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Selective protected state 
preparation of coupled dissipative 
quantum emitters
D. Plankensteiner, L. Ostermann, H. Ritsch & C. Genes

Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the 
energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in 
many cases certain special entangled collective states with minimal decay can be found, which 
possess ideal properties for spectroscopy, precision measurements or information storage. We show 
that for a specific choice of laser frequency, power and geometry or a suitable configuration of 
control fields one can efficiently prepare these states. We demonstrate this by studying preparation 
schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The 
prepared state fidelity and its entanglement depth is further improved via spatial excitation phase 
engineering or tailored magnetic fields.

Ensembles of effective two-level quantum emitters consisting of single atoms, ions, or defects in solids 
are employed ubiquitously in quantum optics and quantum information1. They are the basis for precision 
spectroscopy or atomic clock setups, as well as for experiments testing fundamental concepts of quantum 
physics or implementations of the strong coupling cavity QED (quantum electrodynamics) regime2,3. In 
the absence of direct particle-particle interactions, larger ensembles allow for faster, more precise meas-
urements4 via a scaling of the effective single photon to matter coupling strength g by a factor N  (with 
system size N) and a reduction of the quantum projection noise (by / )N1 5,6.

For any precise measurement one has to externally prepare, control and measure the particle dynam-
ics. Hence, the emitters are almost unavoidably coupled to their environment. A suitable theoretical 
framework to model such experiments is open system dynamics with a coupling to a fluctuating thermal 
bath. At optical frequencies this can often be approximated by the zero effective temperature electromag-
netic vacuum field7,8. Still, extra perturbations by a thermal environment and background gas collisions 
cannot be avoided.

In a laboratory experiment the particles need to be confined in a finite spatial volume that can be 
addressed by laser beams. Thus, increasing particle numbers will lead to higher densities, where direct 
particle-particle interactions as well as environmentally induced collective decoherence can no longer 
be neglected. For optical transition frequencies a critical density is conventionally assumed at the point 
where the average particle separation is of the order of an optical wavelength9. Above this limit vacuum 
fluctuations tend to become uncorrelated and decay becomes independent. However, recent calculations 
have shown that collective states can exhibit superradiance and subradiance even at much larger dis-
tances10 as long as the bandwidth of the emission is small enough.

In many typical configurations and in optical lattices in particular, the particle-particle interaction is 
dominated by binary dipole-dipole couplings, with its real part inducing energy shifts and its imaginary 
part being responsible for collective decay11,12. Generally, this interaction is associated with dephasing 
and decay. However, recently it has been found that under special conditions also the opposite can be the 
case and these interactions can lead to a synchronization13 or even a blockade of the decay14.

Often times it is assumed that while such states exist, they cannot be prepared by lasers as they are 
strongly decoupled from the radiation fields. However, it was recently proposed that individual instead of 
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overall addressing of the atoms can push the many particle system to evolve towards subspaces protected 
from decay or dephasing15. When applied to Ramsey spectroscopy such states have been shown to exhibit 
frequency sensitivities superior even to those obtained from non-interacting ensembles16. However, apart 
from special cases with an optimal lattice size and excitation angle, it is not so obvious how to implement 
such precise a control.

In this work we highlight the surprising fact that interaction induced level shifts can be used to aid 
in preparing such states. In many cases the magnitude of the shifts a state experiences and its lifetime 
are tightly connected allowing one to identify and address interesting states via energy resolution. As a 
generic ensemble we particularize to a 1D regular chain of quantum emitters coupled by dipole-dipole 
interactions with a tunable magnitude (by varying the interparticle separation). Collective coupling to 
the vacuum leads to the occurrence of subradiant as well as superradiant excitonic states10. In particular, 
the subradiant states should prove extremely useful for quantum information as well as metrology appli-
cations as they exhibit robust, multipartite quantum correlations. As mentioned above, the atoms’ inter-
actions provide a first handle for target state selection as they lead to energy resolved collective states. 
Furthermore, using a narrow bandwidth laser excitation matched to the target states both in energy and 
symmetry allows for a selective population transfer from the ground state via an effective Rabi π-pulse.

In many cases, however, the required phase structure of the target state is not compatible with the 
excitation laser phase so that only a very weak coupling can be achieved. On the other hand, increasing 
the laser power reduces spectral selectivity by an unwanted addressing of off-resonant but strongly cou-
pled states. Hence, to address a larger range of states of practical interest, we also propose and analytically 
study new methods of phase imprinting via a weak spatial magnetic field gradient. The small relative 
phase shifts increase the effective coupling to groups of emitters via a nonuniform phase distribution. 
With this method any state may acquire a finite laser coupling to the ground state via the magnetically 
induced level shifts resulting in an efficient population transfer with a minimal compromise on lifetime.

The considered setup is a chain (see Fig. 1a) of N identical two-level systems (TLS) with levels g  and 
e  separated by a frequency of ω0 (transition wavelength λ0) in a geometry defined by the position vec-
tors r{ }i  for = ,...i N1 . For each i, operations on the corresponding two-dimensional Hilbert space are 
written in terms of the Pauli matrices σ , ,i

x y z and raising/lowering operators σ±i  connected via 
σ σ σ= ++ −

i
x

i i , σ σ σ= − ( − )+ −ii
y

i i  and σ σ σ σ σ= −+ − − +
i
z

i i i i . The complete Hamiltonian describing 
the coherent dynamics is

Figure 1.  Selective state preparation procedure. (a) A chain of N  closely spaced quantum emitters 
(separation a with ka 1, k being the laser wave number) are individually driven with a set of pumps η{ }j

m . 
(b) The lasers are turned on for a time T , optimized such that an effective π-pulse into the desired 
subradiant target state is achieved. (c) Level structure for the N  systems where the Cn

N-fold degeneracy of a 
given n-excitation manifold is lifted by the dipole-dipole interactions. The target states are then reached by 
energy resolution (adjusting the laser frequency) and symmetry (choosing the proper m). (d) Scaling of the 
decay rates of energetically ordered collective states starting from the ground state (state index 1) up to the 
single- and double-excitation manifolds for 6 particles at a distance of a =  0.02λ0. The arrows identify the 
decay rates for the lowest energy states in the single (A) and double (B) excitation manifolds. (e) Numerical 
results of the time evolution of the target state population for N =  6 and a =  0.02 λ0 during and after the 
excitation pulse. Near unity population is achieved for both example states A (where we used η =  0.53 Γ ) and 
B (for η =  2.44 Γ ) followed by a subradiant evolution after the pulse time T  shown in contrast to the 
independent decay with a rate Γ (dashed line).
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where H0 is the free Hamiltonian and has degenerate energy levels (degeneracy = !/( − ) ! !C N N n nn
N  

for level n) ranging from 0 for the ground state to ωN 0 for the highest excited state. The second term 
Hdip describes interactions between pairs of TLS which can be induced either by an engineered bath (such 
as a common, fast evolving optical cavity field) or by the inherent electromagnetic vacuum. We denote 
the couplings between emitters i and j by Ωij and particularize to the case of a free-space one dimensional 
equidistant chain of TLS with small interparticle distances a such that λa 0 (as depicted in Fig. 1a).

For the sake of simplicity, we use dipole moments perpendicular to the chain for all numerical compu-
tations. To a good approximation, in the limit of 

k a 10 , the nearest-neighbor (NN) assumption can be 
used (such that )δΩ = Ω ±ij ij 1  and exact solutions in the single-excitation manifold can be found17. Within 
this subspace and approximation, the Hamiltonian assumes the form of a tridiagonal symmetric Toeplitz 
matrix with ω0 on the diagonal and Ω  above and below the diagonal. The solutions are readily available18 
with eigenvalues ω ε+ m0  for an index m running from 1 to N, where ε π= Ω /( + )m N2 cos[ 1 ]m  are 
the dipole-induced energy shifts. The corresponding eigenstates of the Hamiltonian are then

∑ σ
π

= , =
+


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
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+m f G f
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where we used = ⊗G g N.
Spontaneous decay via a coupling to the free radiation modes in the evolution of the system can be 

included in a generalized Lindblad form8,

( )∑ρ γ σ ρ σ σ σ ρ ρ σ σ= − − ,
( ),

− + + − + −L[ ] 1
2

2
3i j

ij i j i j i j

where the γij denote collective damping rates arising from the coupling to a common radiation field. 
These rates also strongly depend on the atomic distance a with two prominent limiting cases of 
γ δ( → ∞) = Γaij ij (independent emitters limit) and γ ( → ) = Γa 0ij  (the Dicke limit19). In general, one 
can perform a transformation of the Liouvillian into a new basis by diagonalizing the γij matrix. This 
procedure leads to a decomposition into N independent decay channels with both superradiant (> Γ ) 
and subradiant (robust) decay rates (< Γ )16. Note, however, that the states corresponding to these chan-
nels generally do not coincide with energy eigenstates of the Hamiltonian, so that we cannot reduce the 
system dynamics to simple rate equations.

Results
Selective state preparation.  Tailored coherent excitation.  As mentioned above, our dipole cou-
pled systems possess states with a large range of radiative lifetimes and energy shifts. Depending on 
the desired application particular states can be highly preferable over others. In a first straightforward 
approach we now illustrate that in principle it is possible to access a desired collective state simply by a 
selective coherent driving with a properly chosen amplitude and phase for each TLS. This is described 
by the Hamiltonian

( )∑η σ σ= + ,
( )

ω ω+ − −H e e
4

m
j

j
m

j
i t

j
i tl l

with a suitably chosen set of ηj
m. For a targeted eigenstate in the single-excitation manifold, some ana-

lytical insight on how to choose these amplitudes can be gathered from the state’s symmetry. For energy 
eigenstates this can be found quite reliably within the NN approximation20. In an equidistant finite chain 
our calculation suggests the following choice of driving fields at laser frequency ωl,

η η
π

=


 +



, ( )

mj
N

sin
1 5j

m

chosen to fit the symmetry of a target state m .
The selectivity of the excitation process can be further improved by an energetically resolved excitation 

of a given state m  by a proper choice of the laser frequency ω ω ε= +l m0  and its bandwidth. This is 
possible due to the interaction induced level splitting from H dip (as depicted in Fig. 1c). Indeed, in per-
turbation theory and in a frame rotating at ωl the evolution of the system starting from the ground state 
up to a normalization factor leads to
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η− . ( )−
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The success of the corresponding process is illustrated in the sequence of plots in Fig. 1, where the m = N 
state with n = 1 is considered (target state A) and accessed via the combination ηj

N of pumps lasting for 
a duration T.

Numerical simulations were performed on a six-atom chain with driving strength η = . Γ0 53  at an 
interatomic separation of λ= .a 0 02 0. The time for which the pumps are switched on is = . Γ−T 1 58 1 
which is considerably shorter than the time scale governed by the decay rate of . Γ0 0009  of the target 
state. The resulting dynamic is an effective π-pulse (efficiency of 99.94%) flipping the population into the 
state =m N  followed by an extremely slow decay, indicating the robustness of the target state (as seen 
in curve A of Fig. 1e).

It is, of course, desirable to target higher excitation manifolds as well. In the absence of analytical 
expressions or good approximations for the target states, we employ phases that yield maximal asymme-
try, i.e. η η= (− )1j

j for any j = 1,...,N. Such a driving can be expected to address collective states, where 
the fields emitted by any two neighboring particles interfere destructively14 (similar to a previously inves-
tigated mechanism15). Numerical simulations show that the resulting collective states indeed exhibit the 
lowest energy shifts of the targeted manifold and can be expected to be long lived. The resonance con-
dition for a specific state ψ  within the manifold n is ω ω δω= + ψn nl 0 , where δω ψ ψ=ψ H dip . As 
an illustration, the curve B in Fig. 1e shows an almost perfect efficiency (98.36%) two-photon π-pulse 
allowing for a population transfer to the longest-lived collective state in the second excitation manifold 
of =N 6 emitters separated by λ= .a 0 02 0. The chain was driven with a strength of η = . Γ2 44  for a 
time = . Γ−T 3 44 1, which again is significantly shorter than the natural time scale given by the target 
state decay rate of . Γ0 0402 .

Let us add a comment on the practical implementation of such an addressing. In typical current 
experimental configurations for clocks based on 1D magic wavelength lattices21,22 the atoms are very 
close and hardly allow for an individual direct particle addressing. One is largely limited by a quasi plane 
wave driving, which typically addresses all particles with equal intensity. If the pump light is applied 
perpendicularly to the trap, the evolution is governed by a symmetric Hamiltonian H sym, obtained from 
equation (4) with an equal pump amplitude η η=j

m  for any m and j. A laser excitation from the ground 
state into the state m  is connected to the coupling amplitude χ η= = ∑m H G fm sym i i

m, which yields

χ η π=
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2
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2 2
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7
m

We will refer to states with even m as dark states as they cannot be accessed by the laser excitation and 
call the remaining ones bright states14. In the limit of large atom numbers N 1, it is of interest to 
investigate the two cases, where m N  and ~m N , for states at the top/bottom of the manifold. In the 
first case, the function for the driving yields χ η π≈ /N m8m , whereas in the other case we have 
χ ≈ 0m .

Note, that sometimes geometry can change this behavior. For a 1D string of equidistant emitters 
illumination at a chosen angle of incidence and polarization leads to a designable phase gradient of the 
excitation amplitudes. The situation becomes even more complex for a 3D cubic lattice, where the phases 
also differ in the different lattice planes. As a lucky coincidence, a perpendicular plane illumination at 
the clock frequency in a magic lattice for Strontium (Sr) targets an almost dark state. This leads to sub-
radiance and in principle allows for a spectral resolution better than the natural linewidth23. In not so 
favorable cases one could also think of a specific lattice design to facilitate a tailored dark state excitation.

Radiative properties.  In order to be useful resources for quantum information applications, target states 
should exhibit robustness with respect to the environmental decoherence. To identify states of minimum 
decay rate, we scan through the eigenstates ψk  of the Hamiltonian = +H H H dip0  (for = ,...,k 1 2N) and 
compute their decay rates Γ ψk

 (see section Methods below). We find that generally, for a given manifold, 
the energetic ranking of the states closely indicates their robustness to decay (as illustrated by the 
color-coding in Fig. 1c) ranging from blue for subradiant states to red for superradiant states. This is due 
to the fact that both radiation and energetic shifts are strongly dependent on the symmetry of the states. 
In Fig.  1d, for =N 6, we plot the decay rates of the collective states in the first ( =n 1) and second 
( =n 2) excitation manifold arranged as a function of their increasing energy corresponding to the level 
structure of Fig.  1c. Superradiant states are found at the upper sides of the manifolds while the ideal 
robust states lie at the bottom. In Fig.  1d, the arrows indicate the optimal decay rates in the single- 
( . Γ0 0009 ) and double-excitation manifolds ( . Γ0 0402 ) corresponding to target states A and B whose 
population evolution is depicted in Fig. 1e.
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Within the single-excitation manifold, an analytical expression for the decay rate of a state m  can be 
found as γΓ = ∑ , f fm i j ij i

m
j
m. For small distances the state =m 1 (upper state) is superradiant, whereas 

states at the bottom of the manifold ~m N  exhibit subradiant properties. In the Dicke limit where =a 0 
we have γ = Γij  for any i and j, and we can compute πΓ = Γ /( + ) /( + )m N N2 cot [ 2 2 ] 1m

2  for m odd 
and Γ = 0m  for m even. Note, that in this particular limit, these are the same conditions as for the dark-
ness and brightness of a state. For large numbers of emitters, we recover the expected superradiant 
scaling with N  for the state with =m 1, i.e. πΓ ≈ Γ /N81

2. On the other hand, large m yield a decay rate 
of Γ ≈ 0m  (perfect subradiance) in the same limit.

There are two important conclusions from these results: i) since in the considered limit the decay rate 
of the superradiant state =m 1  scales with Γ ∝ N1 , whereas its driving is χ ∝ N1 , driving this state 
becomes more difficult with increasing atom number due to the reduced time-scale and ii) if the number 
of atoms is not too large, χm will remain finite, while Γm already indicates vast subradiance due to its 
scaling-down with N . Hence, there are robust states that remain bright, i.e. they can be driven directly 
even though the driving is not matched to their symmetry.

Accessing dark states via magnetic field gradients.  The direct symmetric driving with H sym 
allows access to bright states only. Given that nearby dark states can conceivably be more robust, we now 
employ a progressive level shifting mechanism that allows for a coupling between bright and dark states. 
This is achieved by subjecting the ensemble to a magnetic field with a positive spatial gradient along the 
chain’s direction. The increasing energy shift of the upper atomic levels (as depicted in Fig. 2a) plays a 
role similar to the individual phase imprinting mechanism described previously. For each particle the 
shift of the excited level induces a time-dependent phase proportional to the value of the magnetic field 
at its position. We demonstrate the mechanism for a particular two-atom example, where indirect near 
unity access to the dark subradiant asymmetric collective state is proven and extend it to the 
single-excitation manifold of N  atoms.

Two-atom case.  The eigenstates of the Hamiltonian +H H dip0  are =E ee , =G gg  and in the 
single-excitation subspace = ( + )/S eg ge 2  and = ( − )/A eg ge 2 . The symmetric state 
S  is superradiant ( γΓ = Γ = Γ +S 1 12) and bright, directly accessible via symmetric driving with 
strength χ η= 21 . The asymmetric state A , on the other hand, is subradiant ( γΓ = Γ = Γ −A 2 12)  
and dark. Indirect access can be achieved by shifting the second atom’s excited state by ∆2 B (see sche-
matics in Fig.  2b), where ∆B is tunable and quantifies the per-emitter shift for a given magnetic field 
amplitude. We first analyze the dynamics in the absence of decay by solving the time-dependent 
Schrödinger equation governed by the Hamiltonian = + + +H H H H Hdip sym B0 , where 

σ σ= ∆ + −H 2B B 2 2 . We reduce the dynamics to three states, and assume a quasi-resonant Raman-like 
scheme where the population of  E  is at all times negligible. An effective two-level system arises (between 
the ground state and the asymmetric state; see section Methods below) and the resonance condition can 
be identified as

η∆ = −∆ + ∆ + Ω − , ( )( ) 2 8B B
2 2 2 2

with an effective Rabi frequency of

η

η
ν =

∆

Ω + ∆ + Ω −
.

( )

( ) 2

2 9
R

B

B

2
2 2 2

To fulfill 
c 1S

2 , we need to restrict the driving to a parameter regime where η, ∆ ΩB . A scan over 
the magnetic field is performed and the exact numerical results for the asymmetric state population are 
plotted in Fig. 2d against the adiabatic solution showing near unity population transfer for an optimized 
∆B. Further restrictions are imposed when decay is considered. These stem from the fact that the coher-
ent process described by νR should be faster than the incoherent one characterized by ΓA. For close 
particles, the ability to tune the distance ensures that the scaling down of ΓA is very fast and the above 
conditions are readily fulfilled. For the particular example illustrated in Fig.  2d we chose λ= .a 0 05 0, 
resulting in Ω = . Γ23 08 , Γ = . Γ0 019A . The .0 994 population is reached at = . Γ−T 16 19 1, which is very 
close to the theoretical estimate of π ν= / = . Γ( ) −T 2 16 179R

2 1 obtained from the adiabatic solution under 
the assumption of a π-pulse transferring the population to the target state.

Many-atom case.  For a chain of N  atoms, we consider the progressive shifting of excited levels along 
the chain depicted in Fig. 2a. This is realized by the application of a magnetic field with a constant gra-
dient and is described by the Hamiltonian σ σ= ∆ ∑ ( − ) + −H i2 1B B i i i . Let us consider a dark state d  
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(d even) and the bright state = −b d 1  immediately above. Their coupling via H B is quantified by 
∆ = ∆ ∑ ( − )i f f2 1db B i i

d
i
b, as shown in Fig. 2c.

We develop a protocol where direct off-resonant driving into the bright state (amplitude χb) com-
bined with a coupling between the bright and dark states via the magnetic field leads to an almost unity 
population transfer into the dark state. Given a sufficient energy separation, the problem can be reduced 
to solving the time-dependent Schrödinger equation for the three coupled state amplitudes ,c cb d and cG. 
Following the same adiabatic approximation as in the two-atom case we reduce the general dynamics to 
an effective two-level system between the states meant to be connected by an effective π-pulse, i.e. d  
and G . The generalized resonance condition (with ε ε ε= − )db d b  reads

ε ε ε
χ∆ = −∆ ( − ) −

+
+ + ∆ − ,

( )
( ) N 1

2 4 10
N

B
d b db

db b

2
2 2

and was obtained in the limit where the coupling of the dark state to the other adjacent bright state 
+d 1  was neglected owing to the relation χ χ− +d d1 1. The effective transition rate between the 

ground state and the state d  is

Figure 2.  Coupling to dark states via a magnetic field gradient. (a) Linearly increasing level shifts along 
the chain occuring in the presence of the magnetic field gradient. (b) Illustration of the level structure and 
indirect dark state access for two coupled emitters. While symmetry selects the state S , off-resonant 
addressing combined with bright-dark state coupling of strength ∆B allows for a near-unity population 
transfer into the state A . (c) Dynamics in the single-excitation manifold of N  coupled emitters where 
symmetric driving reaches the bright states with amplitudes χm while the magnetic field couples neighboring 
dark and bright states. (d) Plot of the asymmetric state population for the two-atom case as a function of the 
increasing magnetic field (solid line) compared to the steady-state approximation (dashed line) at 
numerically optimized time T =  16.19 Γ −1, with parameters η =  Γ  and a =  0.05 λ0. (e) For a chain of N =  4 
emitters, a 91%-efficient π-pulse to the most robust state can be achieved as demonstrated in the population 
evolution plot. The separation is chosen to be a =  0.025λ0, while η =  40 Γ  and numerical optimization is 
employed to find Δ B =  0.98 Γ .
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χ

ε
ν =

∆

∆ + + ∆ ( − )
.

( )
( )

N 1 11R
N b db

b B

The addition of decay imposes a new constraint on the timescale of the process, i.e. ν Γ( )
R

N
d, required 

to ensure near unity population in the dark state. The fulfillment of this condition depends on the indi-
vidual system under consideration. As an illustration of the procedure, Fig. 2e presents the targeting of 
a robust dark state in the single excitation manifold of four particles. Note, that the numerical results are 
performed in an exact regime beyond the NN approximation and are in excellent agreement with our 
conclusions obtained from the NN treatment.

Discussions
Entanglement properties.  To justify the usefulness of collective states for quantum information 
purposes, we employ the von Neumann entropy to analyze their entanglement properties. More specifi-
cally, we compute the von Neumann entropy of the reduced density matrix ρ s of a single two-level 
emitter (showing the degree of its bipartite entanglement with the rest of the system) defined by 
ρ λ λ( ) = − ∑S logs i i i2 , where λi is the i-th eigenvalue of ρ s and ≡0 log 0 02 . We furthermore minimize 

the set of values for all atoms to obtain a lower bound on the entanglement contained in the system. We 
compare the numerical results to the single-atom entropy of the symmetric Dicke state − / , − / +N N n2 2
19. For these particular states the entropy is maximized if the number of excitations in the state is 
= /n N 2. It follows that it is highly desirable to drive the system into robust states as close as possible 

to = /⌊ ⌋n N 2  excitations (where /⌊ ⌋N 2  is the largest integer smaller or equal to /N 2), since this manifold 
contains the most entangled state. A comparison of the exact numerical data and the analytical expres-
sion for the entropy is shown in Fig. 3a.

Another way to characterize the entanglement of the prepared state is to investigate their depth of 
entanglement24,25, which does not quantify the entanglement itself but rather shows how many atoms of 
an ensemble are involved in the present entanglement. This measure has been used in recent experi-
ments25,26 since it is a readily measurable quantity. The depth of entanglement is computed as follows: 
given an N -atom target state in which an arbitrary number of said N  atoms is entangled, we compute 
the limit of how much population one can drive into this state such that the resulting density matrix ρ 
remains separable into a subset of density matrices that exhibit no more than k-atom entanglement 
( ≤ ≤k N1 ). This may be done by numerically maximizing the target state population Pt as a function 
of the ground state population PG for different k. The boundaries themselves indicate how many atoms 
need to be entangled in order to prepare the pure target state, i.e. the boundary where the target state 
population is maximized to 1 corresponds to the number of atoms entangled in the (pure) target state. If 
a general prepared state has a target and ground state population such that the corresponding data point 
lies on or above the k-atom boundary, more than k atoms are entangled.

Obviously, for the pure target states considered in the above computation all atoms contribute to the 
entanglement, since otherwise the minimal von Neumann entropy as shown in Fig. 3a would be zero. 
For a more interesting result, we can compute the depth of entanglement in order to demonstrate the 

Figure 3.  Entanglement properties. (a) Comparison of the numerically computed von Neumann entropy 
(empty circles) of the reduced density matrix of the chain minimized over the atom index and the analytical 
expression for the entropy of the Dicke state (green circles), both for excitations n =  1 and = /⌊ ⌋n N 2  as a 
function of the atom number N  at distance a =  0.1 λ0. (b) Depth of entanglement of the subradiant four-
atom state (blue dot) prepared by the magnetic field gradient scheme (see Fig. 2e). It clearly lies above the 
k =  3 boundary indicating four-atom entanglement. The k-atom entanglement boundaries of the target state 
population Pt as a function of the ground state population PG have been computed for the corresponding 
target state of a four-atom chain at distance a =  0.025 λ0.
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efficiency of the driving procedure using a magnetic field gradient as in Fig.  2e. From Fig.  3b, where 
all boundaries have been plotted for the considered subradiant four-atom state, it is clear that the pre-
pared state shows all-atom entanglement as the corresponding data point lies far above the boundary 
for three-atom entanglement.

Implementation considerations.  The proof-of-principle technique presented above has been par-
ticularized on a specific generic system of emitters in an equidistant chain. The choice is natural since 
the electromagnetic vacuum provides a simple example for both collective dispersive and dissipative 
dynamics. To exemplify a possible realization we consider a particular system27 where bosonic Sr atoms 
are trapped in a magic wavelength optical lattice at separations of a = 206.4 nm. The working transition 
is at λ µ= . m2 60 , between the P3

0 and D3
1 electronic states. This amounts to a ratio of λ/ ≈ /a 1 130  

which allows for an operation in the regime targeted by our scheme. The corresponding single atom 
decay rate is at the order of Γ= .0 3 MHz and circularly polarized light can allow for transitions between 
states with a difference of 1 in magnetic quantum number. We have numerically investigated a system of 
4 atoms in such a configuration and found a sizeable %73  target state population for η = Γ2  and 
∆ = . Γ0 5B , under the conditions of a relatively small level shift between the dark and bright state around 
Γ6  which does not allow for large driving powers. For further optimization of the efficiency of the target 

state preparation one could envision a modified setup where a trapping transition of smaller wavelength 
can be chosen that would most importantly allow for better state separation (owing to larger dipole 
shifts). The corresponding magnetic field gradient required to produce the considerable ∆ = . Γ0 5B  shift 
on a distance of =a 206 nm is around . ⋅5 2 105 G/m, not far from state-of-the-art values achievable in 
high magnetic field gradient magneto-optical trap experiments28,29. Of course, there are many detrimen-
tal practical effects that can seriously limit the above technique such as light-assisted collision loss. We 
envision the extension of the described technique to systems where both the coherent and dissipative 
particle-particle interactions can be suitably tailored. For example, the same kind of dipole-dipole 
Hamiltonians can occur in 3D lattices of polar molecules30 or between two different color NV centers in 
diamonds31.

Conclusions.  Direct particle interactions are typically detrimental and limiting in precision meas-
urement applications. Here, we have presented some specific opposite examples, where the collective 
nature of the decoherence combined with the coherent binary dipole-dipole interactions is used as a new 
resource for the controlled and efficient preparation of specially selected states. The excitation scheme 
can be tailored to address target states exhibiting both entanglement as well as robustness against decay. 
As a generic example we studied the case of a one-dimensional system of tightly spaced equidistant 
quantum emitters. Already the inherent dipole-dipole coupling allows for a targeted state preparation 
technique via energy selection. The performance of the excitation can be enhanced additionally via the 
continuous application of a spatially increasing magnetic field. The general principle of such a phase 
imprinting technique is potentially applicable in many specific environments such as optical lattices or 
atoms and ions localized within one or more common optical cavity modes32,33, NV-centers or supercon-
ducting qubits coupled to CPW transmission lines or resonators34,35.

Methods
Decay rate of the states.  In order to arrive at an analytical expression for the decay rate of an 
eigenstate ψk  of the Hamiltonian in equation (1), we consider the homogeneous part of the differential 
equation of the corresponding density matrix element that arises from the master equation. The solution 
of this differential equation yields an exponential decay. The rate at which the state population decays 
may be written as

∑Γ ψ ψ ψ ψ γ ψ σ σ ψ= −〈 | | 〉〈 | | 〉 = 〈 | | 〉.
( )

ψ
,

+ −L[ ]
12

k k k k
i j

ij k i j kk

Note, that this is true only for states that contain one specific number of excitations, i.e. they are eigen-
states of the operator σ∑i i

z. Obviously, this is fulfilled for eigenstates of the considered Hamiltonian. 
Equation (12) was used in order to compute the rates depicted in Fig. 1d and throughout the manuscript. 
For example, we used it in order to compute the decay rate of the eigenstates in the NN approximation 
Γm.

Subradiance and disorder.  Let us consider the influence of positioning disorder on subradiant prop-
erties of the target states. To mimic disorder we perturb an equidistant chain of N  emitters (average 
separation a) by introducing an uncertainty in each emitter position quantified by a defect parameter s 
(normal distribution of variance sa). We then write the randomized matrix of decay rates and find the 
minimum decay channel without as well as in the presence of disorder of = %s 20  and = %s 40 . For the 
= %s 0  case, it has been shown16 that the minimum decay rate scales exponentially with N  even for 

distances up to λ.0 4 0, while the linear scaling with N  typical for superradiance is reached for λa 0 
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only. After averaging over 100 random configurations, we plot the logarithm of the minimal rates as a 
function of increasing N  in Fig. 4a. As a somewhat surprising result, subradiance scales even better with 
N  as the disorder increases. This might be understood as a destructive interference effect brought on by 
the cancelation of emitted photons stemming from the random positioning. As pointed out in previous 
investigations16, the states of low symmetry (as, for example, the =m N  state) possess decay rates closest 
to the analytically derived minimal rate. We analyze the respective sensitivity of the state subradiance to 
disorder by initializing the system of N  emitters in the =m N  state and allow it to decay. The outcome 
is plotted in Fig.  4b and shows remarkable robustness of the disordered systems on a long time-scale. 
While on a short time-scale disorder pushes the considered state into faster decaying channels, the long 
time limit shows that the remaining population accumulates in the disorder-enhanced robust states.

For short time-scales, the state still decays slowly (subradiantly), however, the decay rate increases 
with growing disorder ( = %s 40 ). More remarkable, though, is the behavior the decaying states show for 
long time-scales, as the states subject to larger disorder become more robust than the unperturbed sys-
tem. This is due to the fact that all population in the =m N  state that decays through more radiative 
channels have decayed at that point and only the most subradiant channel (minimal eigenvalue of the 
decay rate matrix) remains. As seen in Fig. 4a, this eigenvalue is even further reduced by disorder which 
explains the long time-scale behavior in Fig. 4b.

Coherent dynamics with a magnetic field gradient.  Two-atom case.  To find the expressions in 
equation (8) and equation (9) we solve three coupled differential equations neglecting the population of 
the fully inverted state E  as far off-resonant for all times. In the collective basis, where any state may 
then be written as ψ = + +c S c A c GS A G , the equations are

η= (∆ + ∆ + Ω) − ∆ + , ( )ic c c c2 13S B S B A G

= (∆ + ∆ − Ω) − ∆ , ( )ic c c 14A B A B S

η= , ( )ic c 15G S

where Ω = Ω12 is the coherent interaction between the atoms and ∆ is the detuning between the atomic 
resonance frequency and the driving laser. For an efficient driving of A  the population of the state S  
needs to be negligible which allows us to set a steady-state condition, namely =c 0S  yielding the desired 
effective two-level system between G  and A .

Many-atom case.  The same approach as in the two-atom case may be used to describe the dynamics in 
the single-excitation manifold for an arbitrary number of atoms in a chain. Given sufficient energy sep-
aration we may neglect all states but the ones we aim to address. We can indirectly address a dark state 
d  by driving the bright state b  immediately above, which is coupled to the dark state by a magnetic 
field gradient. Neglecting all populations but cb, cd, and cG and their respective couplings via the magnetic 
field gradient, the investigation reduces to the equations

ε χ= ∆ + + ∆ ( − ) + ∆ + , ( )ic N c c c[ 1 ] 16b b B b db d b G

Figure 4.  Subradiance and disorder. (a) Plot of the logarithm of the minimal eigenvalue of the decay rate 
matrix (matrix with entries γ ij) as a function of N at a =  0.4 λ0. for increasing levels of disorder (s =  0, 0.2, 
0.4). (b) Decay of the =m N  state as a function of time. In the presence of disorder (s =  0.2, 0.4) the short 
time and long time behaviors are fundamentally different. At short times, disorder can push the state 
towards faster decaying channels while decay inhibition due to disorder occurs at larger times.
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ε= ∆ + + ∆ ( − ) + ∆ , ( )ic N c c[ 1 ] 17d d B d db b

χ= . ( )ic c 18G b b

For an efficient driving of the dark state we may again invoke a steady-state condition on the bright state 
population =c 0b . This, again, yields an effective two-level system between the ground and the dark state 
with resonance condition and Rabi frequency as displayed in equation (10) and equation (11), 
respectively.

Von Neumann entropy.  For a Dicke state an analytical expression for the von Neumann entropy of 
the reduced density matrix can be obtained. First, note that, since Dicke states are invariant under a 
permutation of the atoms, all reduced density matrices are identical. Hence, they all share the same von 
Neumann entropy for a given number of excitations n. We may choose to reduce the full density operator 
ρ to the density matrix of the first atom in the ensemble, i.e. ρ ρ ρ≡ = ( ),...,trs s N

1
2  which yields a von 

Neumann entropy of

ρ( ) =





 −


 −







 −



. ( )

S n
N

log N
n

n
N

log n
N

1 1
19s 2 2

For the actual eigenstates of the Hamiltonian in Eq. (1) this computation needs to be done numerically. 
Furthermore, these states are not invariant under permutation of atoms and hence it is required to min-
imize the entropy with respect to the atomic chain index in order to find the lower bound.

Depth of entanglement.  The boundaries depicted in Fig. 3b were found by maximizing the target 
state population with the condition on the density matrix of the prepared state to contain no more than 
k-atom entanglement, i.e. ρ ρ= ⊗i i

ki with ≤k ki  and at least one =k ki . To compute the boundaries we 
generalized the algorithm that was previously used solely for the W-state25 to arbitrary states in the 
single-excitation manifold. For the computation of all boundaries we need to distinguish the two cases 
where =P 0G  and >P 0G . Considering a separable state ( =k 1), the boundary for >P 0G  is found to 
be

∑
α

α
( ) =

−
,

( )∏ α =
max P P cmax

1

20
t G

P i
i

i

i

2
2

i i G

where α ∈ ,[0 1]i  and ci are the coefficients of the target state. For =P 0G  the maximization is much 
simpler, i.e. ( ) =P cmax maxt i

2, which is found by setting one α = 0i  and the remaining coefficients 
α =≠ 1j i . Note, that for both these and all following computations we neglect the symmetry of the state, 
i.e. the phases of the coefficients ci by using ci . This is valid due to the invariance of entanglement under 
local unitary operations and necessary if we restrict the coefficients αi in the way we did.

For multiple-atom entanglement ( >k 1) the matter of finding the corresponding boundary is no longer 
so simple. In order to find the maximum population, we assume maximally allowed entanglement in the 
prepared state. We split the prepared state into = /⌈ ⌉M N k  sets, where −M 1 sets are k-atom entangled 
and the remaining one is ′ = − ( − )k N k M 1 -atom entangled. To find the maximum, one has to con-
sider all possible positions of the ′k -entangled state. If, for example, the ′k -entangled state is at the last 
position, the population of the target state t in the prepared state reads

φ φ=







 ⊗



 ⊗






,

( )=

− ′P t
21t

i

M

i
k

M
k

1

1
2

where

∑φ α α λ σ= + −
( )=

+G G1
22i

k
i k i

r

k

r
i

r k
2

1

is a general non-separable state of k atoms in the single-excitation manifold. The state Gk  is the k-atom 
ground state and the coefficients λ ∈ ,[0 1]r

i  have to be normalized, i.e. λ∑ ( ) = ∀ i1r r
i 2 . One then has 

to maximize the target state population with respect to the coefficients α ∈ ,[0 1]i  and λ r
i with the 

condition α∏ = Pj j G . The number of these coefficients, however, grows vastly with the number of 
atoms, hence numerical computations are limited. For =P 0G  one can again choose one α = 0i  and all 
α =≠ 1j i .
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Note, that all boundaries computed via this maximization only hold for pure states. In order to find 
the boundaries for mixed states we need to compute the convex hulls of the respective boundaries25. The 
=k N  boundary is found when a perfect superposition between the ground and target state is reached.

In this work we considered the specific case of an exciton state of a four-atom chain. In that case, 
when investigating two-atom entanglement the permutation of the ′k -entangled state is rendered unnec-
essary since ′ = =k k 2. Unfortunately, this is no longer true for =k 3, where we did have to account 
for all permutations.
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