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The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of
oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and
tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so
inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that
many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those
compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional
Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant
bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the
subsequent research.

1. Introduction

Oxidative stress is the imbalance between oxidation and anti-
oxidation in the body, which leads to the excessive produc-
tion of oxygen free radicals that cannot be removed,
resulting in excessive oxidation and thereby causing damage
to cells and tissues [1–3]. Free radicals are also produced in a
normal physiological state, but there are two kinds of antiox-
idant systems in our body: enzyme antioxidant system and
nonenzymatic antioxidant system [4]. They clear free radi-
cals produced by normal metabolism in the body to maintain
the dynamic balance of free radical production and clearance
and protect the body from oxidative damage. When the body
is damaged exogenously or endogenously, the oxidation
capacity of the body is enhanced, producing excessive free
radicals and releasing a large number of reactive oxygen spe-
cies (ROS). However, the reduction of antioxidant capacity
makes the accumulation of excessive free radicals in the body
cannot be removed, thus causing oxidative damage to the
body and the occurrence of diseases [4]. Modern studies have

shown that many traditional Chinese medications (TCM)
and their bioactive compounds are rich in antioxidants,
mainly including flavonoids, phenols, terpenes, polysaccha-
rides, saponins, alkaloids, vitamins, and trace elements [5,
6]. Through their direct or indirect effects on the body’s anti-
oxidant system, they achieve the purpose of eliminating
excessive free radicals and thus protect the body [6]. Here,
we summarize these recent advances in the field of TCM-
based bioactive compounds as they apply to oxidative stress.
In addition, current barriers for further research are also dis-
cussed. Due to the ongoing research in this field, we believe
that stronger evidence to support the application of TCM-
based bioactive compounds for oxidative stress will emerge
in the near future.

2. TCM-Based Bioactive Compounds and
Oxidative Stress

2.1. Polyphenols. Many TCM contain polyphenols, and their
antioxidant mechanism is mainly related to the hydrogen
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donor of their phenolic hydroxyl groups, which can bind to
free radicals and terminate the chain reaction of free radicals
[7–9].

As natural polyphenolic phytochemicals that exist pri-
marily in tea, tea polyphenols have been shown to have many
clinical applications [10, 11]. Tea polyphenols could protect
tri-ortho-cresyl phosphate-induced ovarian damage via inhi-
biting oxidative stress [12] and ameliorate hepatic oxidative
stress though reducing hepatic inflammation and NLRP3
inflammasome activation caused by a moderate dose of per-
fluorodecanoic acid [13]. Additionally, it can not only regu-
late the antioxidant enzyme system in the body and play an
efficient scavenging effect on free radicals by activating the
Nrf2/Keap1 pathway [9, 14] but also inhibit the oxidase sys-
tem in the body, such as inhibiting the production of
NADPH oxidase, to reduce the production of ROS in vascu-
lar endothelium and protect the heart [9, 15]. Additionally,
tea polyphenols could protect PC12 cells against
methamphetamine-induced reactive oxide species produc-
tion through increasing the antioxidant capacities and
expressions of the phosphorylation of ataxia telangiectasia
mutant and checkpoint kinase 2 [16]. Tea polyphenols
decrease intracellular reactive oxygen species accumulation
via activating NFE2L2 and MAPK pathways in bovine mam-
mary epithelial cells exposed to hydrogen peroxides [17].
Fresh tea leaf is unusually rich in polyphenols known as cat-
echins which may constitute up to 30% of the dry leaf weight
[18]. Catechins are ROS scavengers and metal ion chelators,
whereas their indirect antioxidant activities comprise induc-
tion of antioxidant enzymes, inhibition of prooxidant
enzymes, and production of the phase II detoxification
enzymes and antioxidant enzymes [19]. In a paralleled, cross-
over, and randomized controlled study, single-dose con-
sumption of green tea catechins influences oxidative stress
biomarkers, which could be beneficial for oxidative metabo-
lism at rest and during exercise, possibly through the
catechol-O-methyltransferase mechanism [20].

Salvianolic acid is another activity of phenolic acids. Sal-
vianolic acid A/B/C are bioactive polyphenols extracted from
Radix Salviae (Danshen), which possesses a variety of phar-
macological activities. Salvianolic acid A effectively protects
the kidney against oxidative stress in 5/6 nephrectomized rats
by activating the Akt/GSK-3β/Nrf2 signaling pathway and
inhibiting the NF-κB signaling pathway [21]. Salvianolic acid
A ameliorates oxidation in ischemia-reperfusion-induced
injury, and these protective effects may partially occur via
activation of Nrf2/HO-1 and Akt/mTORC1 signaling path-
ways [22, 23]. Salvianolic acid A prevents Ang II-induced
oxidative stress by inhibiting the activation of the Akt path-
way in the macrophages [24]. Salvianolic acid B abolishes
oxidative stress in the hippocampus by inhibiting NLRP3
inflammasome activation [25]. Salvianolic acid B protects
the endothelial cells against oxidative stress injury by inhibit-
ing endothelial permeability andMAPK and NF-κB signaling
pathways [26]. Salvianolic acid B relieves oxidative stress via
inhibiting the transforming growth factor-β1 pathway in
lipopolysaccharide-induced acute lung injury rats [27]. Sal-
vianolic acid B protects against subarachnoid hemorrhage-
triggered oxidative damage by upregulating the Nrf2 antiox-

idant signaling pathway, which may be modulated by SIRT1
activation [28]. Furthermore, salvianolic acid C protects the
hepatocytes from acetaminophen-induced oxidative stress
damage by mitigating mitochondrial oxidative stress through
inhibition of the Keap1/Nrf2/HO-1 signaling axis [29]. Sal-
vianolic acid C effectively attenuates lipopolysaccharide-
induced oxidative stress via the TLR4/NF-κB pathway [30].

The antioxidative effect of resveratrol in vivo is not to
scavenge ROC directly but to play a role as a gene regulator
[31–33]. Resveratrol inhibits NADPH oxidase-mediated pro-
duction of ROS by downregulating the expression and activ-
ity of the oxidase [31]. Resveratrol can activate SIRT1 [34].
Studies have shown that among the established SIRT1 tar-
gets, FoxO transcription factors contribute to the antioxida-
tive effects of resveratrol by upregulating antioxidative
enzymes and eNOS [31, 34, 35]. SIRT1 inhibits the produc-
tion of ROS in mitochondria through proliferator-activated
receptor-coactivator-1α deacetylation and nitric oxide-
dependent mechanism [36]. Resveratrol results in relieving
oxidative stress, which may be largely associated with the
alleviation of metabolic disturbances [37]. In addition, res-
veratrol upregulated the activities of some antioxidant
enzymes by activating Nrf2 [31, 38]. Resveratrol also has
effects on nonenzymatic antioxidants [31]. For example, res-
veratrol can upregulate γ-glutamylcysteine synthetase by
activating Nrf2 [38], thus increasing the content of glutathi-
one in endothelial cells [39].

Polyphenols include also flavonoids, which are a series of
compounds with C6-C3-C6 as the basic carbon frame [40,
41]. Their antioxidant and anti-inflammatory activities are
mainly due to their ability to prevent or inhibit reactions
related to oxygen free radicals, mediate or increase the activ-
ity of antioxidant enzymes, and thus scavenging ROS [2].
They can improve the antioxidant status by weakening the
activity of the NF-κB pathway and inhibiting the expression
of a variety of inflammatory cytokines and chemokines, such
as monocyte chemoattractant protein-1, nitric oxide syn-
thase, cyclooxygenase, lipoxygenase, cell adhesion molecules,
tumor necrosis factor, and interleukin [2, 42].

Baicalein, a widely distributed natural flavonoid [43],
downregulates protein kinase R-like ER kinase and upregu-
lates Nrf2 to significantly alleviate oxidative stress [44–47].
Moreover, baicalein exerts a protective effect under oxidative
stress through regulating the KLF4/MARCH5/Drp1 pathway
[48, 49], stabilizing carboxyl terminus of Hsc70-interacting
protein activity to promote receptor-interacting serine/-
threonine kinase 1/3 ubiquitination and degradation [50],
and regulating PARP-1/AIF [51] and NF-κB pathways [47,
52].

Baicalin, also extracted from Scutellariae Radix (Huang-
qin) [53, 54], alleviates intestinal oxidative damage by inhi-
biting NF-κB and increasing mTOR signaling to modulate
downstream oxidative responses after deoxynivalenol chal-
lenge [55, 56]. Baicalin inactivates succinate dehydrogenase
to suppress ROS production and protects glutamine synthe-
tase protein stability against oxidative stress [57]. Baicalin
treatment inhibits the NF-κB and p38 MAPK signaling path-
ways, thereby achieving its antioxidant effect in a dose-
dependent manner in atherosclerosis [58]. Baicalin also
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protects against LPS-induced injury by decreasing oxidative
stress [59] and represses C/EBPβ via redox homeostasis [60].

Luteolin is a common flavonoid that is abundantly pres-
ent in various edible plants; it is known to exhibit beneficial
effects [61]. Luteolin effectively alleviates oxidative stress
injury induced by hydrogen peroxide through P38
MAPK/NF-κB activation [42, 62–64]. Luteolin activates the
Nrf2 pathway and increases the antioxidant defense capaci-
ties of ochratoxin A-treated cells [65]. Luteolin exhibits anti-
oxidative property in lipopolysaccharide-stimulated murine
macrophages through transforming growth factor beta-
activated kinase 1 TAK1 inhibition and Nrf2 activation
[66]. Luteolin also enhances the antioxidative process in
intracerebral hemorrhage and testicular injury by activating
the p62-Keap1-Nrf2 [67] or Nrf2/HO-1 pathway [68]. More-
over, p21 upregulation and mTOR signaling inhibition are
involved in the antioxidant effect of luteolin [69].

The antioxidation of quercetin is mainly the result of the
joint action of the catechol group on the B ring and the free
hydroxyl group (OH-) on the A ring [70, 71]. In addition,
quercetin has a 3-OH group, which is an effective inhibitor
of lipid oxidation and can effectively reduce the abnormal
production of ROS [42, 70]. Quercetin attenuates d-
galactose-induced aging-related oxidative alterations
through NF-κB [72], reverses lipopolysaccharide or 1,2-
dimethylhydrazine-mediated oxidative stress via targeting
the MAPK/Nrf2/Keap1 signaling pathway [73, 74], and
improves d-galactosamine-induced cellular damage by inhi-
biting oxidative stress via inhibiting HMGB1 [75] and SIR-
T1/ER stress [76].

Silymarin can increase the activity of antioxidant
enzymes, such as superoxide dismutase and catalase, so it
can scavenge free radicals efficiently. Silymarin can also
inhibit lipid peroxidation, so it can protect the integrity of
the structure and function of hepatocytes from various oxi-
dative damage [77, 78].

Puerarin prominently alleviated oxidative stress through
TLR4/NLRP3 inflammasome activation [79], Nrf2 pathway
[80, 81], and antioxidant enzymes [80] by significantly
downregulating HIF-1α and upregulating TIMP-3 and
BCL-2 [82]. Moreover, puerarin may inhibit MAPK and
active STAT3 to enhance the antioxidant capacity [83].

2.2. Saponins. The main saponins in TCM are steroidal sapo-
nins and triterpenoid saponins. The contents of steroidal
saponins were more in Anemarrhenae Rhizoma (Zhimu),
Asparagi Radix (Tiandong), Ophiopogonis Radix (Maidong),
and Paris polyphylla (Chonglou), and the contents of triter-
penoid saponins in Panax ginseng C.A. Mey (Renshen),
Acanthopanax senticosus (Rupr. Maxim.) Harms (Ciwujia),
and Cimicifugae Rhizoma (Shengma) were higher.

The levels of malondialdehyde and lactate dehydrogenase
can be reduced by timosaponin, which improves superoxide
dismutase and nitric oxide [84]. The research showed that
timosaponin could protect PC12 cells by reducing the level
of ROS induced by hydrogen peroxide [85]. Timosaponin
may have the effect of protecting INS-1 pancreatic β cells
through reducing IL-1β production by inhibiting the NLRP3
inflammasome in macrophages and restoring the insulin

secretion ability and cell viability by reducing oxidative stress
[86]. Timosaponin can also reduce the activity of NF-κB to
inhibit the production of inflammatory factors and reduce
the inflammatory response [84].

Ginsenoside, a potential treatment candidate for the
attenuation of aging-related disease [87], produces
antidepressant-like effects on chronic unpredictable mild
stress-exposed rats involving protection against oxidative
stress and thus the neuronal deterioration resulting from
inflammatory responses [88]. Ginsenoside not only upregu-
lates GPX4 to reduce oxidative stress and thereby alleviates
6-hydroxydopamine-induced neuronal damage [89] but also
effectively attenuates D-galactose-induced oxidative stress
via restoring the upstream PI3K/AKT signaling pathway
[90]. Besides, ginsenoside significantly ameliorates oxidative
stress through regulating SIRT1 [91]. In cardiomyocytes, gin-
senoside decreases oxidative stress via activating the antioxi-
dant signal pathway of AMPK [92, 93], PERK/Nrf2/HMOX1
[94], and Nrf2 pathways [95, 96].

2.3. Polysaccharides. Polysaccharides are a kind of compound
composed of more than 10 glycosyl groups bound by glyco-
sidic bonds, which is one of the four basic substances of life
[97]. Polysaccharides have the characteristic of antioxidant
stress. Several antioxidant mechanisms of polysaccharides
include direct scavenging of ROS, enhancement of antioxi-
dant enzyme activity, and binding of polysaccharide mole-
cules with metal ions necessary for ROS to inhibit the
production of free radicals [98–100].

Astragalus polysaccharides extracted from the dried
rhizome of Astragalus membranaceus (Huangqi) can
improve the activity of antioxidant enzymes and reduce
oxidative stress indices [97, 101–103]; it alleviates hydro-
gen peroxide-triggered oxidative injury via elevating the
expression of KLF2 via the MEK/ERK pathway [104]
and alleviates tilmicosin-induced toxicity by inhibiting oxi-
dative damage and modulating the expressions of HSP70,
NF-κB, and Nrf2/HO-1 pathway [105]. Astragalus polysac-
charides can also effectively alleviate oxidative stress-
mediated osteoporosis, which may be related to its regula-
tion of the FoxO3a/Wnt2/β-catenin pathway [106].
Astragalus polysaccharides combined with matrine exert
a synergistic protective effect against oxidative stress,
which might be associated with regulating TFF3 expres-
sion [107].

Lycium barbarum polysaccharides from Goji berries or
Lycium barbarum L. (Gouqi) could protect retinal ganglion
cells from CoCl2-induced apoptosis by reducing mitochon-
drial membrane potential and ROC [108]. And Lycium bar-
barum polysaccharides present antioxidant effects with
utility [109, 110], resulting from direct reduction of ROS, res-
toration of endogenous antioxidant enzymes, and downregu-
lation of p-eIF2α, GRP78, and CHOP [97, 101, 110, 111].

Ziziphus jujuba polysaccharides from Ziziphus jujuba
Mill (Zao) contain four fractions (one neutral polysaccharide
fraction named ZJPN and three acidic polysaccharide frac-
tions named ZJPa1, ZJPa2, and ZJPa3 separately), and their
superoxide anion scavenging ability is stronger than
hydroxyl radicals [112]. In addition, the acidic
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polysaccharide fractions show outstanding chelation to fer-
rous ions [101].

Other polysaccharides such as Angelica polysaccha-
rides can increase the activity of superoxide dismutase,
reduce the level of malondialdehyde, and overenhance
the phosphorylation of Akt/hTERT to mitigate the harm
of the peroxidation of low-density lipoprotein [113,
114]. Further, Angelica polysaccharides can upregulate
miR-126, which could activate the PI3K/AKT and mTOR
signal pathways, to attenuate cellular oxidative response
damage [115].

Cordyceps (Dongchongxiacao) is a genus of ascomycete
fungi that has been used for TCM [116]. The polysaccharides
contained in Cordyceps have a good ability to scavenge
DPPH and ABTS free radicals [101, 117].

3. Conclusions

Many TCM-based bioactive compounds are rich in antioxi-
dants and have good development prospects. However, dif-
ferent bioactive compounds have different targets for
inhibiting oxidative stress (see Table 1), and the side effects

Table 1: TCM-based bioactive compounds and oxidative stress.

Bioactive compounds Cellular and molecular mechanisms References

Polyphenols

Tea polyphenols

Reduce inflammation and NLRP3 inflammasome activation, regulate the antioxidant enzyme
system and play an efficient scavenging effect on free radicals by activating the Nrf2/Keap1
pathway, inhibit the oxidase system, increase the antioxidant capacities and expressions of p-

ATM and p-Chk2, and activate NFE2L2 and MAPK pathways.

[9, 12–17]

Salvianolic acid
Regulate Akt, Keap1/Nrf2/HO-1, TLR4/NF-κB, and MAPK signaling pathways, inhibit NLRP3
inflammasome activation, inhibit endothelial permeability, and inhibit transforming growth

factor-β1 pathway.
[21–30]

Resveratrol
Inhibit NADPH oxidase-mediated production, activate SIRT1, upregulate antioxidative enzymes
and eNOS, alleviate metabolic disturbances, upregulate the activities of some antioxidant enzymes

by activating Nrf2, and upregulate γ-glutamylcysteine synthetase by activating Nrf2.
[31, 34–39]

Baicalein
Downregulate PERK and upregulate Nrf2; regulate KLF4-MARCH5-Drp1, PARP-1/AIF, and NF-

κB pathways; and stabilize CHIP activity to promote RIPK1/RIPK3 ubiquitination and
degradation.

[44–52]

Baicalin
Inhibit NF-κB and p38 MAPK signaling pathways and increase mTOR signaling, inactivate

succinate dehydrogenase to suppress ROS production, and repress C/EBPβ via redox
homeostasis.

[55–60]

Luteolin Activate P38 MAPK/NF-κB, Nrf2, and p21 pathways; inhibit mTOR signaling. [42, 62–69]

Quercetin
Attenuate oxidative alterations through NF-κB and MAPK/Nrf2/Keap1 signaling pathways;

inhibit HMGB1 and SIRT1/ER stress.
[72–76]

Silymarin Increase the activity of antioxidant enzymes; inhibit lipid peroxidation. [77, 78]

Puerarin
Alleviate oxidative stress through TLR4/NLRP3 inflammasome activation, Nrf2 pathway, and
antioxidant enzymes by downregulating HIF-1α and upregulating TIMP-3 and BCL-2; inhibit

MAPK and active STAT3.
[79–83]

Saponins

Timosaponin
Reduce MDA and LDH, improve SOD and NO, reduce ROS, reduce IL-1β production by

inhibiting the NLRP3 inflammasome, and reduce the activity of NF-κB.
[84–86]

Ginsenoside
Upregulate GPX4; restore the PI3K/AKT signaling pathway; regulate SIRT1; and activate AMPK,

PERK/Nrf2/HMOX1, and Nrf2 pathways.
[88–96]

Polysaccharides

Astragalus
polysaccharides

Improve the activity of antioxidant enzymes and reduce oxidative stress indices; alleviate oxidative
injury via elevating the expression of KLF2 via the MEK/ERK pathway; inhibit oxidative damage

and modulate the expressions of HSP70, NF-κB, and Nrf2/HO-1 pathway; and regulate
FoxO3a/Wnt2/β-catenin pathway.

[97, 101–
106]

Lycium barbarum
polysaccharides

Reduce mitochondrial membrane potential and ROC, reduce ROS, restore endogenous
antioxidant enzymes, and downregulate p-eIF2α, GRP78, and CHOP.

[97, 101,
108–111]

Ziziphus jujuba
polysaccharides

Strong superoxide anion scavenging ability; outstanding chelation to ferrous ions. [101, 112]

Angelica
polysaccharides

Increase SOD, reduce MDA, and overenhance the phosphorylation of Akt/hTERT; upregulate
mir-126, which could activate the PI3K/AKT and mTOR signal pathways.

[113–115]

Cordyceps
polysaccharides

Good ability of scavenging DPPH and ABTS free radicals. [101]
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of various bioactive compounds have not been fully studied.
Therefore, we need to further explore the antioxidant mech-
anisms of TCM and in-depth study the side effects of related
bioactive compounds to provide protection for the treatment
of related diseases.
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