca-

tion for each individual dipole and examined their projection to the

sensor level (Figure 5b). The topologies of each dipole were clearly

lateralized, with one pole at the extremum of the head coincident the

SOBI-MEG topography (Figure 1), and the opposite one occupying a

large area in the occipital part and contralateral side. This indicated

that each pole of the SOBI-MEG topography in Figure 1 corresponds

to a single mesial source, while the opposite poles of the individual

dipoles were mutually canceled. Overall, these results reinforce the

interpretation of the SOBI-MEG as a mesial network involved in mem-

ory recognition.

4 | DISCUSSION

We report the identification of mesial activity in MEG during a recog-

nition memory task in patients with focal drug-resistant epilepsy.

Using SOBI, a BSS technique developed to disentangle the activity of

sources that are mixed on the MEG sensors, we extracted one compo-

nent, or SOBI-MEG, with a putative deep origin. This component was

robust across patients, with similar topographies (Figure 1a) and time

courses (Figure 2). It was likewise detected in all healthy controls.

With simultaneous MEG-SEEG recordings serving as a ground truth

of the brain activity, we confirmed the origin of the SOBI component

as a mesial network comprising the hippocampus and the rhinal

cortex.

The time-tested recognition memory task we used is well known

to involve the mesial temporal lobe, with different responses between

old and new images, especially in the hippocampus and the rhinal cor-

tex (e.g., Barbeau et al., 2008, 2017; Despouy et al., 2020). We found

that differences in the SOBI-MEG ERP were related in time to those

observed in SEEG ERP across structures in the mesial temporal lobe.

A partial correlation analysis confirmed the origin of the SOBI-MEG as

a combination of the activities from, at least, the hippocampus and

the rhinal cortex. Importantly, this analysis revealed that the SOBI-

MEG is not only capturing the common activity between these struc-

tures, but also that it contains information specific to each node of

the mesial network and not shared by the other areas included in the

analysis (Figure 4c,d).

4.1 | Detectability of deep sources with BSS on
simultaneous MEG-SEEG

The possibility to detect deep brain sources related to cognitive pro-

cesses using surface sensors, with a special focus on the hippocam-

pus, has been a matter of debates in recent years (Pu et al., 2018;

Ruzich et al., 2019). Very few previous studies have used simulta-

neous intracranial and surface recordings to explore this issue. Such

kind of co-registration is the only way to ensure the origin of the sig-

nals detected noninvasively, although it is not exempt of limitations

(see below). Korczyn and colleagues (Korczyn et al., 2013) identified

hippocampal theta on the MEG sensors, with a spatial pattern indica-

tive of a deep source. While these results exhibited an accurate corre-

lation between surface and deep signals, the authors limited their

analysis to the hippocampus. Therefore, the possibility remains that

the MEG sensor was recording a third region highly coherent at zero

lag with the hippocampus rather than hippocampus itself. Moreover,

because the activity recorded at the surface is the combination of sev-

eral brain sources, the raw MEG data cannot be easily linked to a sin-

gle source. It is necessary to resort to a methodology that can

separate the different sources, such as BSS, to recover the time series

associated with one region or one coherent network.

A popular BSS technique is independent component analysis

(ICA). ICA assumes that the sources have specific spatial distributions

that are invariant during the recording session (Comon &

Jutten, 2010), and that the time-series of the components are inde-

pendent, although it is robust to even high levels of source correlation

(Makarova et al., 2011). Due to its versatility, ICA has been widely

used to remove artifacts (Jung et al., 2000) and to separate neuronal

sources in local field potentials (Herreras et al., 2015; Makarov

TABLE 2 Correlation between SOBI-MEG and SEEG across
mesial structures

Correlation

Patient 1 2 3 4 5 6

Hippocampus .24a .10a .10a .24a .12a .09a

Amygdala .28a .10a - .19 .14a .01

Temporal pole .07 .25a - .26 .13a .07a

Rhinal cortex .34a .18a - .40a - .10a

Middle temp gyrus .19a .18a - .29a .20a .06a

Inferior temp gyrus .16 .14 - .22 .19 -

Inferior temp sulcus .38a .20 - .37a .05a .04

Note: A hyphen means that no SEEG contact was present in this region for

this patient.

Abbreviations: MEG, magnetoencephalography; SEEG, stereo-

electroencephalography; SOBI, Second-order blind identification.
aIndicates that the region showed differences in the ERP for old and new

images between 400 and 600 ms.
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et al., 2010), particularly in EEG and MEG (Debener et al., 2005;

Delorme et al., 2002; Malinowska et al., 2014; Onton et al., 2005;

Tang et al., 2002). Moreover, a recent study has compared the effec-

tiveness of different BSS algorithms when analyzing dynamical func-

tional connectivity on MEG (Tabbal et al., 2021). It has been argued

that ICA relies not only on the independence of the sources but also

on their sparsity (Daubechies et al., 2009), which has been recently

proposed as a key element to discriminate deep sources from the rest

of the signals (Krishnaswamy et al., 2017). SOBI (Belouchrani

et al., 1993, 1997), the alternative BSS method used here, is based on

covariance; it minimizes the sum-squared cross-correlation between

the components across a set of time delays and emphasizes processes

F IGURE 4 Partial correlation
between stereo-
electroencephalography (SEEG)
signals and second-order blind
identification (SOBI)–magneto
encephalographic (MEG)
component. (a) MRI (3D T1) with
reconstruction of SEEG
electrodes for Patient 4. Arrows

indicate the locations of the
contacts for each selected region.
(b) Averaged event-related
potentials (ERPs) for old (solid
line) and new (dashed line)
conditions from the three
analyzed regions in Patient
4 (mean ± s.e.m. across trials).
Stars indicate statistically
significant differences in
amplitude between old and new
trials (unpaired t-test corrected by
local false discovery rate [LFDR]).
(c) Absolute value of partial
correlation between the SEEG
recorded in three structures using
a monopolar montage and the
SOBI-MEG. Black lines represent
the threshold of significance at
p = .025 for each patient
(surrogate analysis). (d) Same
partial correlation analysis but
using a bipolar montage for the
SEEG recordings. (e) Example of
difference between averaged
ERPs across trials in old minus
new conditions in one patient. It
can be appreciated the
recognition effect at �500 ms. (f)
Representative traces of
hippocampal activity (monopolar
SEEG montage) highly correlated
with the SOBI-MEG component
during the task
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that are correlated across neighboring time-points. We decided to use

SOBI in this work because, contrary to ICA, it does not assume inde-

pendency at each time point, and because its reliance on second-

order statistics makes it more robust to limited data length with a

lower computational cost (Sahonero-Alvarez & Calderon, 2017). Fur-

thermore, it has been argued that SOBI is more robust to variations in

the underlying mixing matrix (Lio & Boulinguez, 2013) and in cases of

temporal jitter (Huster et al., 2015).

ICA and simultaneous MEG-SEEG recordings were previously

combined to identify epileptic spikes in the MEG sources (Pizzo

et al., 2019). Because the signal of interest correlated with the hippo-

campus or the amygdala, but not with any other recorded structure,

these structures were taken to be the sources of some independent

components. However, it is important to note that the amplitude of

the pathological epileptic spikes is much higher than the spontaneous

physiological activity and thus presumably much easier to detect from

the surface. It remained unclear whether non-pathological hippocam-

pal activity resulting from cognitive processes could be detected on

MEG, which was the goal of the present study. The data reported

here confirm that hippocampal and rhinal cortex activity can be

detected with MEG during a cognitive task. Although the analyzed

SOBI-MEG represents a network and not a single region, the partial

correlation analysis revealed that both regions do contribute to the

network and, importantly, that this contribution is unique and not

shared by the other analyzed structures.

We further supported these results with a source localization

analysis on the SOBI topographies (Figure 5). We decided to use two

symmetric dipoles as brain sources obtained with BSS on MEG can

often be explained with a dipole (Delorme et al., 2012), even though

this is not guaranteed. Moreover, dipoles are justified for several rea-

sons. First, the nondipolar part of the sources decreases very rapidly

with distance and can be neglected for deep sources (Jerbi

et al., 2004). Second, and in opposition with distributed source imag-

ing methods, the equivalent dipole fitting does not absolutely require

a noise covariance matrix, which cannot be easily estimated for BSS

topographies. Third, the dipole fitting is robust to high level of correla-

tions (C. G. Bénar et al., 2005) that are expected in cognitive para-

digms. The source localization analysis was highly accurate to explain

the SOBI-MEG topographies in Figure 1a, with large deep mesial

areas with high GOF values (Figure 5a). This is compatible with the

interpretation of the SOBI-MEG as a mesial network including the

hippocampus and rhinal cortex (Figure 4), but it is important to keep

TABLE 3 Correlation of the memory effect between SOBI-MEG
and mesial structures

Correlation ERP old-new (bipolar)

Patient 1 2 3 4 5 6

Hippocampus .56 .60 .61 .74 .27 .45

Amygdala .61 .53 - .83 .34 .28

Temporal pole .61 .51 - .49 .30 .22

Rhinal cortex .69 .55 - .88 - .55

Middle temp gyrus .67 .40 - .84 .64 .37

Inferior temp gyrus .48 .38 - .83 .39 -

Inferior temp sulcus .16 .46 - .76 .45 .53

Note: Bold values represent the area with highest correlation in each

patient.

Abbreviations: ERP, event-related potentials; MEG, magneto

encephalographic; SOBI, Second-order blind identification.

F IGURE 5 Source localization of the second-order blind identification (SOBI)–magneto encephalographic (MEG) topography. (a) Source
localization of the SOBI-MEG topography with two symmetric dipoles for each patient. (b) Projection of the symmetric dipoles to the sensor level
for Patient 1. Each topography represents the forward model of each individual dipole of the symmetric pair.
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in mind that deep sources are expected to have large confidence

intervals due to the low spatial frequencies on the scalp (large changes

in position are needed to produce significant changes in the

topography).

When analyzing separately each individual dipole of the symmet-

ric pair, their projections to the sensor level shows a lateralized activ-

ity (Figure 5b), similar to the topographies described for the

hippocampus in previous works (Horner et al., 2012; Pizzo

et al., 2019). This suggests that each pole of the SOBI-MEG topogra-

phy (Figure 1) corresponds to a different source, one on the left and

the other on the right hemisphere. According to our results

(Figure 5b), the opposite poles of the sources would be overlapped in

the occipital and contralateral areas, and they would be mutually can-

celed. However, it is possible that the second pole peak at a location

not measured by the MEG (i.e., front or bottom of the head). New

MEG systems based on optically pumped magnetometers (OPM) offer

the possibility to extend the area of sensor placement (Boto

et al., 2018). Importantly, a recent study using these sensors suggests

that the hippocampus has a dipolar pattern, with one pole in the cor-

responding temporal lobe, and the opposite at the roof of the mouth

(Tierney et al., 2021).

The challenge that still lies ahead is to fully reconstruct the time

course of each structure in the MEG signal and to differentiate it from

other coactivated neuronal sources. The partial correlation analysis

confirmed a certain degree of decorrelation between the sources con-

forming the SOBI-MEG; thus, it is reasonable to expect that BSS algo-

rithms can separate them. Still, the co-activation of the regions within

the mesial network across trials can increase the temporal correlation

and prevent perfect separation. Indeed, if there is not enough inde-

pendency in space and in time between the sources, the BSS algo-

rithm may not be able to separate them, and it will gather several

sources into a single component. The combination of several proto-

cols involving different structures may increase decorrelation and

facilitate the separation of the regions.

4.2 | Memory response

The hippocampal formation, which comprises the hippocampus, the

subiculum and the entorhinal cortex, is a key structure for spatial navi-

gation and memory processes (Andersen et al., 2006;

Eichenbaum, 1999; Morris et al., 1982). In humans, studies using

SEEG have shown an increase of the P300 component in the ERP of

the hippocampus during novelty detection (Halgren et al., 1995;

Ludowig et al., 2010; Polich, 2007), while memory formation and face

recognition elicited a hippocampal P600 component (Axmacher

et al., 2010; Barbeau et al., 2008, 2017; Merkow et al., 2015; Rugg &

Curran, 2007). In the rhinal cortex, an ERP with a double negative

peak at N240 and N360 is also identified during memory recognition,

concurrently with the activation of the amygdala and temporal pole

(Barbeau et al., 2008, 2017; Despouy et al., 2020).

The fine analysis of the temporal dynamics of the SOBI-MEG dur-

ing recognition memory is beyond the scope of the current study.

Nevertheless, several features can be inferred from our results. In

scalp EEG, the ERP is characterized by two components responding to

old and new conditions (Hoppstädter et al., 2015; Rugg &

Curran, 2007). The first occurs between 300 and 500 ms and is

related to the prefrontal cortex. The second (400–800 ms) is linked

with the hemodynamic response of the hippocampus and parahippo-

campal cortex (Hoppstädter et al., 2015), although this relation does

not determine the origin of the electrical field in EEG. In the present

work, the differences found in the SOBI-MEG occurred around

500 ms, corresponding probably to the second component reported

in EEG. Intracranial signals corroborated the origin of the component,

as old/new effects were also recorded in the hippocampus and rhinal

cortex during the same time window (Figures 3b and 4a). Differences

were observed not only in amplitude, but also in time, with shorter

time delays for old versus new trials (Figure 2 and 4a; Trautner

et al., 2004). Interestingly, the duration of this delay was between

100 and 150 ms, which corresponds to one theta cycle (�8 Hz). In the

hippocampus, theta rhythms coordinate the activity between struc-

tures (Colgin et al., 2009; L�opez-Madrona et al., 2020; L�opez-

Madrona & Canals, 2021), providing different temporal windows for

communication, with different cells active at different phases

(Schomburg et al., 2014). Furthermore, it has been suggested that

both the encoding and the retrieval of events are segregated in the

theta rhythm, either in the phase of the theta cycle (Hasselmo

et al., 2002), or in different cycles of the same (Lopes-Dos-Santos

et al., 2018; Zhang et al., 2019) or distinct theta oscillations (L�opez-

Madrona et al., 2020). To account for the old-new delay, we observed

here, we hypothesize that old and new images may be processed at

distinct cycles of the hippocampal theta rhythm. For the old condition,

the information about the memorized images in the thalamocortical

working memory loop would coherently integrate in the hippocampus

with the entorhinal input transmitting information about the external

stimulus (de Vries et al., 2020; Raghavachari et al., 2006), thus facili-

tating the recognition in a first theta cycle. On the contrary, such inte-

gration would not occur in the new condition, as both inputs would

mismatch. Consequently, the image would not be retrieved in the first

theta cycle. The persistent external stimulus would enhance the ento-

rhinal input in successive cycles, triggering the hippocampal circuit.

4.3 | Step-by-step selection of the SOBI-MEG
component

To facilitate the obtention of the SOBI-MEG, we propose a list of

steps that can be followed in subsequent studies:

1. After computing SOBI, preselect only those SOBI components

with, at least, an explained variance of 0.5%. All the other compo-

nents are considered as noise.

2. To exclude the components that are not related to the protocol,

select the components with a significant response, that is, ampli-

tude of the ERP different from zero, to the three conditions of the

protocol (encoding, old and new).
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3. It is possible to focus on the difference between old and new trials.

We expect to have a modulation of the ERP around 500 ms, with

different amplitudes for both stimuli. However, in our dataset,

there were two subjects without differences between old and new

trials, thus, no components survived this stage. In that case, this

step is not considered and all the components from the second

stage should be further considered.

4. The source localization of the SOBI-MEG topography may indicate

the deep origin of the component. This can be estimated as the

distance of the dipoles after source localization to the center of

the brain. For all the patients in this study, this distance was

between 36 and 71 mm (mean 51 mm). Values further away the

center are unlikely to reflect the activity of mesial areas.

4.4 | Limitations of SEEG

There are two main restrictions inherent to SEEG recordings that may

limit the conclusions of our study. First, only a small part of the brain

activity can be sampled with SEEG. Therefore, it is possible that the

SOBI-MEG corresponds to a source not recorded with the available

SEEG probes. Nonetheless, the timing of the different responses that

we captured with SOBI-MEG have been reported across many studies

primarily in the mesial structures included in the current study

(Barbeau et al., 2008, 2017; Merkow et al., 2015). This reduces the

likelihood that nonvisible areas may have contributed to the SOBI-

MEG component that we described. Secondly, the activity at each

SEEG site is itself also composed of multiple field potentials converg-

ing on each contact, and the recorded activity may not be entirely

local (Herreras, 2016). Bipolar montages (computed as the difference

between adjacent contacts) allow a more precise characterization of

local transient events. However, they may not recover the correct

time-course of each area during ongoing field potentials (Fernández-

Ruiz & Herreras, 2013; Martín-Vázquez et al., 2013) as, for instance,

close generators with uncorrelated activities would cancel the resul-

tant current. BSS methods have been proposed as a powerful meth-

odology to extract the time course associated with different sources,

either local or propagated, with promising results in the rat hippocam-

pus and cortex (L�opez-Madrona et al., 2020; Makarov et al., 2010;

Ortuño et al., 2019). Nevertheless, the interpretation of the different

components is not straightforward and requires prior knowledge of

the brain sources and the geometrical propagation of the fields in

order to correctly infer the origin of the components (Herreras

et al., 2015). More work is needed to investigate the use of BSS on

SEEG signals in the context of cognitive paradigms.

4.5 | Conclusion

Blind-source separation methods reveal deep mesial activities in the

MEG surface recordings whose localization could be reliably estab-

lished through correlations with intracerebral SEEG recordings. This

result has direct implications for clinical and cognitive neuroscience

research. For example, accessing mesial structure activity with MEG

could help to better understand processes underlying pathologies

such as Alzheimer's disease or epilepsy and, in particular, the detec-

tion of their early stages (Friston et al., 2015; Sharma &

Nadkarni, 2020). The use of MEG could improve our knowledge of

mesial temporal lobe processing in humans and of the implication of

this region in memory processes. Overall, this opens new venues for

the use of noninvasive MEG signals for characterizing physiological

deep activity.
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