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Abstract: The current work investigates the effect of the addition of graphene nanoplatelets (GNPs)
and graphene oxide (GO) to high hard-segment polyurethane (75% HS) on its thermal, morphological,
and mechanical properties. Polyurethane (PU) and its nanocomposites were prepared with different
ratios of GNP and GO (0.25, 0.5, and 0.75 wt.%). A thermal stability analysis demonstrated an
enhancement in the thermal stability of PU with GNP and GO incorporated compared to pure
PU. Differential Scanning Calorimetry (DSC) showed that both GNP and GO act as heterogeneous
nucleation agents within a PU matrix, leading to an increase in the crystallinity of PU. The uniform
dispersion and distribution of GNP and GO flakes in the PU matrix were confirmed by SEM and TEM.
In terms of the mechanical properties of the PU nanocomposites, it was found that the interaction
between PU and GO was better than that of GNP due to the functional groups on the GO’s surface.
This leads to a significant increase in tensile strength for 0.5 wt.% GNP and GO compared with pure
PU. This can be attributed to interfacial interaction between the GO and PU chains, resulting in an
improvement in stress transferring from the matrix to the filler and vice versa. This work sheds light
on the understanding of the interactions between graphene-based fillers and their influence on the
mechanical properties of PU nanocomposites.

Keywords: high hard-segment polyurethane; graphene nanoplatelets; graphene oxide; nanocomposites;
thermal stability; mechanical properties

1. Introduction

It is critical to design high-performance polymer nanocomposites by achieving a
uniform dispersion of nanofillers and strong interfacial adhesion between nanofillers
and polymer matrices in nanocomposite systems [1–3]. Recently, many researchers have
focussed their attention on the use of various types of nanofillers such as graphene, carbon
nanotubes, and nanoclays, among others [4–6]. Nanocomposites’ performance depends on
the substantial features of the nanofiller (the geometrical dimensions, surface area, aspect
ratio, etc.) and the dispersion/distribution state of the nanofiller, as well as nanofiller–
nanofiller and nanofiller–polymer interactions [5,7]. Poor dispersion and weak interfacial
bonding still pose a challenge in the design of effective carbon nanofiller–polymer matrix
nanocomposites [8].

Polyurethanes (PUs) are semicrystalline copolymers consisting of alternating hard and
soft segments [9–12]. Most PUs are formed from polyether/polyester polyols along with
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aliphatic or aromatic di-isocyanates [6,13,14]. Indeed, a phase-separated microstructure is
formed in PUs due to the thermodynamic incompatibility between hard segments and soft
segments, providing a unique and outstanding mechanical performance [12]. A suitable
choice of raw chemicals and dispersion methods leads to improved mechanical, thermal,
and electrical properties [3,13]. Polyurethane (PU) has various applications, including
fibres, coatings, adhesives, and smart actuators [7,15–18].

Graphene is a two-dimensional sheet with a two-dimensional honeycomb arrangement
of carbon atoms [19]. Graphene and its derivatives are considered promising nanofillers
for high-performance polymeric nanocomposite materials due to their unique mechanical,
rheological, thermal, and electrical properties [2,20–22]. In fact, graphene usage has increas-
ingly grown in different industrial applications over the past decade [23]. In particular,
graphene nanoplatelets (GNPs) are often used as nanofillers, consisting of a few layers
of graphene sheets [24]. Graphene oxide (GO) has also been considered one of the most
promising multifunctional fillers derived from graphene [25]. The production of GO leads
to oxygenated (hydroxyl, epoxide, and carboxyl groups) defects in its lattice [18,26,27],
which affect the final properties of GO.

Interfacial interactions between nanofillers and polymer chains can provide a feasible
way to build high-performance polymer nanocomposites [3,4,7]. Dispersion approaches
can basically be classified into three methods: (i) melt blending, (ii) solution mixing, and
(iii) in situ polymerisation [3,28]. The degree of dispersion between these methods can be
varied and depends on the exact physicochemical interactions between the polymer and
the nanofillers [29].

The intermolecular interactions during this process can lead to the restacking of 2D
nanomaterials driven by the Van der Waals interactions when at close proximity [30].
For instance, high shear stress during melt mixing was reported to be inadequate for
overcoming the agglomeration of nanofillers during mixing [31]. Consequently, in situ
polymerisation can be a better choice for the high dispersion of nanofillers [26,32].

There are a significant number of studies devoted to the use of GNP, GO, or both
to reinforce various kinds of polyurethane [26,33–35]. The reinforcements have shown
improved electrical conductivity, mechanical properties, and thermal properties compared
to pure PUs [36,37]. Graphene and GO are both advanced carbon nanomaterials that
have a high mechanical strength and can be easily functionalised to tune interactions
with polymers. Based on the authors’ knowledge, the dispersion and interaction of these
nanofillers in polymer matrices could effectively improve crucial properties such as the
mechanical and thermal properties of different polymers [38]. There is currently a lack
of studies on this type of polyurethane with two types of nanoscale fillers with different
functional groups on their surfaces. As such, the main objective of the current study is
to obtain and characterise new hard-segment polyurethane nanocomposites with a new
type of chain extender, 1,5 pentanediol, and using two kinds of nanoscale additives with
different functional groups: GNP and GO.

2. Experimental Method
2.1. Materials

Graphene nanoplatelets (GNP), with an average thickness of 6–8 nm and a typical
surface area of 120 to 150 m2/g, were purchased from Lansing, MI, USA (XG sciences.com).
Polyurethane was produced according to a two-step polymerisation process using polyether
polyol as a soft segment purchased from Sigma-Aldrich, UK, with functionality of 2.0 and
an average molecular number Mn = 2000 g/mol. The chain extender (1,5-Pentanediol) and
isocyanate, MDI (4,4’ methylenebis phenyl isocyanate), which represent the hard segments,
were purchased from Sigma-Aldrich, UK. A catalyst (DABCO-S) and the solvent N,N
dimethylene-acetamide (DMAC) were utilized to complete production of the PU.
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2.2. Preparation of Graphene Nanoplatelets (GNP)

GNP powder (wt.%) was dispersed with DMAC solvent before mixing with PU at a
concentration of 2 mg/mL. A sonication bath method (frequency = 37 KHz) was utilised
for dispersion for half an hour to prevent GNP aggregation/stacking during the in situ
polymerisation process.

2.3. Preparation of Graphene Oxide (GO)

Graphene oxide (GO) was prepared using a modified Hummers’ method [39]. Briefly,
5 g of natural flake graphite (Graphite Trading Company) and NaNO3 (3.75 g) were
continuously stirred in concentrated sulphuric acid (170 mL). The mixture was then cooled
and kept in an ice bath for 2 h with stirring to maintain a very low temperature of 2 ◦C.
Afterwards, KMnO4 (25 g) was gradually added over 60 min with constant stirring and, to
avoid a sudden increase in temperature, the rate of addition was carefully controlled. Then,
the mixture was removed from the ice bath and allowed to warm to room temperature and
left stirring for 7 days. The mixture became thicker and brownish over time. Then, the dark
mixture was gradually dispersed into 550 mL of water with 15 mL (5 wt.%) of H2SO4 for
approximately 1 h. Over 5 min, 10 mL of hydrogen peroxide (30 vol. %) was added with
considerable effervescence; the mixture converted into a yellow/gold glittery suspension
and was stirred for a further 2 h. After that, the mixture was additionally diluted with
500 mL of H2O containing 9 mL (3 wt.%) of H2SO4 and 2 mL (0.5 wt.%) of H2O2, and left
stirring overnight. Finally, the subsequent addition of water continued until the pH of the
GO solution reached neutral (pH = 7).

2.4. Dispersion Techniques

PU nanocomposites were prepared using different dispersion methods in order to
obtain better dispersion quality and an improvement in their physical properties [40]. The
final product of synthesis was a solution-based PU with a high amount of DMAC solvent
incorporated with GNP and GO by different dispersion techniques. Both GNP and GO
were dispersed in DMAC using a sonication bath and magnetic stirring before being added
to the PU during the synthesis process to ensure better quality dispersion. It was found that
a sonication bath (power = 80 W; frequency = 37 kHz) of these carbon additives can exhibit
a high degree of exfoliation compared to a magnetic stirrer (overnight). The difference
between the sonicated and magnetic stirring-treated (GO and GNP) nanofillers is shown
via the images in Figure 1.

Polymers 2022, 14, x FOR PEER REVIEW 3 of 21 
 

 

(DABCO-S) and the solvent N,N dimethylene-acetamide (DMAC) were utilized to com-
plete production of the PU. 

2.2. Preparation of Graphene Nanoplatelets (GNP) 
GNP powder (wt. %) was dispersed with DMAC solvent before mixing with PU at a 

concentration of 2 mg/mL. A sonication bath method (frequency = 37 KHz) was utilised 
for dispersion for half an hour to prevent GNP aggregation/stacking during the in situ 
polymerisation process. 

2.3. Preparation of Graphene Oxide (GO) 
Graphene oxide (GO) was prepared using a modified Hummers’ method [39]. 

Briefly, 5 g of natural flake graphite (Graphite Trading Company) and NaNO3 (3.75 g) 
were continuously stirred in concentrated sulphuric acid (170 mL). The mixture was then 
cooled and kept in an ice bath for 2 h with stirring to maintain a very low temperature of 
2 °C. Afterwards, KMnO4 (25 g) was gradually added over 60 min with constant stirring 
and, to avoid a sudden increase in temperature, the rate of addition was carefully 
controlled. Then, the mixture was removed from the ice bath and allowed to warm to 
room temperature and left stirring for 7 days. The mixture became thicker and brownish 
over time. Then, the dark mixture was gradually dispersed into 550 mL of water with 15 
mL (5 wt. %) of H2SO4 for approximately 1 h. Over 5 min, 10 mL of hydrogen peroxide 
(30 vol. %) was added with considerable effervescence; the mixture converted into a 
yellow/gold glittery suspension and was stirred for a further 2 h. After that, the mixture 
was additionally diluted with 500 mL of H2O containing 9 mL (3 wt. %) of H2SO4 and 2 
mL (0.5 wt. %) of H2O2, and left stirring overnight. Finally, the subsequent addition of 
water continued until the pH of the GO solution reached neutral (pH = 7). 

2.4. Dispersion Techniques 
PU nanocomposites were prepared using different dispersion methods in order to 

obtain better dispersion quality and an improvement in their physical properties [40]. 
The final product of synthesis was a solution-based PU with a high amount of DMAC 
solvent incorporated with GNP and GO by different dispersion techniques. Both GNP 
and GO were dispersed in DMAC using a sonication bath and magnetic stirring before 
being added to the PU during the synthesis process to ensure better quality dispersion. It 
was found that a sonication bath (power = 80W; frequency = 37 kHz) of these carbon ad-
ditives can exhibit a high degree of exfoliation compared to a magnetic stirrer (over-
night). The difference between the sonicated and magnetic stirring-treated (GO and 
GNP) nanofillers is shown via the images in Figure 1. 

  
(a) (b) 
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2.5. Preparation of PU/GNP and PU/GO Nanocomposites

A two-step polymerisation approach was carried out to synthesise the PU matrix,
as reported in our previous study [21], with a hard-segment ratio of 75% HS. The in situ
polymerisation approach was used for the preparation of PU/GNP and PU/GO nanocom-
posites with a weight fraction value, for example, of 0.25 g of GNP/GO, added to 100 g
of an exact amount of PU polymer for a ratio of 0.25 wt.%, and so on, since the GNP/GO
solution was combined with the chain extender in the second stage. After completing the
synthesis process, the PU/GNP and PU/GO solutions were dried in a furnace at 80 ◦C for
three days. The test samples of both PU/GNP and PU/GO nanocomposite materials were
performed by an injection-moulding process using a Haake Minijet II (Thermo Scientific,
Waltham, MA, USA) with a barrel temperature of 200 ◦C, mould temperature of 50 ◦C,
injection pressure at 850–1100 bar for 10 s, and holding pressure at 400 bar for 5 s. The
synthesis process is shown in Figure 2.
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Figure 2. Schematic representation of fabrication process of PU/GNP and PU/GO nanocomposites
using a sonication bath and in situ polymerisation system with an oven and nitrogen inlet to maintain
the inert atmosphere environment inside the reaction vessel.

2.6. Characterisation and Measurements
2.6.1. Thermogravimetric Analysis (TGA)

TGA experiments were performed using a Q-500 (TA Instruments) under nitrogen
atmosphere. A weight of samples of about 5 mg was used to measure the thermal stability
of PU/GNP and PU/GO nanocomposites via their heating to 700 ◦C at a heating rate of
10 ◦C/min.

2.6.2. Differential Scanning Calorimetric Analysis (DSC)

Q100 (TA Instruments) was used to investigate the thermal properties of PU/GNP
nanocomposites using an auto-sampler and the Indium Calibration Standard. The sam-
ples weighed about 7–11 mg, and the custom protocol that was applied consisted of a
cool/heat/cool/heat sequence with a heating range of −90 ◦C to 200 ◦C and a rate of
10 ◦C/min in an N2 atmosphere.
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2.6.3. X-ray Diffraction (XRD)

For X-ray diffraction (XRD), an X’Pert X-ray diffractometer was utilized together with
a Cu Kα radiation source (λ = 1.542 Å) to first identify the GNP and GO structures in
a powder form. The crystallinity plane degree of semicrystalline PU/GNP and PU/GO
nanocomposites was attained as well that for injection-moulded samples with a rectangular
shape of 1 mm × 0.5 mm.

2.6.4. Small-Angle X-ray Scattering (SAXS)

SAXS experiments were carried out on Beamline I22 at the Diamond Light Source (DLS)
facility in Didcot, UK. The beam’s energy was 12.4 keV, equivalent to an X-ray wavelength
of 0.1 nm. Samples were suspended on a metal grid using Kapton tape. Acquisition time
varied from 1 to 0.01 s depending on the scattering intensity of the sample; the pixel array
detector used to collect the SAXS data was the Pilatus P3-2M (from Dectris). There was a
3.47 m fixed distance between samples and the detector, resulting in a momentum transfer
vector range of 0.05 (nm−1) < q = (4π/λ)sin(θ/2) < 3.0 (nm−1), where θ is the scattering
angle and λ the wavelength of incident photons. Calibration of the momentum transfer
was performed using silver behenate powder. Air was applied as background and was
subtracted from all measurements, while the subtraction mask was formed using glassy
carbon. Data were reduced using the processing tools in the DawnDiamond software suite.
The 2D scattering photon patterns were integrated using an azimuthal integration tool to
obtain 1D scattering patterns. As a result of the irregular structures of semi-crystalline
materials such as PUs, SAXS can provide a scattering signal with different homogeneities
at a typical length scale (d-spacing). This is calculated using Bragg’s law: dm = 2π/q*,
where q* is the maximum of the scattering peak. Based on Bragg’s law, the degree of
phase separation of multi-block copolymers can be predicted from a one-dimensional
scattering pattern for most quantitative analysis; the phase structure can be obtained from
the position of the peak of a q scale. This q vector can yield the correlation length between
two different phases.

2.6.5. Transmission Electron Microscopy (TEM)

The morphological features of PU/GNP and PU/GO were investigated via a transmis-
sion electron microscope (Philips CM200, 200 kV, Tokyo, Japan). For TEM measurement, the
PU/GNP and PU/GO samples were prepared via cutting sample into slices approximately
50–60 nm in thickness, which were cut from the core of the samples using a diamond blade
knife and an ultra-microtome machine (Leica EM UC6). Samples were deposited on square
mesh copper TEM grids (300 Mesh)—purchased from Agar Scientific (UK)—in the distilled
water solution.

2.6.6. Scanning Electron Microscopy (SEM)

The morphological features of PU/GNP and PU/GO nanocomposites were detected
using field-emission SEM (FESEM-CXL30). The cryogenically fractured surface of the
nanocomposites was coated with a thin film of gold in order to make it conductive with
respect to the incident electron beam, thus producing a better SEM image. This process
was conducted using a rotary-pumped coater (Q150R Plus from Quorum (Lewes, UK)).

2.6.7. Mechanical Test

The tensile properties of the pure PU and PU/GNP and PU/GO nanocomposites were
tested using a universal testing machine (type an Instron 1122). All samples were tested
under specific conditions (humidity ~50%, with a temperature ~25 ◦C) within a controlled
room. The dumbbell-shaped test specimens were made by injection moulding machine
according to the ISO 527-2 1BA standard. The samples were kept overnight before testing;
the tensile test was performed with crosshead speed of 10 mm/min for at least 5–7 samples.
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3. Results and Discussion
3.1. Characterisation of Structure and Morphology of GNP/GO
3.1.1. SEM and TEM Analysis

The TEM and SEM techniques were used to investigate the structure and morphology
of the GO and GNP nanofillers. Figure 3 shows the SEM and TEM images for both
GO and GNP. The SEM images of GO show aggregation and folded regions (indicated
by red arrows in Figure 3a) due to oxidation and restacking processes, leading to the
formation of a crumpled and fluffy structure [41]. In contrast to GO, both the SEM and
TEM images of the GNP reveal folded, rolled up, and overlapping GNP flakes. It is well
known that sonication energy can trigger the folding of GO/GNP flakes, which restack
after sonication [11,12]. This outcome is attributed to the effect of Van der Waals forces on
graphene sheets, leading to restacking and disordered, aggregated regions in the graphene
derivatives [42]. Figure 3d illustrates the TEM images of GO at a nano-size thickness and a
small scale, which also indicates the folded regions besides the wrinkled regions owing to
the effect of the chemical treatment.
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3.1.2. XRD Results

Figure 4 presents the XRD diffraction pattern of GNP and GO compared with pure
graphite. It is well known that the XRD test is usually used to investigate the crystal
structures of different materials and determine their interlayer spacing (d) using Bragg’s
equation, where distance (d) relates to the beam-diffraction angles of an incident X-ray line.
The XRD diffraction pattern of the as-received GNP exhibits two peaks located at 26.52◦

and 54.62◦, corresponding to Bragg’s reflection planes 002 and 004 and interlayer d-spacing
of 3.35 Å and 1.68 Å, respectively [18,43]. As expected from previous studies [43,44], both
peaks of the GNPs indexed to pure graphite, which indicates the ability of the as-received
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GNPs to maintain the crystalline structure of graphite [44,45]. Yet, after oxidation, the
highest diffraction peak of graphite shifted to 10.82◦, which indicates the effect of the
presence of oxygen within the interlayer spaces of graphite [46]. The effect of oxygen
functional groups such as carbonyl, hydroxyl, carboxyl, and epoxy groups in GO and some
structural defects cause the increase in d-spacing of the highest peak of graphite from 3.35 Å
to 8.18 Å, as reported in previous studies [47].
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3.2. TGA Results

All the gravimetric measurements of pure PU and its nanocomposites with GNP and
GO are shown in Figure 5. Figure 5a,c display the normal TGA curves of the PU, PU/GNP,
and PU/GO nanocomposites with various weight percentages. The weight loss is plotted
with a temperature range from 0 ◦C to 700 ◦C. It can be seen that thermal degradation of the
polymers can be divided into three steps: the complete degradation of the main chains, the
rupture of the side chains with volatile products, and the formation of char residues [48,49].
It was observed that the onset temperature (Tonset) of pure PU started increasing after the
addition of GNPs and GO, and thus both the PU/GNP and PU/GO samples showed a
similar trend of thermal stability enhancement, even at a low nanofiller loading. Such a
difference in the improvement of the thermal stabilities of the PU nanocomposites via the
addition of GNPs and GO is related to the high thermal stability of GNPs compared to
GO [50–52]. The TGA results can provide evidence of the quality of the nanofillers that are
linked with the polymer. Overall, all the PU filled with GNPs and GO exhibited higher
thermal stability performance than that of pure PU. The maximum rate of degradation
temperature (Tmax) of PU and its nanocomposites as obtained from a DTG thermogram are
summarised in Table 1. The DTG curves of PU and its nanocomposites (see Figure 5c,d)
consist of a two-stage mechanism of thermal degradation. Firstly, the dissociation of the
urethane linkage of PU occurs, converting the urethane groups to isocyanate and alcohol.
Secondly, the degradation is associated with the mass loss of the soft segments [18,53].

The findings suggest that PU is thermally stable around 300 ◦C, while hard segments
start to degrade after temperatures in the range of 330 ◦C–340 ◦C. The soft segments start to
degrade afterwards, with a maximum temperature of 370 ◦C. The addition of GNP and GO
gradually increases the onset temperature by 8 ◦C and the Tmax of the DTG results by 10 ◦C
with minimum GNP and GO incorporation. The improved thermal stability results from
the maximising of the physico-chemical properties due to the incorporation of nanofillers,
since the barrier effect of PU filled with GNP and GO might be more effective in preventing
the emission of degraded products, thus yielding high barrier performance [54–57]. As a
result, this tortuous effect prevented the escape of all of the gases generated during the
heating process and released from the PU/GNP and PU/GO samples [22,58,59].
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Figure 5. TGA curves (10 ◦C/min) of PU/GNP nanocomposites and PU/GO nanocomposites
compared to pure PU: (a) TGA curves; (b) DTG curves.with GNP nanofiller, (c) TGA curves; (d) DTG
curves, with GO nanofiller.

Table 1. TGA data for GNP- and GO-filled PU.

TGA DTG

T Onset ± SD Residual Mass
(%)@600 ◦C ± SD 1st Step (HS Degradation) 2nd Step (SS Degradation)

GNP GO GNP GO
Tmax (◦C) ± SD Dev. Mass

(%/◦C) ± SD Tmax (◦C) ± SD Dev. Mass
(%/◦C) ± SD

GNP GO GNP GO GNP GO GNP GO

Neat PU 297.76 ±
1.10

297.76 ±
1.10

8.50 ±
2.88

8.50 ±
2.88

333.70 ±
1.34

333.70 ±
1.34

1.16 ±
0.13

1.16 ±
0.10

369.00 ±
2.45

369.00 ±
2.45

0.83 ±
0.11

0.83 ±
0.11

PU + 0.25
(wt.%)

308.7 ±
3.73

307.67 ±
3.80

10.11 ±
0.03

6.76 ±
1.30

334.80 ±
2.51

342.14 ±
1.80

1.24 ±
0.03

1.50 ±
0.05

368.20 ±
4.01

380.80 ±
1.40

0.92 ±
0.09

0.95 ±
0.02

PU + 0.5
(wt.%)

309.20 ±
4.34

308.90 ±
1.50

10.5 ±
1.13

7.79 ±
0.87

338.67 ±
1.40

343.57 ±
2.40

1.38 ±
0.11

1.8.80 ±
0.10

372.86 ±
3.30

382.88 ±
2.70

0.99 ±
0.03

1.1 ±
0.65

PU + 0.75
(wt.%)

314.56 ±
0.55

315.46 ±
2.30

9.62 ±
1.62

10.50 ±
0.27

341.47 ±
2.02

343.6 ±
2.70

1.41 ±
0.12

1.34 ±
2.8

375.80 ±
2.02

392.45 ±
2.49

1.02 ±
0.05

1.30 ±
0.77

3.2.1. DSC Results

DSC was carried out in order to further study the thermal behaviour, including the
melting temperature (Tm), crystallisation temperature (Tc), melting enthalpies (∆Hm),
and crystallisation enthalpies (∆HC) of PU and its nanocomposites. Thermal transition
variations were investigated by the incorporation of GNP and GO using DSC thermograms,
as summarised in Table 2. DSC can provide evidence of the crystal structure of hard
segments through the change in the thermal behaviour of the PU/GNP and PU/GO
nanocomposites in comparison with neat PU. The DSC scans were conducted with PU
nanocomposites containing GNP/GO at different weight loadings (0.25, 0.5, and 0.75 wt.%).
The results show that multi-endotherms of the melting temperatures can be detected
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within semi-crystalline PU. For example, the first heating scan reveals that the endothermic
peaks relevant to the melting temperature (Tm) occurred at around 171 ◦C for pure PU
and then increased to 174 ◦C and 183 ◦C for PU containing GNP and GO at 0.75 wt.%.
However, the first heating scan illustrates several variations between the first and second
heating scan due to the thermal history [60,61]. The second heating scan appears to be
more precise compared to the first scan, as the manufacturing parameters varied during
the production process owing to the absence of the thermal history [14,48,49]. Thus, an
improvement in the PU nanocomposites can be seen in the presence of GNP and GO [7].
The enthalpy of fusion of the second heating scan was observed to increase with the GNP
loading (∆Hm rose from 25.44 J/g to 26.4, 27.1, and 29 for loadings of 0.25, 0.5, and 0.75%,
respectively). This increase in such an endothermic transition could be attributed to the
restricted mobility of the PU chains in the presence of nanofillers [26,62]. It is hard to
obtain the glass transition temperature (Tg) of hard segments due to their mixing with
the melted soft segments despite the low ratio of the last one. The presence of multiple
peaks in the DSC analysis could refer to several melting–crystallisation processes of the
originally formed long-ordered/short-ordered structures of the predominant phase (hard
phase) [62,63]. The maximum enhancement in terms of the Tm was seen for higher loadings
(0.75 wt.%) of both GNP and GO. Furthermore, the crystallisation process was accelerated
for the hard segment of PU and was significantly affected by the uniform dispersal of the
GNP and GO nanofillers. Since the nanofillers could act as a heterogeneous nucleation
agent and thus triggered the better crystallisation of the hard segments of the PU matrix [58],
it was found that the Tc of the hard domains was greatest and enhanced to almost 120.4 ◦C
and 177.61 ◦C at loadings of 0.75 wt.% of GNP and GO within the PU matrix, respectively,
from approximately 118 ◦C of pure PU. These findings can be attributed to the larger
size of GO and the oxygen-rich functionalities in its structure; therefore, it can act as a
positive heterogeneous agent to a greater extent than GNP and cause the HS to improve its
intrinsic crystallization within the PU matrix [14]. Meanwhile, the crystallisation enthalpy
of the nanocomposites with GO is lower than those with GNP due to the heterogeneous
nucleation effect as interpreted in the previous sentence. Similar results regarding DSC
were found in recent studies [52,58].

Table 2. Thermal transitions of PU/GNP and PU/GO nanocomposites compared to pure PU.

First Heating First Cooling Second Heating

GNP GO GNP GO GNP GO

Tm ±
SD

∆Hm ±
SD

Tm ±
SD

∆Hm ±
SD Tc ± SD ∆Hc ±

SD Tc ± SD ∆Hc ±
SD

Tm ±
SD

∆Hm ±
SD

Tm ±
SD

∆Hm ±
SD

Pure PU
(65% HS)

171.60 ±
1.85

25.44 ±
1.39 - - 118.31 ±

1.54
27.49 ±

0.09 - - 174.29 ±
1.62

26.11 ±
0.07 - -

PU + 0.25
(wt.%)

172.3 ±
0.60

26.39 ±
2.2

183.78 ±
2.77

27.59 ±
2.02

121.01 ±
1.40

28.195 ±
1.60

175.53 ±
2.60

23.07 ±
1.00

177.43 ±
0.60

25.06 ±
2. 70

176.71 ±
3.10 -

PU + 0. 50
(wt.%)

172.60 ±
1.65

27.13 ±
1.34

183.73 ±
0.00

29.67 ±
1.33

120.20 ±
1.30

30.89 ±
0.67

176.62
±1.90

25.61 ±
1.50

175.62 ±
0.67

26.13 ±
1.40

178.94 ±
2.00 -

PU + 0.75
(wt.%)

174.34 ±
1.00

26.80 ±
1.20

183.21 ±
3.05

29.13 ±
0.90

120.70 ±
2.70

33.10 ±
1.30

177.61 ±
0.00

29.87 ±
0.60

176.90 ±
0.90

26.78 ±
0.60

179.55 ±
2.60 -

The degree of crystallinity of neat PU and its nanocomposites can be calculated using
the following equation:

XC% =
∆Hm

∆Hm0(1 −∅)
× 100 (1)

where ∆Hm = the heat of fusion of the neat TPU-70 HS and its nanocomposites; ∆Hm0 =
the heat of fusion for the 100% crystalline TPU, which is recorded as 172.2 J/g and is in
accordance with a previous study [64]; and finally, ∅ = the nanoparticle fraction in the TPU
structure [64].

Thus, through this equation, the degree of crystallinity of pure PU is about 14.7%,
which increased to reach 25.7% and 23.6% for the PU nanocomposites incorporated with
0.75 wt.% of GNP and GO, respectively. Even though the PU/GO nanocomposites recorded
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a higher Tc in comparison with GNP, its degree of crystallinity was slightly lower than that
of the PU/GNP nanocomposites at the same 0.75 wt.% loading. This can be assigned to the
higher surface area of GO and the presence of oxygen functionality in its structure, leading
to an increase in ∆Hm and then a decrease in Xc according to the above equation [65,66]

3.2.2. Wide-Angle X-ray Diffraction (WAXS) Results

The wide-angle X-ray diffraction detected the long-range order and regularity of the
PU chains, particularly the hard-segment chains, as illustrated in Figure 6. The X-ray
diffractograms of the PU structure display two main diffraction peaks at 2θ values of 11◦

and 2θ values of 20◦. The first corresponds to the interlayer spacing of the hard segments
of 0.8 nm and 0.43 nm, based on Bragg’s equation [61,67]. The main diffraction peaks of
PU represent the long order or even the crystallinity of hard segments. With the addition
of a small amount of GNPs or GO, the disappearance of the diffraction peaks of GNP
and GO indicate the better exfoliation of the GNP and GO within the PU matrix due to
proper dispersion [68,69]. The decrease in the intensity among the GO nanofillers is due
to the oxidation process during manufacturing [12,70]. The soft segments in this study
did not exhibit any diffraction peaks due to the difficulty of crystallising the polyether
polyol. The diffraction of the PU/GNP nanocomposites is clearly observed when adding
GNP at various loadings. On the contrary, the PU/GO nanocomposites showed relatively
wide diffraction peaks, which indicate the disruption of the long-range order of hard
segments and thus a reduction in the crystallinity of PU [71]. In general, the intensity of
the diffraction peaks was seen to increase with an increase in the nanofiller (GNP and GO)
loading. However, the diffraction peaks vanished in the case of GO incorporation, which
is attributed to the presence of functional groups on the surface of GO that might have
reacted with the PU chains (hard segments). Similar results to those presented in this work
can also be found in previous reports on similar nanofillers [72,73].
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Figure 6. Semi-log plot of Y-axis of wide-angle X-ray-scattering intensity for PU/GNP/GO nanocomposites.

3.3. SAXS Results

The SAXS pattern of pure PU and its nanocomposites with GNP and GO at different
concentrations (0.25 wt.%, 0.5 wt.%, and 0.75 wt.%) is shown in Figure 7. The maximum of
the scattering peak (q*) of the microphase-separated pattern is observed in the scattering
curve (I(q) vs. q)) [63,74]. SAXS showed a maximum scattering for all the PU samples at the
same momentum transfer, q, value, as previously mentioned in a study by Saiani et al. [75].
From SAXS, the phase structure of PU was estimated to be within the length range of
1–100 nm based on the contrast between the electron densities of hard segments and soft
segments. Thus, a heterogeneous microstructure of PU was produced, since the scattering
intensity was directly proportional to the electron variations (Qinv) (microphase separation
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index) that represented the two-phase system. This could be an indicator of how hard
segment interaction/association works to produce the domain size and thus the micro-
phase separation of PU [74–76].
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Figure 7. Semi-log plot of scattered intensity from SAXS experiments for pure PU and PU/GNP and
PU/GO nanocomposites, (a) SAXS curves of GNP nanofiller; (b) SAXS curves of GO nanofiller.

In the present study, a characteristic scattering peak is observed for all the PU/GNP
samples, implying the presence of a microphase-separated structure. The broadening
of the peaks toward higher q values can prove the assumption of a reduction in inter-
domain spacing and thus the conclusion that a better phase separation of PU has been
induced by the GNPs’ incorporation [63]. This assumption has been proposed previously
by Teheran et al. [77]. On the other hand, a similar trend was also observed in the PU/GO
nanocomposites with a partial disappearance of the scattering peak, implying that hard
segments tend to be packed in a uniform pattern promoted by strong interactions with
the uniformly dispersed GO [12,63,77]. In Figure 7a, the characteristic peak for pure PU is
found at q = 0.45 nm−1 and that for PU/GNP with loadings of 0.25, 0.50 and 0.75 wt.% is
found at q = 1.1 and 0.4 nm−1, which corresponds to the d-spacing of pure PU and PU/GO
of 13.95, 6.28, 6.28, and 15.7 nm. This current finding is in agreement with the previous
XRD results. Conversely, in Figure 7b, a broad peak associated with the characteristic peak
of PU/GO appears, showing no peaks for all concentrations. The disappearance of the
peak indicates that there is a clear level of dispersion and interaction of GO particles in the
polyurethane matrices during high-shear mixing [78]. This phenomenon is based on func-
tional groups on the edge of GO that cause physical and/or chemical interactions between
–OH groups in the nanoparticles and carbonyl groups in the polyurethane structures [71,79].
This contributed to the phase separation dropping between HS and SS [78]. Overall, the
PU/GNP nanocomposites show a slight shift in the qmax towards a higher q value at low
loadings, demonstrating a less interfacial interdomain region.

3.4. SEM Results

It is important to investigate the influence of the GNP and GO nanofillers’ addition
on the structural pattern of the PU matrix. The influence of nanofillers depends on how
effectively they are dispersed in the PU matrix. A poor dispersion or distribution of GNP
and GO can have a significant impact on the PU’s morphology, leading to an inconsistent
behaviour. Figure 8 shows a comparison of the SEM images of the cryo-fractured surfaces
of the PU/GNP and PU/GO nanocomposites versus pure PU. Figure 8a presents a quite
homogeneous and smooth surface of the pure PU. The incorporation of GNP changes the
morphology and grants the nanocomposites a more flake–like morphology. The fractured
surface of the PU/GNP nanocomposites with increasing proportions of GNP is seen to
have some aggregated GNPs and apparent irregularities compared to the surface of pure
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PU, suggesting the poor dispersibility of the individual GNPs (indicated by the red arrows
and ellipses) as illustrated in Figure 8b–d [80]. As a result, the SEM morphology can
provide a demonstration of the dispersion quality of the GNP within the PU [3,35]. In
the other samples of PU/GO, the GO platelets show better attachment to the PU chains,
particularly the hard segments, owing to the interfacial adhesion between the GO sur-
faces and PU chains, and thus a good enhancement of the dispersion of GO in the PU
nanocomposites [22,58,73].

Polymers 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 8. SEM images of cryogenic-fracture surfaces of (a) pure PU, (b–d) PU/GNP, and (e–g) 
PU/GO nanocomposites with loadings of GNP and GO of 0.25 wt. %, 0.5 wt. %, and 0.75 wt. %, 
respectively. 

3.5. TEM Results 
Figure 9 shows the TEM images, demonstrating the nanoscale dispersion of nano-

fillers within the PU nanocomposites. The dark areas are regions of GNP; these features 
may be attributed to the linkage of GNP with the PU matrix. The microtome-cut samples 
at 0.25%, 0.5 %, and 0.75% GNP show well-dispersed GNPs in the PU matrix at a low 
loading (0.25%). However, the individual GNP tend to aggregate and increase in thick-

Figure 8. SEM images of cryogenic-fracture surfaces of (a) pure PU, (b–d) PU/GNP, and (e–g) PU/GO
nanocomposites with loadings of GNP and GO of 0.25 wt.%, 0.5 wt.%, and 0.75 wt.%, respectively.
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3.5. TEM Results

Figure 9 shows the TEM images, demonstrating the nanoscale dispersion of nanofillers
within the PU nanocomposites. The dark areas are regions of GNP; these features may be
attributed to the linkage of GNP with the PU matrix. The microtome-cut samples at 0.25%,
0.5 %, and 0.75% GNP show well-dispersed GNPs in the PU matrix at a low loading (0.25%).
However, the individual GNP tend to aggregate and increase in thickness with increasing
loadings. As a result, this is referred to as a strong interfacial interaction between the GNPs
and PU due to a proper dispersion technique with a small amount of reinforcement [81–83].
In the case of the PU/GO nanocomposites, the TEM images exhibit a uniform dispersion
and distribution of GO flakes at a minimum concentration. On the contrary, this trend is
seen to change as the amount of GO increases within the PU matrix, which is clear evidence
for the tendency of GO towards restacking, despite the existence of strong interactions with
the PU chains [84–86]. In general, the TEM results show a good agreement with the SEM
results regarding the dispersion of GNP and GO within a PU matrix.
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3.6. Mechanical Performance Results

A comparative study of the mechanical properties of PU nanocomposites with GNPs
and GO was conducted. The tensile behaviour of PU when GNP and GO nanofillers
were incorporated using in situ polymerisation displayed a good improvement compared
to pure PU. These enhancements in tensile properties such as the tensile modulus and
yield strength were determined through a stress–strain analysis, as depicted in Figure 10.
Based on the overall enhancement of the tensile performance of the PU/GNP and PU/GO
nanocomposites, several factors affect the efficiency/quality of tensile improvement, in-
cluding the GNPs’ and GO’s dispersion, concentration, and bonding ratio within the PU
polymer [6,87–89]. To some extent, Young’s modulus has been increased from 214 MPa for
PU to maximum values of 320 MPa, 390 MPa, and 490 MPa for GNP loadings of 0.25, 0.5,
and 0.75 wt.%, respectively. The increments in the percentage of the maximum modulus
were recorded as 50%, 81%, and 127%, respectively. Similarly, the PU/GO nanocomposites
have the greatest modulus at percentages of 0.25 and 0.5 wt.% compared to the PU/GNP
nanocomposites. The possible reason for this substantial improvement could be related to
the superior dispersion and interfacial adhesion between the functional groups on the GO
surfaces with a high stiffness and the hard segments of PU, which are observed to increase
to 136% and 152% for 0.25 and 0.5 wt.%, respectively [58]. However, this increase is seen
to reduce at a 0.75% loading of GO. This is because of the high aspect ratio of GO leading
to the clustering of GO at higher concentrations and thus increasing the number of stress
concentration sites, which reduce the quality of the resultant nanocomposites through a
reduction in stress transfer efficiency [2,90,91].
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The same results are observed regarding the tensile strength at break: all the tensile
values have been increased as a function of the nanofillers’ addition from 16.3 MPa for
pure PU to 18 MPa, 23 MPa, and 25 MPa with GNP loadings of 0.25, 0.5, and 0.75 wt.%,
respectively. The effective load transfer is attributed to such an improvement in tensile
strength with the assumption of an increase in the microphase separation of PU [6,33,90].
A similar trend is observed for the PU/GO nanocomposites, whose increases are 111 MPa,
123 MPa, and 28 MPa for GO loadings of 0.25, 0.5, and 0.75 wt.%, respectively, compared to
that of pure PU. A noticeable improvement in the tensile strength of the PU/GO samples
was observed compared to that of PU/GNP; this is likely due to the efficient interfacial
interaction, as previously mentioned, along with the modulus’ improvement [92].

However, a decrease is observed at a 0.75% loading, suggesting aggregation at a high
GO content [89]. The restrictive effect of the GNP/GO nanofillers on the PU chains’ mobility
results in a decrement in elongation at break for their nanocomposites. Reduction ratios of
27% and 72% were seen for the maximum loadings of GNP and GO, respectively, compared
to pure PU. However, an increase at 0.25 of GO with respect to PU in the elongation at break
point was also observed, suggesting a form of soft transition or even a lubricating effect
between the GO and PU chains, depending on the dispersibility of GO within PU [3,22].

4. Conclusions

This study has successfully synthesised novel PU nanocomposites with two different
graphene-based nanofillers (GNP and GO) with a chain extender (1,5 Pentanediol). The
authors investigated the effect of the addition of different nano-scale fillers at three different
loadings (0.25, 0.5, and 0.75 wt.%) on the mechanical, thermal, and morphological properties
of the PU nanocomposites formed via in situ polymerisation. The thermal transitions
obtained by DSC showed that the melting temperature (Tm) and crystallisation temperature
(Tc) have been enhanced by the addition of GNP at any level. The enthalpies of fusion and
crystallisation (∆Hm and ∆HC) were also improved, meaning that the nanofillers worked
as nucleation agents. This result was obtained because the improved dispersion and
interaction of GNP can lead to microphase separation, and thus the better crystallisation
of hard segments. In the case of the addition of GO, a similar trend was seen, with an
enhanced melting point of the resultant PU nanocomposites due to strong interfacial
adhesion between the GO and PU chains.

The WAXS results showed an improvement in the crystalline peak of pure PU with
the addition of GNP, while the presence of GO caused the diffraction peak to vanish. This
is due to the functional group on the surface of GO leading to interfacial interaction with
the PU matrix.

The SAXS results indicate that the presence of GNP and GO particularly stimulated an
increase in the microphase separation of the PU matrix. SEM and TEM morphologies were
used to support the dispersion quality obtained using different reinforcement nanofillers.
The micrographs showed that both GNP and GO dispersed effectively within PU at low
levels of concentration and some clusters of aggregation were observed at high concentra-
tions. The mechanical tests showed a dramatic increase in the tensile properties as a result
of incorporating GNP and GO nanofillers in comparison with the PU polymer. Thus, the
improved modulus of the resultant PU nanocomposites was seen to have a greater value
at 0.5 wt.% GNP and GO loadings. However, the tensile strength and elongation at break
decreased after this percentage due to the suppression of strain hardening.
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