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ABSTRACT Outbreaks of influenza occur on a yearly basis, causing a wide range of symptoms across the
human population. Although evidence exists that the host response to influenza infection is influenced by
genetic differences in the host, this has not been studied in a system with genetic diversity mirroring that of the
human population. Here we used mice from 44 influenza-infected pre-Collaborative Cross lines determined to
have extreme phenotypes with regard to the host response to influenza A virus infection. Global transcriptome
profiling identified 2671 transcripts that were significantly differentially expressed between mice that showed
a severe (“high”) and mild (“low”) response to infection. Expression quantitative trait loci mapping was per-
formed on those transcripts that were differentially expressed because of differences in host response phenotype
to identify putative regulatory regions potentially controlling their expression. Twenty-one significant expression
quantitative trait loci were identified, which allowed direct examination of genes associated with regulation of
host response to infection. To perform initial validation of our findings, quantitative polymerase chain reaction
was performed in the infected founder strains, and we were able to confirm or partially confirmmore than 70% of
those tested. In addition, we explored putative causal and reactive (downstream) relationships between the
significantly regulated genes and others in the high or low response groups using structural equation modeling.
By using systems approaches and a genetically diverse population, we were able to develop a novel framework
for identifying the underlying biological subnetworks under host genetic control during influenza virus infection.
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Given the wide variation in infectious disease severity across human
populations, identifying host genetic contributions to the infectious dis-
ease response is increasingly becoming an important avenue of research in

infectious diseases (Aouizerat et al. 2011; Newport and Finan 2011;
Petrovski et al. 2011; Rauch et al. 2010). Influenza A virus, the cause
of annual flu outbreaks with significant morbidity and mortality, shows
a wide degree of disease phenotype variation across human populations
(Li et al. 2009; Mallia and Johnston 2007; To et al. 2010; Tsalik et al.
2010; Yu et al. 2008), including clear differences in transcriptional profiles
after infection (Zaas et al. 2009). Although it has been difficult to disen-
tangle the contributions of host genetics and environmental cofactors,
there is evidence that host genetics do play some role in determining
outcomes (susceptibility/resistance) of influenza infection (Albright et al.
2008). The genes most differentially expressed in the lung between mild
and severe responders to influenza virus should provide insight into the
processes and pathways that contribute to susceptibility and resistance.
Gene networks that are under host genetic control are of particular in-
terest because they help us to better understand the role host genetics
plays in determining disease outcomes.
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A common animal model in influenza studies is the single gene
knockout mouse (Dawson et al. 2000; Imai et al. 2008; Karupiah et al.
1998; Kopf et al. 2002; Koyama et al. 2007; Szretter et al. 2007). In these
studies, authors have been able to demonstrate the importance of iso-
lated genes to infection models, but they did not consider the effect of
genetic backgrounds on host response. Alternatively, in several studies
authors have used panels of mouse inbred strains, including the BXD
recombinant inbred panel, to examine the effect of complex genetic
architecture on the response to influenza infection (Asanuma et al.
2001; Bender et al. 1995; Boon et al. 2009; Ding et al. 2008; Srivastava
et al. 2009). These studies reported that host genetic differences do
influence the transcriptional response to infection (Boon et al. 2009),
although it was less clear how host genetic differences impacted the
transcriptional environments that lead to different disease outcomes.

We investigated the genetic architecture of the host transcriptional
response to Influenza A using the Collaborative Cross (CC). The CC is
a panel of multiparental recombinant inbred strains with high and
uniform levels of genetic variation than other currently available
animal models (Collaborative Cross Consortium 2012). Recently,
investigators have used mice from incipient lines of the CC that are
not fully inbred (pre-CC) to demonstrate that, as expected, the CC has
more extensive phenotypic diversity than standard inbred strains pan-
els for a diversity of biomedical traits (Aylor et al. 2011; Durrant et al.
2011; Kelada et al. 2012; Philip et al. 2011). Using a very focused
design to select genes that are most relevant to the host response,
we identified genes that were differentially expressed between severe
and mild responders to influenza infection (as determined by extent of
viral replication and weight loss). We used these mice for expression
quantitative trait loci, or eQTL mapping, to identify genetic polymor-
phisms controlling the expression of these host response relevant
transcripts. Validation of the significant eQTL was conducted by mea-
suring the expression levels in the progenitor strains (Wayne and
Mcintyre 2002) and relating those measurements to the allele effects
predicted using the pre-CC. Finally, structural equation modeling
(SEM) allowed us to identify additional genes that had putative causal
or downstream relationships with the validated eQTL candidate genes,
using an adaptation of previous methods for simpler crosses (Aten
et al. 2008). This approach allowed us to use a high confidence net-
work of gene2marker relationships to drive discovery of other genes
important in the host response that are differentially expressed while
only being indirectly regulated by specific loci.

MATERIALS AND METHODS

Animals
Female mice (8216 weeks of age) from the eight founder strains (A/J,
C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/
PhJ, and WSB/EiJ) were originally obtained from The Jackson Labo-
ratory (http://www.jax.org) but bred at UNC-Chapel Hill under spe-
cific pathogen free conditions. Pre-CC lines used in this study are part
of the U.S. arm of the CC project (Collaborative Cross Consortium
2012). Mice were bred at Oak Ridge National Laboratories under
specific pathogen free conditions (Threadgill et al. 2011), shipped to
North Carolina and transferred directly into a BSL-3 containment
laboratory at UNC-Chapel Hill. All experiments were approved by
the UNC Institutional Animal Care and Use Committee (IACUC
protocol number 08-142).

Virus and cell lines
The mouse adapted influenza A strain A/PR/8/34 (H1N1) was used
for all infection studies. A/PR/8/34 stocks were made by infection of
10-day-old embryonated chicken eggs. MDCK cells grown in high

glucose Dulbecco’s minimal eagle’s medium (10% fetal bovine serum,
1% penicillin/streptomycin) were used for titering virus by plaque
assay.

Infections
Mice were lightly anesthetized via inhalation with Attane Isoflurane
(Minrad Inc, Orchard Park, NY). After they were anesthetized, mice
were infected intranasally with 5 · 1022 pfu of PR8 in 50 mL of
phosphate-buffered saline. Mice were assayed daily for morbidity (de-
termined as % weight loss), mortality, and clinical disease scores. At 4
days after infection, mice were killed via an overdose of isoflurane and
tissues were taken for various assays.

Immunohistochemical (IHC) analysis of viral replication
For detection of influenza virus antigen, we used serial sections from
formalin-fixed, paraffin-embedded lung samples. After deparaffiniza-
tion and rehydration, antigen retrieval was performed using 0.1%
protease (10 min at 37�). Endogenous peroxidase was blocked with 3%
hydrogen peroxide, and slides were briefly washed with phosphate-
buffered saline/0.05% Tween 20. Mouse anti-influenza virus nucleo-
protein (clone Hb65; ATCC) and horseradish peroxidase2labeled goat
antimouse IgG2a were used for 1 hr at room temperature. Peroxidase
activity was revealed by incubating slides in 3-amino-9-ethylcarbazole
(Sigma-Aldrich) for 10 min, resulting in a bright-red precipitate, fol-
lowed by counterstaining with hematoxylin. Tissue sections from non-
infected BALB/c mice and mouse IgG2a isotype antibody (R&D) were
used as negative controls. The extent of influenza viral antigen spread
across these slides was then scored in a blinded fashion on a 0-5 scale.

Selection of mouse lines
From an initial set of 99 female mice, derived from 99 CC lines we
selected mice at both extremes of the host response distribution
(Figure 1; supporting information, Figure S1) for transcriptional pro-
filing. Mice were selected to be part of the low response to infection
(LRI) group if they had weight change at day 4 postinfection (4 DPI)
of ,5% and an IHC score of either 0 or 1 (18 samples). Mice were
selected for the high response to infection (HRI) group if they had
weight change of .15% and an IHC score of either 4 or 5 (26
samples).

Genotyping
We genotyped each of the infected (phenotyped) animals (File S2;
please cite this report when using these data) as previously described
(Aylor et al. 2011) using test arrays for the Mouse Diversity Array
(Yang et al. 2009). Map distances were interpolated from the mm9/
NCBI37 build of the mouse genome using the mousemapconverter tool
(Cox et al. 2009; Shifman et al. 2006). Different markers assigned to the
same base position were removed. Genotypes were further processed
and checked for consistency using the prephappy perl script with
a genotype error model of 0.01 (W. Valdar, personal communication).

RNA preparation and oligonucleotide
microarray processing
At 4 days after infection, mice were killed and lung tissue harvested
and placed in RNAlater (Applied Biosystems/Ambion, Austin, TX)
and stored at 280�. The tissues were subsequently homogenized, and
RNA extracted as previously described (Pasieka et al. 2009). RNA
samples were spectroscopically verified for purity, and the quality of
the intact RNA was assessed using an Agilent 2100 Bioanalyzer. cRNA
probes were generated from each sample by the use of an Agilent
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one-color Low Input Quick Amp Labeling Kit (Agilent Technologies, Santa
Clara, CA). Individual cRNA samples were hybridized to Agilent mouse
whole-genome oligonucleotide 4 · 44 microarrays according to manu-
facturer instructions. Samples from individual mice were evaluated to
enable examination of animal-to-animal variation as part of the data
analysis. Slides were scanned with an Agilent DNA microarray scanner,
and the resulting images were analyzed using Agilent Feature Extractor
version 8.1.1.1. The Agilent Feature Extractor software was used to
perform image analysis, including significance of signal and spatial
detrending and to apply a universal error model. For these hybridiza-
tions, the most conservative error model was applied. Raw data were
then loaded into a custom-designed laboratory information management
system (LIMS). Data were warehoused in a Labkey system (Labkey, Inc.,
Seattle, WA). Raw array data are available from GEO with accession
GSE30506 and normalized intensity values are provided in File S3.

The Agilent arrays were background corrected by applying the
Normal-Exponential convolution model (Irizarry et al. 2003) and
normalized using quantile normalization (Bolstad et al. 2003) with
the Agi4x44PreProcess Bioconductor package (Lopez-Romero 2011).
The probes were filtered requiring that all probes meet specific QC
requirements (probe intensity had to be found, well above back-
ground, not saturated, and not be nonuniformity or population out-
liers as defined by the standard parameters in Agi4x44PreProcess
package) for all samples. Differential expression analysis was per-
formed using the LIMMA Bioconductor package (Smyth 2005), and
the false discovery rate was calculated using the qvalue Bioconductor
package (Storey and Tibshirani 2003) (File S4). Probes were mapped
to the mm9 genome using BLAT (Kent 2002) requiring at least 98%

identity. Probes that did not map, mapped to multiple locations
equally well, or contained a high confidence single nucleotide poly-
morphism (SNP) from one of the eight progenitor strains from the
Sanger Institute/Wellcome Trust mouse sequencing project (Keane
et al. 2011) in the probe sequence were excluded from analysis. There
were 12,656 probes passing QC and not potentially impacted by
a SNP (20,474 were uniquely mapped and passed QC, and, of these,
7818 were potentially impacted by SNPs). The Gene Ontology (GO)
analysis was performed using the standard hypergeometric test from
the GOstats Bioconductor package (Falcon and Gentleman 2007) with
a universe consisting of the unique genes from the probes entered into
the DE analysis. Only the Biological Process subset of the Gene On-
tology was used for testing. The Benjamini and Yekutieli false discov-
ery rate (FDR) (Benjamini and Yekutieli 2001) was computed for the
P-value distribution for this analysis to address dependencies inherent
from the hierarchical/nested structure of the GO categories.

eQTL scan
Progenitor haplotype probabilities for each marker interval were
inferred using the HAPPY R package (Mott et al. 2000) and an
additive model. The number of generations was set to the average
number of generations of the mice (seven generations). Significance
of a given interval was assessed using a multiple partial F-test relating
a simple single-locus additive model consisting of the expected hap-
lotype contributions of each of the eight founders plus an intercept to
an intercept-only model. A QR decomposition was performed on the
design matrix of each marker interval for computational efficiency as
has been described previously (Huang et al. 2009). Subsequently the

Figure 1 Phenotypic distribution of pre-CC
lines used for categorization Two groups (red
boxes) correspond to mice that displayed HRI
or LRI. The y-axis displays the percent change
in weight at 4 DPI, relative to a baseline. The
x-axis displays an IHC score (see Materials
and Methods) that was an indicator of infec-
tion severity.
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probe-level residual sum of squares were computed. This avoided
incurring the computational cost of decomposition plus residual com-
putation for each phenotype as would typically be done if a linear
model was fit separately for each phenotype and marker. Support
intervals were computed using the 1.5 logarithm of odds (LOD) drop
method that has been shown to be effective in dense marker sets
(Dupuis and Siegmund 1999). LOD scores were computed for the
marker intervals on the chromosome containing the most significant
marker interval for the significant probes to reduce the computational
burden. We denoted an eQTL as trans-acting if it was on a different
chromosome compared with the probe. An eQTL was cis-acting if it
resided on the same chromosome. The most significant logP value for
each chromosome for each probe are provided in File S5.

Allele effects
Allele effects were computed for the support intervals of each
significant probe using the partial correlations of the HAPPY linear
model fits (Aylor et al. 2011). To define the subset of strains contrib-
uting to the eQTL, we permuted the sample labels 1000 times and
computed the allele effects for each. For each permutation run, we
computed the Euclidean distance of the allele effects across the marker
intervals and conducted average linkage hierarchical clustering record-
ing the height of the top branch. The 95th percentile of the top branch
heights was used as the cut point for the clustering of actual allele
effects. Only those eQTL that formed at least two clusters were kept.
The estimated allele effects are provided in File S6.

SEM modeling
Adaptations of the five local SEM models previously described (Aten
et al. 2008) were fit using the sem R package (Fox et al. 2010). To form
a parsimonious SEM model, a forward variable-selection procedure
was performed using the normalized intensity values for each probe
and the eight expected haplotype contributions for the most significant
marker interval of the probe. Our main model of interest was the
“causal”model as illustrated in Figure S17A. This model was evaluated
relative to the others using the P-value from the SEMmodel x2 statistic
divided by the maximum P value from the other four models and
log10 transformed (essentially the LEO.NB.CPA score from the NEO
R package) (Aten et al. 2008). The genes fitting the causal relationship
best were chosen by requiring a score. 1, x2 P-value. .05, root mean
square error of approximation , 0.05, standardized root mean square
residual , 0.1, comparative fit index . 0.9, and Wald P-value , 0.05.
The GO analysis was performed as mentioned previously, using the
probes remaining after application of the model comparison filters as
input and the universe consisting of the significant probes for the LRI
or HRI set. The expected haplotypic contributions for the eQTL ana-
lyzed using this method are provided in File S7.

Real-time quantitative reverse transcription (qRT-PCR)
qRT-PCR was performed on lung homogenate samples from female
mice from the eight founder strains killed at day 4 (D4) after PR8
infection. Three mice were assayed for each strain with each measure-
ment performed in triplicate. The QuantiTect reverse transcription kit
(QIAGEN Inc., Valencia, CA) was used to generate cDNA. qRT-PCR
was run on an ABI 7500 PCR system, using TaqMan chemistry (Applied
Biosystems, Foster City, CA). Gene expression assays specific to mouse
cellular loci were purchased from Applied Biosystems. Twenty-one
cellular loci were evaluated for expression patterns consistent with the
allele effects. Five genes had custom probes designed for them (File S8).
We subtracted the Ct value of each sample from the average value of the
endogenous control (Mfap1a) and transformed each value X to X�log10

(2) (File S9). For each gene, we fit a linear mixed effects model with
strain as a fixed effect and incorporating a random intercept grouped by
the strain samples. Using the allele effect clusters, we examined a contrast
for each gene evaluating whether the mean values for each cluster were
equivalent. Significance of these contrasts was determined by comparing
the (x2) P-value to the level after Bonferroni adjusting for the 17 com-
parisons (a ¼ 0.05). We further required that the within-cluster ranks
for the smallest clusters (or both if the same size) be consistent for both
the allele effects and qPCR data for “complete” confirmation, otherwise
we denoted the gene as a “partial” confirmation.

Data analysis and visualization
All analysis was performed using Bioconductor version 2.6 (Gentleman
et al. 2004), R version 2.11 (R Development Core Team 2011). Figures
were generated using the ggplot2 R package (Wickham 2009). Mixed
effects modeling was performed using lme4 (Bates et al. 2011) and
linearHypothesis in car (Fox and Weisberg 2011) was used for evalu-
ation of the contrasts.

RESULTS
To select for those genes likely involved in differential response to
infection, we divided lung samples into two groups that represented
mice from the extreme tails of the phenotypic distribution based upon
weight change at 4 DPI and an IHC score based on the extent of
infected cells throughout the lung (see the Materials and Methods;
Figure 1). These animals were denoted as LRI (n ¼ 18) or HRI (n ¼
26). The 44 arrays derived from these animals were preprocessed and
normalized as described in theMaterials and Methods and differential
expression was assessed between the two groups. Of the analyzed
probes, 1173 had normalized intensity values that were significantly
up-regulated in HRI relative to LRI, and, similarly, 1498 were signif-
icantly up-regulated in LRI relative to HRI (q-value , 0.05 and a fold
change$ 1.5 for both). An examination of biological process GO term
enrichment in both categories showed that the genes up-regulated in
LRI were overrepresented for processes that would be associated with
normal growth and development such as “cell adhesion” (FDR ¼
0.008; Table S1). In contrast, the genes up-regulated in HRI were
enriched for functional annotations related to the immune response
such as “immune system process” (FDR ¼ 3.97E221; Table S1).

We performed eQTL scans for the probes in the HRI and LRI sets
and required a stringent significance threshold based on a Bonferroni
correction (a ¼ 0.05) within each set as we considered each set to
be its own analysis/eQTL scan. We found eQTL for 10 genes up-
regulated in the HRI group that met the significance criteria (2log10
P-value . 9.631) and eQTL for 11 genes up-regulated in the LRI
group (2log10 P-value . 9.738). The support intervals were 3 Mb
on average and ranged from 409 Kb to 9.250 Mb. In total, across both
comparisons, 20 probes were cis-regulated, and one was trans regu-
lated (Table 1).

We performed confirmation experiments in a set of mice from the
eight inbred founder strains. Mice were infected with influenza A
virus in the same manner as the pre-CC mice and we assayed
expression of candidate gene via qPCR at 4 DPI (see Materials and
Methods). Of the 21 genes, assays failed for at least one progenitor
strain for Gsdma and NAP0707921-1. In addition, the allele effects for
two additional genes, AK144717 and 1190007107Rik, could not be
separated into distinct clusters on the basis of our clustering strategy.
We successfully examined 17 genes and found expression values com-
pletely consistent with the eQTL allele effects (see the Materials and
Methods) for eight (Figure S1, Figure S2, Figure S3, Figure S4, Figure
S5, Figure S6, and Figure S7; Figure 2). whereas an additional four
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were partially consistent (Figure S8, Figure S9, Figure S10, and Figure
S11). Ifi27l2a, is a gene previously implicated in the immune response
(Labrada et al. 2002), which was observed to be up-regulated in the
HRI group and is expressed much lower in the PWK/PhJ strain than
in the other strains, consistent with the observed allele effects from the
pre-CC (Figure 2). Three poorly characterized genes (LOC675467,
AK153595, and BC022687) were also confirmed as having expression
patterns completely consistent with allele effects, indicating that they
may be potentially important in the resistance or susceptibility to
Influenza A infection. The five genes that did not conform to expected
allele effects are shown in Figure S12, Figure S13, Figure S15, Figure
S15, and Figure S16.

We performed a local SEM analysis to infer potential causal
relationships between each of the eight completely confirmed genes
and the other remaining genes within their respective response
groups. We first selected the expected haplotype contributions to
use in the SEM model through forward variable selection (Table S2)
and then generated and compared the five possible models summa-
rizing our proposed variable relationships (Materials and Methods and

Figure S17). Of the eight genes, seven were found to have at least one
putative causative relationship resulting in a total of 166 relationships
(Table S3). Because Ifi27l2a, Sh3gl3, and Kcmf1 had relatively large
number of reactive (“downstream”) genes (25, 108, and 24, respec-
tively), we examined functional enrichment of the potential “down-
stream” genes for these genes. We found that for Ifi27l2a, the most
enriched categories related to signal transduction and transportation
(Table S4A), whereas for Sh3gl3 the top categories related to cellular
growth and development (Table S4B) and for Kcmf1 they involved
metabolic processes (Table S4C). In contrast, for Thnsl2, AK153595,
BC022687, and Clec16a, there were too few reactive genes for testing
for GO enrichment, and no direct associations were noted in either
the literature or through functional annotation, indicating that this
SEM approach may provide a way to identify and tease apart currently
uncharacterized regulatory mechanisms.

DISCUSSION
Transcriptional profiles related to extreme differences in host
responses to infectious diseases can likely provide insights into host

n Table 1 Summary of the significant eQTL

Gene Chr Start, Mb End, Mb Size, Mb logP Type Low Strains High Strains Status

A. High response to infection
Gsdma chr11 98.467 99.528 1.061 20.768 cis NA NA N
LOC675467 chr14 20.239 20.648 0.409 12.766 cis ABD GC S

EFH
Ifi27l2a chr12 107.030 107.720 0.690 12.655 cis G ABCD S

EFH
ENSMUSG00000052976 chr19 28.681 30.125 1.444 12.544 cis FH ABC P

DEG
Dst chr1 33.326 35.180 1.854 11.943 cis ADEFH BCG F
Sik1 chr17 34.946 44.196 9.250 11.529 cis BCEF ADGH P
AK144717 chr19 3.197 3.819 0.622 10.535 cis NA NA N
NAP070792-1 chr7 114.496 118.040 3.544 10.436 trans NA NA N
Senp5 chr16 29.637 31.571 1.934 10.19 cis AFG BCD F

EH
Kcmf1 chr6 68.509 69.809 1.300 9.771 cis F ABCDEGH S

B. Low response to infection
Bmpr2 chr1 59.495 62.772 3.277 15.071 cis ABC FG F

DEH
Tcf7l1 chr6 70.215 76.137 5.922 14.416 cis FDG ABC F

EH
AK078430 chr3 131.067 133.998 2.931 13.914 cis FG ABC P

DEH
Thnsl2 chr6 67.959 70.668 2.709 12.832 cis GD ABC S

EFH
AK153595 chr17 5.220 7.352 2.132 12.013 cis GD ABC S

EFH
D930030005Rik chr7 73.676 77.803 4.127 11.056 cis ABC FG P

DEH
BC022687 chr12 112.813 114.454 1.641 11.017 cis BDC AEF S

GH
Sh3gl3 chr7 87.808 91.022 3.214 10.721 cis ABC FG S

DEH
Clec16a chr16 6.328 10.873 4.545 10.446 cis B ACDE S

FGH
Pde7a chr3 26.126 27.769 1.643 10.358 cis ABC F F

DEGH
1190007I07Rik chr10 76.093 84.837 8.744 10.011 cis NA NA N

An eQTL support interval (NCBI37/mm9) is defined by a 1.5 LOD drop from the maximum LOD score at the marker with the maximum –log10 P-value (logP column).
Type indicates whether the eQTL was on the same chromosome as the gene (cis) or not (trans). The low strain column indicates those strains that had lower allele
effects relative to the strains in the high strain column. Strains were one of A (A/J), B (C57BL/6J), C (129S1/SvImJ), D (NOD/ShiLtJ), E (NZO/HILtJ), F (CAST/EiJ), G
(PWK/PhJ) and H (WSB/EiJ) or NA indicating not applicable. The status column indicates whether the allele effects for that eQTL were consistent (S) with the allele’s
effects in inbred founder strains, partially consistent (P), not tested (N), or inconsistent (F). eQTL, expression quantitative trait loci.

Volume 2 February 2012 | eQTL Mapping of Host Response in the Pre-CC | 217

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS8.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS9.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS10.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS11.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS11.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS12.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS13.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS15.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS15.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS15.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS16.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/TableS2.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/FigureS17.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/TableS3.csv
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/TableS4.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/TableS4.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001800/-/DC1/TableS4.pdf


genetic contributions to susceptibility and protection. In this study, we
used a genetically diverse panel of mice, the pre-CC population
infected with influenza A virus, to identify mice that showed extreme
(high and low) responses to infection based on two clinical readouts.
We then identified transcripts differentially expressed between the
high and low response groups. By focusing on differentially expressed
genes, we successfully identified and validated eQTL controlling
several of these transcripts, which were then used for downstream
modeling in order to begin to infer the underlying casual relationships
in the host response regulatory network.

At 4 DPI with influenza virus, approximately 21% of all genes were
differentially expressed between the high and low responders to
infection. This finding is impressive, given both the conservative
criteria we used for statistical significance and the smaller sample size
due to the strict phenotypic requirements. However, the focus on the
extreme tails of the phenotype distribution provided additional power
for detecting transcripts implicated in differential host response. These
putative candidates belonged to a variety of functional categories,

including immune responses, tissue regeneration, and cellular adhe-
sion. For those genes up-regulated in the HRI samples, membership of
genes related to immune function is unsurprising, given that these
individuals are experiencing uncontrolled viral infection, as well as
severe disease. Similarly, the increases in cellular, tissue, vascular, and
other growth responses in the HRI class are reasonable in light of
tissue repair following apoptotic and/or necrotic cell death during
infection. In contrast, those genes up-regulated in the LRI were
primarily enriched for cellular adhesion. Cell adhesion pathways have
been implicated (Herold et al. 2006) in mediating the host inflamma-
tory cell infiltration response to Influenza A virus, and it was sug-
gested they may be key for modulating the severe histopathology
observed in acute influenza virus pneumonia.

To better understand how host genetic factors contribute to the
differential transcriptional profiles of the HRI and LRI classes, we used
very stringent criteria to identify 21 high-confidence eQTL, host
genome regions directly controlling expression levels of differentially
expressed genes between HRI and LRI mice. The preponderance of

Figure 2 Ifi27l2a is a significantly cis-regulated gene
with expression differences driven mainly by the PWK/
PhJ allele. (A) A significant eQTL is located in distal Chr
12 (LOD ¼ 18.7; 170.0302170.720 Mb). (B) The allele
effects for the markers in the support interval indicate
pre-CC mice with an allele inherited from the PWK/PhJ
founder strain expressed Ifi27I2a at a lower level than
the rest of the population. (C) The same pattern of allele
effects was confirmed by qPCR in three animals from
each of the eight founder strains, as we expect from
a cis-regulated eQTL.
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cis-regulated loci identified is not surprising, given the limited power
to detect trans eQTL in these mapping studies (Aylor et al. 2011).
Those genes with significant host genetic control that are differentially
regulated between HRI and LRI are predominantly related to immu-
nity and/or the response to infection. Although none has been iden-
tified as important in influenza infection, it is not surprising that we
identified and confirmed genes relating to immune function in our
eQTL scans. Ifi27l2a (also referred to as Isg12) is nuclear localized
(Martensen et al. 2001) and regulates the function of the orphan
nuclear receptor NR4A1 protein, especially in response to vascular
inflammation (Papac-Milicevic 2007), a likely byproduct of influenza
infection. Similarly, Clec16a is a member of the C-type lectin family of
genes, which are considered critical for tailoring immune responses to
pathogens, as they can trigger distinct signaling pathways after path-
ogen binding (Geijtenbeek and Gringhuis 2009). These results suggest
that specific modulations of the extent and nature of the immune
response, as well as the development of an adaptive immune response
might all contribute to the differential disease phenotypes observed.

It is less clear how some of the other validated eQTL contribute to
influenza virus response, particularly those unannotated/poorly anno-
tated transcripts where we cannot postulate mechanisms. For example,
Sh3gl3 (or endophilin A3) has been observed binding with a number of
proteins, includingMta1, and may be involved in endocytosis (Aramaki
et al. 2005), although the role this might play in infection is not clear.
Similarly, the role of Thnsl2 as a dephosphatase on phosphorylated
amino acids (Donini et al. 2006) does not immediately suggest
a role in viral infection, Nevertheless, it is clear that further work
must be done to clarify the potential roles these genes have in mediating
any potential host responses to infection, although our conservative ap-
proach strongly suggests that they do in fact play roles in the host response

The relative roles of components of the immune system in
promoting protective and pathologic responses to influenza A virus
infection has long been debated, with a clear result that uncontrolled
immune responses can contribute to pathology (Kash et al. 2006). We
would clearly expect increased transcriptional levels of immune gene
transcription in the HRI class. However, when looking at the eQTL
identified in our analysis, many of the genes influenced by eQTL in
both the high and low response groups have relationships to immune
functions. These results suggest that up or down regulation of these
various transcripts might be of critical importance in contributing to
protection and pathology in response to influenza infection.

In some ways, it is surprising that polymorphisms at theMx1 gene,
which segregate in the pre-CC population, do not contribute to the
identified eQTL. Especially because Mx1 is a known potent anti-
influenza gene (Staeheli and Haller 1987; Zimmermann et al. 2011).
However, it is clear thatMx1 does play a role in determining the clas-
sification of mice into the HRI and LRI classes, as 24/26 animals in the
HRI group were homozygous for a variant of Mx1 lacking activity,
while none of the animals in the LRI class had a non-functional Mx1
(P-value ¼ 2.2 · 10216; Fisher’s exact test). Based upon our data, the
effect of Mx1 is minimal at this time post infection, with cis-factors
being much more critical in determining the actual transcript levels
of various differentially expressed genes. This is most clearly shown
by the fact that the region containing the Mx1 locus on chromosome
16 contributed no significant trans eQTL.

In this study, we were able to identify eQTL and confirm that
a subset had expression patterns consistent with the expected allele
effects in the eight inbred founder strains. We note that the validation
in the inbred founder strains assumes that the effect of cis eQTL is
not altered by genetic background and that violations of these
assumptions could lead to a higher false negative rate in the validation.

In the future, it will be possible given the reproducible nature of the
Collaborative Cross recombinant inbred lines (The Complex Trait
Consortium 2004; Collaborative Cross Consortium 2012) to perform
a replication experiment using the lines that contain the regulatory
alleles for the genes identified here.

One way to further understand the roles that eQTL play in an
overall transcriptional environments is to utilize causal modeling. In
this study, we used a SEM modeling approach to identify additional
transcripts that are potentially influenced indirectly by a loci’s effect
on a given transcript, focusing on the eight transcripts that were
validated in the parental lines. We were able to postulate “causal”
relationships between seven of the eight confirmed genes and other
genes that were present in their respective infection groups. GO en-
richment for the inferred reactive partners of three of the genes with
the greatest number of relationships indicated the presence of rela-
tively diverse functionality. Interestingly, some evidence exists that
Clec16a and its two putative partners may be members of the same
pathway (Szklarczyk et al. 2011), suggesting that this approach does
allow us to identify interacting partners.

Previous investigators have utilized SEM modeling, but have
considered simpler mouse crosses (Aten et al. 2008). Here, we expand
these approaches to work with eQTL mapping in genetically complex
populations, such as the Collaborative Cross or heterogenous stock
mice. Instead of utilizing only the additively encoded genotypes, our
local SEM models work directly work with the expected haplotype
contributions from each of founder strains. Such contributions can be
derived from any method such as HAPPY (Mott et al. 2000) or GAIN
(Liu et al. 2010). Our approach allows for further identification of
potential regulatory relationships between genes, as well as further
suggestions of the subnetworks that might play important roles in
promoting either a protective/low response or pathologic/high re-
sponse to influenza infection. We further note that although we only
focused on a single marker analysis in this work (largely because of
sample size concerns), additional strategies could be carried out uti-
lizing multiple genetic markers, further enhancing our ability to dis-
entangle important sub-networks.

The genetic variation present in the Collaborative Cross lines allows
for not only the mapping of genetic loci contributing to differential
phenotypes (in this case, expression), but also for the modeling of
a genetically diverse population. Indeed, as our data suggest, the extreme
genetic diversity present in the Collaborative Cross makes it likely that
genes poorly annotated based on the classic inbred strains (such as
C57BL/6J) might receive increased attention with regard to their
importance in complex traits. More importantly, because the Collabo-
rative Cross lines recapitulate aspects of a genetically diverse population,
we will begin to have the ability to identify underlying causal variants,
and reach the full potential of systems genetics approaches

The use of a very focused systems genetics framework allowed us
to identify high-confidence candidates implicated in differential host
response, even with limited sampling. From this work, we are able to
begin to elucidate the causal relationships in the underlying regulatory
networks that will guide future perturbation studies in order to
identify targets that modulate host response in Influenza and could
assist future therapeutic development.
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