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Abstract

Blood-based bioenergetic profiling has promising applications as a minimally invasive biomarker 

of systemic bioenergetic capacity. In this study, we examined peripheral blood mononuclear cell 

(PBMC) mitochondrial function and brain morphology in a cohort of African Americans with 

longstanding Type 2 diabetes. Key parameters of PBMC respiration were correlated with white 

matter, gray matter, and total intracranial volumes. Our analyses indicate that these relationships 

are primarily driven by the relationship of systemic bioenergetic capacity with total intracranial 

volume, suggesting that systemic differences in mitochondrial function may play a role in overall 

brain morphology.

Keywords

Blood cell mitochondrial bioenergetics; Type 2 Diabetes (T2D); Brain morphology; Cognitive 
impairment; Biomarker; Magnetic resonance imaging; African Americans

Use of open access articles is permitted based on the terms of the specific Creative Commons Licence under which the article is 
published. Archiving of non-open access articles is permitted in accordance with the Archiving Policy of Portland Press (http://
www.portlandpresspublishing.com/content/open-access-policy#Archiving).

Corresponding Author: Anthony J. A. Molina, Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, 
Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA; amolina@wakehealth.edu.
Author Contributions Statement
G.M. played a key role in the conceptualization and development of this ancillary study, isolated PBMCs from the blood samples, 
performed all respirometric analyses, and played a lead role in data analyses and manuscript preparation. S.C.S. supervised the blood 
draw and performed MoCA analyses. T.M.H. played a key role in the data analyses and manuscript preparation. B.W. performed the 
MRI scans and the analyses to generate the data for the brain volumetric measurements. J.A.M provided oversight for all the MRI 
analyses. B.I.F. was the PI of the parent study and played a key role in the development of this ancillary study. A.J.A.M. was 
responsible for the development of this study and provided oversight for all mitochondrial assessments, worked directly to coordinate 
the experimental plan, and supervised data analyses and manuscript preparation. All authors reviewed the manuscript.

Declarations of interest
The authors declare no competing interests.

HHS Public Access
Author manuscript
Clin Sci (Lond). Author manuscript; available in PMC 2019 May 13.

Published in final edited form as:
Clin Sci (Lond). 2018 December 12; 132(23): 2509–2518. doi:10.1042/CS20180690.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.portlandpresspublishing.com/content/open-access-policy#Archiving
http://www.portlandpresspublishing.com/content/open-access-policy#Archiving


Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common diseases in older adults (1). 

Those with T2DM are susceptible to diseases like neuropathy, retinopathy, nephropathy, 

stroke, and ischemic heart disease, and are more likely to suffer from cognitive impairment 

and experience a higher risk of dementia (2–4), cerebral infarctions and loss of total gray 

matter, white matter, and hippocampal volumes (5, 6).

Studies of brain tissues and neurons show that mitochondrial bioenergetics regulate brain 

energy homeostasis and metabolism during development (7), and affect brain function and 

cognition (8). Indeed, the brain has an exceptionally high metabolic demand rendering it 

highly sensitive to changes in systemic bioenergetic capacity (9, 10). There is growing 

evidence linking central and peripheral metabolic alterations in the pathophysiology of 

neurodegenerative diseases. Such relationships may be due to intercellular signaling 

mediated by non-cellular, blood-borne circulating factors such as inflammatory cytokines, 

redox stress, mitokines, and exosomes (11–15). These factors can have systemic effects on 

the bioenergetic capacity across multiple organs, as well as circulating cells that are 

continuously exposed to them. Previous publications from our group support this premise 

and provide direct evidence that the assessment of mitochondrial function in circulating cells 

is associated with the bioenergetic capacity of different highly metabolically active organs 

such as the brain, heart, and skeletal muscle (23, 24). To date, the bioenergetic profiles of 

peripheral blood mononuclear cells (PBMCs) and platelets have been associated with several 

age-related disorders, including diabetes, atherosclerosis, and neurodegeneration (16–22).

This study aimed to examine the relationships between the bioenergetic capacity of PBMCs 

and key features of brain morphology: total gray matter volume (TGM), total white matter 

volume (TWM), total intracranial volume (TICV). We focused on African American 

individuals with T2DM who participated in African American-Diabetes Heart Study MIND 

(AA-DHS MIND). African Americans have a higher risk of T2DM (25), leading to an 

increased risk for cognitive impairment (26, 27). We tested the hypothesis that PBMC 

bioenergetics capacity correlates with brain structure and cognitive performance by 

examining the relationships between PBMC respiration and total and regional brain volumes 

measured by MRI and Montreal Cognitive Assessment (MoCA) scores. To our knowledge, 

this is the first study to specifically examine these relationships in an African American 

population.

Experimental Methods

Participants

AA-DHS MIND is a cross-sectional genetic and epidemiologic study designed to evaluate 

and improve the understanding of risk factors for impaired cognitive performance and to 

assess cerebral architecture using magnetic resonance imaging (MRI) in African Americans 

with T2D. It builds on the AA-DHS study, which is an extension of the Diabetes Heart 

Study (DHS) (28) designed to assess the relationship between cognitive impairment and 

cerebrovascular disease in an African American cohort. The study was approved by the 

Wake Forest School of Medicine (WFSM) Institutional Review Board and all participants 
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provided written, informed consent. We recruited 16 unrelated African Americans. 

Participants (9 women and 7 men) were older (51.7–81.8 years), overweight or obese (body 

mass index [BMI] > 25.5–50.6 kg/m2), and sedentary. Examinations were performed in the 

WFSM Clinical Research Unit.

Cerebral Magnetic Resonance Imaging (MRI)

Detailed methods for MRI scans and analyses in AA-DHS MIND have been reported 

previously (29–31). As previously described, all MRI scans were obtained on a 3T MRI 

scanner (32). T1-weighted images were analyzed for structural analysis to obtain total 

intracranial volume, total gray matter and total white matter volumes using the SPM8 

segmentation procedure implemented in the VBM8 toolbox (33, 34). Brain MRI was 

performed at the first visit of the participants.

Body Weight, Blood Draw and MoCA Examinations

Body weight and fasting blood glucose were assessed at the day of visit for this study. 

Fasting measures of HbA1c were acquired at the first visit of the participants The Montreal 

Cognitive Assessment (MoCA), a screening test that assesses cognitive impairment (35), 

was administered after the participants had breakfast.

Respirometry of Blood Cells

Mitochondrial oxidative phosphorylation can be measured by evaluating the rate of oxygen 

consumption in cells and tissues of interest (36–38). Blood cell respirometry was performed 

using two complementary approaches. Intact PBMCs were assessed with a Seahorse XF24–

3 extracellular flux analyzer (Seahorse Bioscience, Billerica, MA). 250,000 PBMCs were 

loaded into each well and assessed in quadruplicate using previously described methods 

(39). Briefly, basal oxygen consumption rate (OCR) was monitored prior to chemical 

additions, followed by OCR measurements after sequential injections of oligomycin (0.75 

μM), carbonyl cyanide-4- (trifluoromethoxy) phenylhydrazone (FCCP; 1 μM), and 

antimycin A + rotenone (A/R; 1 μM each). All chemicals were obtained from SigmaAldrich. 

PBMC respiration was reported as pmol.min−1.

High-resolution respirometry of permeabilized PBMCs was performed in parallel to provide 

key measures of fatty acid oxidation and respiration driven by individual complexes. For 

these studies, 4 million PBMCs were loaded into each of 2 chambers of an Oroboros 

Oxygraph-2K (Oroboros, Innsbruck, Austria). Respirometry was performed following a 

substrate-uncoupler-inhibitor-titration reference protocol in which multiple substrates and 

inhibitors are sequentially added to measure oxygen flux due to fatty acid oxidation, 

followed by oxidative phosphorylation. PBMCs were placed into a chamber with 2 mL 

mitochondrial respiration medium, MiR05 constituting of 0.5 mM EGTA, 3 mM MgCl2, 60 

mM lactobionic acid, 20mM taurine, 10mM KH2PO4, 20mM HEPES, 110 mM D-Sucrose, 

and 1 g/L fatty acid free BSA, pH 7.1. Chambers were equilibrated at room oxygen 

concentration at 37°C for at least 30 minutes and routine endogenous respiration was 

measured, followed by addition of 7.5 mM ADP. Cells were then permeabilized with 0.04 

mg/mL digitonin, followed by addition of 0.5 mM octanoylcarnitine to evaluate fatty acid 

oxidation capacity and 0.05 mM malate to kinetically saturate the fatty acid oxidation 
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pathway. This was followed by sequential addition of 2 mM malate, 10 μM cytochrome c to 

assess outer mitochondrial membrane integrity, 5 mM pyruvate, 10 mM glutamate, 50 mM 

succinate, and 10 mM glycerophosphate. These additions target complexes I, II, and 

ubiquinone or coenzyme Q of the electron transport chain, resulting in detailed 

measurements of mitochondrial function. The electron transport chain was uncoupled with 

FCCP (by titrating 0.5 μM FCCP in each step), and then inhibited by addition of complex I 

and III inhibitors, 0.5 μM rotenone, and 2.5 μM antimycin A, measuring residual oxygen 

consumption. PBMC respiration was reported as fmol.sec−1.cell−1.

Statistical Analyses

Shapiro-Wilk tests were performed to check for normal distribution of all variables. Log 

transformations were performed for parameters with non-normal distribution. Pearson 

correlation coefficients were assessed between all variables, both raw and normalized values, 

and partial correlations adjusted for age and sex were also assessed. Significance was set at 

an α-level of 0.05. Analyses were performed using SPSS software (SPSS v22; Armonk, 

NY).

Results

Demographic and bioenergetic parameters of the human participants

Demographic parameters (age, BMI, duration of T2DM, HbAlc), bioenergetic parameters, 

and brain morphology parameters analyzed are summarized in Table 1. Representative 

bioenergetic profiles from a participant are shown in Figure 1A and 1B.

Associations between PBMC bioenergetics and brain morphology

Pearson correlation coefficients were used to compare PBMC bioenergetic parameters with 

brain morphology (Table 2). Representative scatter plots are shown in Supplemental Figures 

1A–1D. Basal, maximal FCCP-induced respiration, and ATP-linked respiration of PBMCs 

significantly positively correlated with total white matter volume (R = 0.666, 0.547, and 

0.563), while basal and maximal FCCP-induced respiration correlated significantly with 

total intracranial volume (0.588 and 0.550). Fatty acid oxidation-mediated oxygen flux 

(respiration of cells after addition of malate to kinetically saturate the fatty acid oxidation 

[FAO] pathway) significantly correlated with TWM volume and TICV (R = 0.591 and 

0.684). Similar relationships were observed between maximal electron transport (measured 

by FCCP titration) and TWM volume and TICV. Significant positive association were seen 

between FAO + complex I activity and TWM volume and TICV. Significant associations 

were observed between combined FAO + complex I + complex II activity and TWM volume 

and TICV.

As shown in Table 3, after adjusting for age and sex, basal, maximal FCCP-linked, and ATP-

linked bioenergetic capacity of PBMC remained significantly positively correlated with 

TWM volume and TICV. Spare respiratory capacity showed significant positive correlation 

with TICV in both cases, and with TGM volume when specifically controlling for sex. Fatty 

acid oxidation-mediated respiration and FAO + complex I-mediated respiration were 

significantly positively correlated with TGM volume, TWM volume, and TICV. Similar 
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significant correlations were observed between FAO + complex I + complex II and maximal 

FCCP-linked respiration and TWM volume and TICV.

As shown in Supplemental tables 1 through 4, adjustment for duration of T2DM, BMI and 

T2DM severity (HbA1c) did not affect these relationships between brain morphology and 

PBMC bioenergetic capacity.

Associations between PBMC bioenergetics and normalized brain morphology parameters

Table 4 shows the relationships between PBMC bioenergetics and brain morphologic 

parameters statistically adjusted for TICV. This adjustment caused all correlations to become 

less significant, indicating that TICV was the main driver of the associations with TWM 

volume and TGM volume.

Associations between PBMC bioenergetic capacity and MoCA test scores

Pearson and partial correlation coefficients were calculated to compare PBMC bioenergetic 

parameters with MoCA test scores before and after adjusting for age of the participants. The 

associations are summarized in Table 5. Basal respiration was significantly positively 

associated with both raw values as well as age adjusted MoCA scores; similar trends were 

observed for the other bioenergetic parameters.

Discussion

Mitochondrial bioenergetics plays a key role in the effects of aging on neuronal function 

(40). Mitochondrial dysfunction is related to numerous age-related diseases, including 

T2DM, obesity, Parkinson’s, and Alzheimer’s disease (41–44). Recent work from our 

laboratory and others indicate that measures of mitochondrial function performed in 

circulating cells can report on systemic bioenergetic capacity and are related to various age-

related conditions (45–52). The current study provides the first report that systemic 

bioenergetic capacity is related to key measures of brain morphology.

Our results indicate that systemic bioenergetic capacity, assessed by PBMC respirometry, is 

significantly positively related to total intracranial volume (TICV), a parameter estimating 

maximum pre-morbid brain volume (53). This finding suggests that differences in systemic 

bioenergetic capacity may be related to the overall development and atrophy of the brain. 

Our results also indicate that basal respiration of intact PBMCs is significantly positively 

related to cognitive function, measured using the MoCA assessment. ATP-linked respiration 

shows a strong trend while other measures in intact PBMCs are not significant. Our results 

also show that statistically adjusting for age, sex, BMI and T2DM severity (HbA1c) does not 

affect the relationships observed in this study. It is notable that while BMI and T2DM have 

been associated with alterations in mitochondrial function in previous studies, the 

relationship of systemic bioenergetic capacity with brain morphology is independent of 

these variables.

TICV is currently the most accepted and widely used measure of brain reserve and is 

associated with higher cognitive performance after adjusting for the amount of pathology in 

Alzheimer’s disease (15). Moreover, it has been previously reported that greater premorbid 
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brain volume results in better clinical and cognitive outcomes (54, 55). BMI, hyperglycemia 

and T2DM are associated with brain atrophy, cognitive impairment and dementia, with 

duration of T2DM strongly associated with brain volume loss (54). This is possibly a result 

of direct neurologic insult from altered glucose and mitochondrial metabolism, leading to 

mitochondrial dyshomeostasis and loss of synaptic integrity, affecting brain functions and 

morphology. Future studies will address whether these central metabolic alterations are 

relayed to PBMC mitochondria via non-cellular, blood-borne circulating factors that are 

potentially released from the brain, altering PBMC mitochondrial bioenergetics.

To our knowledge, the assay protocols utilized in this study are the most comprehensive 

assessment of PBMC bioenergetics to date. We examined the respiration of intact and 

permeabilized PBMCs in parallel to enable in depth analysis of electron transport chain 

activity. It should be considered that the measures presented here are interrelated and 

focused on contributors to overall mitochondrial function. For example, the individual 

activities of complexes 1 and 2, as well as fatty acid oxidation all contribute to the 

bioenergetic capacity of a cell. It should be noted that even if we were to choose p=0.01 as 

the level of significance, key relationships remain significant; particularly the relationships 

between the basal respiration and the FAO mediated respiration with TWM and TICV. 

Moreover, these relationships remain when adjusting for age, sex, duration and severity of 

T2DM, BMI and blood glucose levels.

The composition of the cohort utilized for this study is also unique and representative of a 

group that is at a greater risk of developing cognitive decline (55). Future studies should be 

designed to determine if the results can be extended to other cohorts. It is also important to 

remember that bioenergetic profiling was performed at a single time point. Therefore, 

longitudinal studies should be designed to more definitely assess the role of PBMC 

bioenergetic capacity in brain development or degeneration. Blood based bioenergetic 

profiling is rapidly emerging as a reliable measure of systemic bioenergetic capacity. To 

date, studies have focused on mixed PBMCs, as performed here, but also other cell types 

such as platelets and monocytes (52, 56–59). The design of future studies will continue to 

improve as we continue to advance our understanding of how various circulating cell types 

reflect bioenergetic changes associated with various conditions and disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations list

T2DM Type 2 Diabetes Mellitus

PBMC Peripheral blood mononuclear cell

AA-DHS Mind African American - Diabetic Heart Study Mind

MRI Magnetic Resonance Imaging

3T MRI 3 Tesla Magnetic Resonance Imaging

MoCA Montreal Cognitive Assessment

WFSM Wake Forest School of Medicine

BMI Basal Metabolic Rate

OCR Oxygen Consumption Rate

FAO Fatty Acid Oxidation

ETS Maximal ETC mediated respiratory system activity

FCCP Carbonyl cyanide-4- (trifluoromethoxy) phenylhydrazone

MiR05 Mitochondrial Respirometry Solution

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

BSA Bovine Serum Albumin

SPSS Statistical Package for the Social Sciences

References

1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its 
complications. Nat Rev Endocrinol. 2018;14(2):88–98. [PubMed: 29219149] 

2. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild 
cognitive impairment. Arch Neurol. 2007;64(4):570–5. [PubMed: 17420320] 

3. Stewart R, Liolitsa D. Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med. 
1999;16(2):93–112. [PubMed: 10229302] 

4. Strachan MW, Deary IJ, Ewing FM, Frier BM. Is type II diabetes associated with an increased risk 
of cognitive dysfunction? A critical review of published studies. Diabetes Care. 1997;20(3):438–45. 
[PubMed: 9051402] 

5. Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, et al. Brain atrophy in type 2 diabetes: 
regional distribution and influence on cognition. Diabetes Care. 2013;36(12):4036–42. [PubMed: 
23939539] 

6. Reitz C, Guzman VA, Narkhede A, DeCarli C, Brickman AM, Luchsinger JA. Relation of 
Dysglycemia to Structural Brain Changes in a Multiethnic Elderly Cohort. J Am Geriatr Soc. 
2017;65(2):277–85. [PubMed: 27917464] 

7. Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. The 
Company of Biologists. 2017.

8. Picard M, McEwen BS. Mitochondria impact brain function and cognition. PNAS. 2014.

Mahapatra et al. Page 7

Clin Sci (Lond). Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. D. CD, L. S Circulation and Energy Metabolism of the Brain In: GJ S, BW A, Albers RW ea, 
editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects 6th edition. Philadelphia: 
Lippincott-Raven;; 1999.

10. JM B, JL T, Stryer L 2002 Section 30.2. Each Organ Has a Unique Metabolic Profile Biochemistry 
5th edition New York:: W H Freeman; 2002.

11. Conte M Human Aging and Longevity Are Characterized by High Levels of Mitokines. The 
Journals of Gerontology: Series A. 2018

12. Woo DK. Mitochondrial Stress Signals Revise an Old Aging Theory. Cell. 2010.

13. JenniDurieux. The Cell-Non-Autonomous Nature of Electron Transport Chain-Mediated Longevity 
Author links open overlay panel. Cell. 2010.

14. Pan W Cytokine Signaling Modulates Blood-Brain Barrier Function. Curr Pharm Des. 2011.

15. Loenhoud ACv. Is intracranial volume a suitable proxy for brain reserve?. Alzheimer’s Research & 
Therapy 2018.

16. Avila C, Huang RJ, Stevens MV, Aponte AM, Tripodi D, Kim KY, et al. Platelet mitochondrial 
dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-
oxidant stress proteins. Exp Clin Endocrinol Diabetes. 2012;120(4):248–51. [PubMed: 21922457] 

17. Japiassu AM, Santiago AP, d’Avila JC, Garcia-Souza LF, Galina A, Castro Faria-Neto HC, et al. 
Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is 
mediated by reduced F1Fo adenosine-5’-triphosphate synthase activity. Crit Care Med. 
2011;39(5):1056–63. [PubMed: 21336129] 

18. Hartman ML, Shirihai OS, Holbrook M, Xu G, Kocherla M, Shah A, et al. Relation of 
mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in 
type 2 diabetes mellitus. Vasc Med. 2014;19(1):67–74. [PubMed: 24558030] 

19. Widlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ, et al. Altered 
mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans 
with type 2 diabetes. Transl Res. 2010; 156(1):15–25. [PubMed: 20621033] 

20. Tyrrell DJ, Bharadwaj MS, Van Horn CG, Marsh AP, Nicklas BJ, Molina AJ. Blood-cell 
bioenergetics are associated with physical function and inflammation in overweight/obese older 
adults. Exp Gerontol. 2015;70:84–91. [PubMed: 26226578] 

21. Fisar Z, Hroudova J, Hansikova H, Spacilova J, Lelkova P, Wenchich L, et al. Mitochondrial 
Respiration in the Platelets of Patients with Alzheimer’s Disease. Curr Alzheimer Res. 2016;13(8):
930–41. [PubMed: 26971932] 

22. Chen X, Stern D, Yan SD. Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer 
Res. 2006;3(5):515–20. [PubMed: 17168650] 

23. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Molina AJ. Blood cell respirometry is 
associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive 
biomarker of mitochondrial health. Redox Biol. 2016;10:65–77. [PubMed: 27693859] 

24. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Shively C, Andrews RN, et al. Blood-
Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism. Oxid 
Med Cell Longev. 2017;2017:7317251. [PubMed: 29098063] 

25. Marshall M Diabetes in African Americans. Postgraduate Medical Journal. 2005.

26. Noble JM, Manly JJ, Schupf N, Tang MX, Luchsinger JA. Type 2 diabetes and ethnic disparities in 
cognitive impairment. Ethn Dis. 2012;22(1):38–44. [PubMed: 22774307] 

27. Mayer-Davis EJ, Beyer J, Bell RA, Dabelea D, D’Agostino R Jr., Imperatore G, et al. Diabetes in 
African American youth: prevalence, incidence, and clinical characteristics: the SEARCH for 
Diabetes in Youth Study. Diabetes Care. 2009;32 Suppl 2:S112–22. [PubMed: 19246576] 

28. Bowden DW, Cox AJ, Freedman BI, Hugenschimdt CE, Wagenknecht LE, Herrington D, et al. 
Review of the Diabetes Heart Study (DHS) family of studies: a comprehensively examined sample 
for genetic and epidemiological studies of type 2 diabetes and its complications. Rev Diabet Stud. 
2010;7(3):188–201. [PubMed: 21409311] 

29. Whitlow CT, Sink KM, Divers J, Smith SC, Xu J, Palmer ND, et al. Effects of Type 2 Diabetes on 
Brain Structure and Cognitive Function: African American-Diabetes Heart Study MIND. AJNR 
Am J Neuroradiol. 2015;36(9):1648–53. [PubMed: 26206811] 

Mahapatra et al. Page 8

Clin Sci (Lond). Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11(6 Pt 1):
805–21. [PubMed: 10860804] 

31. Maldjian JA, Whitlow CT, Saha BN, Kota G, Vandergriff C, Davenport EM, et al. Automated 
white matter total lesion volume segmentation in diabetes. AJNR Am J Neuroradiol. 2013;34(12):
2265–70. [PubMed: 23868156] 

32. Whitlow CT. Effects of type 2 diabetes on brain structure and cognitive function: African 
American-Diabetes Heart Study MIND. AJNR Am J Neuroradiol. 2015.

33. Freedman BI. APOL1 associations with nephropathy, atherosclerosis, and all-cause mortality in 
African Americans with type 2 diabetes Kidney Inc 2015.

34. Gaser C VBM: Structural Brain Mapping Group; [Available from: http://dbm.neuro.uni-jena.de/
vbm.html.

35. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The 
Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J 
Am Geriatr Soc. 532005 p. 695–9.

36. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in 
aging and healthspan. Longev Healthspan. 2014;3:6. [PubMed: 24860647] 

37. Onyango IG, Dennis J, Khan SM. Mitochondrial Dysfunction in Alzheimer’s Disease and the 
Rationale for Bioenergetics Based Therapies. Aging Dis. 2016;7(2):201–14. [PubMed: 27114851] 

38. Maruszak A, Zekanowski C. Mitochondrial dysfunction and Alzheimer’s disease. Prog 
Neuropsychopharmacol Biol Psychiatry. 2011;35(2):320–30. [PubMed: 20624441] 

39. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic 
analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced 
glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007;292(1):C125–36. 
[PubMed: 16971499] 

40. Pandya J Age- and brain region-specific differences in mitochondrial bioenergetics in Brown 
Norway rats. Neurobiology of Aging. 2016.

41. Chen X Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res. 2006.

42. Jha SK. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in 
Neurodegeneration. Biochimica et biophysica acta. 2017.

43. Moreira PI. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. 
Biochimica et biophysica acta 2010.

44. Mounsey RB. Mitochondrial Dysfunction in Parkinson’s Disease: Pathogenesis and 
Neuroprotection. Parkinson’s Disease. 2011.

45. Tyrrell DJ. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: 
Implications for a minimally invasive biomarker of mitochondrial health. Redox Biology. 2016.

46. Tyrrell DJ. Blood-cell bioenergetics are associated with physical function and inflammation in 
overweight/obese older adults. Experimental Gerontology. 2015.

47. Tyrrell DJ. Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and 
Metabolism. Oxidative Medicine and Cellular Longevity. 2017.

48. Kramer PA. A review of the mitochondrial and glycolytic metabolism in human platelets and 
leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biology. 2014.

49. Kramer P Decreased Bioenergetic Health Index in monocytes isolated from the pericardial fluid 
and blood of post-operative cardiac surgery patients. Bioscience Reports. 2015.

50. Willig A Monocyte bioenergetic function is associated with body composition in virologically 
suppressed HIV-infected women. Redox Biology. 2017.

51. Sjövall F Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral 
blood immune cells. Critical Care. 2013.

52. Ehinger JK. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. 
Journal of Neurology. 2015.

53. Malone IB. Accurate automatic estimation of total intracranial volume: A nuisance variable with 
less nuisance. Neuroimage. 2015.

54. Weinstein G Glucose indices are associated with cognitive and structural brain measures in young 
adults. Neurology 2015.

Mahapatra et al. Page 9

Clin Sci (Lond). Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dbm.neuro.uni-jena.de/vbm.html
http://dbm.neuro.uni-jena.de/vbm.html


55. Bennett LLBaDA. Alzheimer’s Disease In African Americans: Risk Factors And Challenges For 
The Future Health Aff (Millwood). 2014

56. Miró Ò Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are present in 
peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystrophy. 
Antiviral Therapy. 2003.

57. Kramer PA A review of the mitochondrial and glycolytic metabolism in human platelets and 
leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biology. 2014.

58. Aburawi EH. Lymphocyte respiration in children with Trisomy 21. BMC Pediatr. 2012.

59. Molina AJA. Blood-based bioenergetic profiling: A readout of systemic bioenergetic capacity that 
is related to differences in body composition. Redox Biology. 2017.

Mahapatra et al. Page 10

Clin Sci (Lond). Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical Perspectives

• African American individuals represent a cohort experiencing a higher risk of 

T2DM, consequently exhibiting an increased risk of cognitive decline.

• PBMC bioenergetic capacity is directly related to overall brain morphology 

and cognitive function.

• Blood-based bioenergetic profiling is a promising minimally invasive 

biomarker of systemic bioenergetic capacity.
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Figure 1: 
Representative graphs of the two different techniques used to measure PBMC respirometry. 

Bioenergetic profiles of PBMCs isolated from one participant. Respiration is measured as 

oxygen consumption rate.

Figure1A: Representative graph generated by the Seahorse XF24–3 extracellular flux 

analyzer.

Figure1B: Representative graph generated by the Oroboros O2K respirometer.

As shown in Figure 1A, injections were as follows: O=oligomycin, U=uncoupler (FCCP), 

R=rotenone, A=antimycin A. As shown in Figure 1B, multiple substrates and inhibitors 

were sequentially added to permeabilized cells and measure oxygen flux due to fatty acid 

oxidation, followed by oxidative phosphorylation. D=adenosine diphosphate, 

Dig=Digitonin, Oct=Octanoylcarnitine, M1=0.1M malate, M2=0.8M malate, c=cytochrome 

c, P=pyruvate, G=glutamate, S=succinate, Gp=glycerophosphate, U=uncoupler (FCCP), 

R=rotenone, A=antimycin A.
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Table 1:

Demographics, bioenergetics, and brain morphology parameters.

N=16 Mean SD Range

Age (years) 64.42 7.71 51.65 – 81.76

BMI (kg/m2) 34.11 7.92 25.51 – 50.64

Duration of T2D (years) 12.97 8.86 3.66 – 39.12

Fasting blood sugar (mg/dL) 150.67 52.53 79 – 283

HbAlc (%) 7.82 1.66 5.8 – 12.6

MoCA score 21.5 4.7 13.00 – 29.00

Bioenergetic Parameters

Basal (pmol.min−1) 113.13 51.15 42.05 – 169.35

Maximal uncoupled respiration (pmol.min−1) 245.53 139.12 91.30 – 657.92

Spare Respiratory Capacity (pmol.min−1) 132.40 94.20 14.30 – 412.14

ATP-linked respiration (pmol.min−1) 63.81 45.33 (−19.54) - 111.4

FAO (fmol.sec−1.cell−1) 2.66 ×10−3 1.02 ×10−3 1.19 ×10−3 - 5.35 ×10−3

FAO+ComplexI (fmol.sec−1.cell−1) 3.66 ×10−3 1.86 ×10−3 1.175 ×10−3 - 8.29 ×10−3

FAO+ComplexI+ComplexII (fmol.sec−1.cell−1) 5.05 ×10−3 2.605 ×10−3 1.475 ×10−3 - 13.09 ×10−3

Max ETS (fmol.sec−1.cell−1) 7.55 ×10−3 4.59 ×10−3 2.30 ×10−3 - 11.70 ×10−3

Brain Anatomy Parameters

Total Gray Matter Volume (GM) (cm3) 570.85 49.27 492.21 – 648.74

Total White Matter Volume (WM) (cm3) 478.73 45.21 422.24 – 553.91

Total Intracranial Volume (TICV) (cm3) 1294.10 117.59 1134.77 – 1560.82

Note: PBMC bioenergetic parameters recorded by Seahorse XF24–3 extracellular flux analyzer are reported as oxygen consumption rate (pmol.min
−1) per 250,000 cells.
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Table 2:

Relationship between PBMC respiration and brain morphology parameters measured by Pearson correlation. 

Pearson correlation coefficients and p-values for each association are shown. FAO = Fatty Acid Oxidation, 

ETS = Maximal ETC mediated respiratory system activity. Bold type = p-value ≤ 0.05. Spare respiratory 

capacity is calculated as the difference between maximal and basal Respiration.

Respirometry Parameters TGM TWM TICV

Basal Respiration R = 0.338 R = 0.666 R = 0.588

p = 0.218 p = 0.007 p = 0.021

Maximal Respiration R = 0.375 R = 0.547 R = 0.550

p = 0.169 p = 0.035 p = 0.034

Spare Respiratory Capacity R = 0.367 R = 0.408 R = 0.477

p = 0.178 p = 0.131 p = 0.072

ATP-linked Respiration R = 0.253 R = 0.563 R = 0.490

p = 0.364 p = 0.029 p = 0.064

FAO R = 0.477 R = 0.591 R = 0.684

p = 0.062 p = 0.016 p = 0.003

FAO+ComplexI R = 0.467 R = 0.519 R = 0.564

p = 0.068 p = 0.040 p = 0.023

FAO+Compl exI+ComplexII R = 0.375 R = 0.502 R = 0.528

p = 0.152 p = 0.047 p = 0.035

Max ETS R = 0.349 R = 0.503 R = 0.503

p = 0.199 p = 0.047 p = 0.047
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Table 3:

Relationship between PBMC respiration and brain morphologic parameters statistically adjusted for age and 

sex. Correlation coefficients and p-values for each association are shown. Bold type = p-value ≤ 0.05.

Adjusted for Age Adjusted for Sex

Respirometry Parameters TGM TWM TICV TGM TWM TICV

Basal Respiration R = 0.346 R = 0.668 R = 0.607 R = 0.570 R = 0.705 R = 0.709

p = 0.225 p = 0.009 p = 0.021 p = 0.033 p = 0.005 p = 0.005

Maximal Respiration R = 0.408 R = 0.566 R = 0.610 R = 0.627 R = 0.586 R = 0.676

p = 0.148 p = 0.035 p = 0.021 p = 0.016 p = 0.028 p = 0.008

Spare Respiratory Capacity R = 0.412 R = 0.430 R = 0.552 R = 0.489 R = 0.416 R = 0.525

p = 0.143 p = 0.125 p = 0.041 p = 0.076 p = 0.139 p = 0.054

ATP-linked Respiration R = 0.258 R = 0.564 R = 0.504 R = 0.532 R = 0.620 R = 0.644

p = 0.372 p = 0.036 p = 0.066 p = 0.050 p = 0.018 p = 0.013

FAO R = 0.474 R = 0.589 R = 0.683 R = 0.460 R = 0.603 R = 0.674

p = 0.074 p = 0.021 p = 0.005 p = 0.084 p = 0.017 p = 0.006

FAO+ComplexI R = 0.483 R = 0.529 R = 0.594 R = 0.436 R = 0.534 R = 0.547

p = 0.068 p = 0.043 p = 0.020 p = 0.105 p = 0.040 p = 0.035

FAO+ComplexI+ComplexII R = 0.411 R = 0.531 R = 0.593 R = 0.443 R = 0.502 R = 0.548

p = 0.128 p = 0.042 p = 0.020 p = 0.099 p = 0.057 p = 0.034

Max ETS R = 0.379 R = 0.527 R = 0.556 R = 0.393 R = 0.503 R = 0.513

p = 0.164 p = 0.044 p = 0.031 p = 0.147 p = 0.056 p = 0.050
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Table 4:

Relationships between PBMC respiration and brain morphologic parameters statistically adjusted for TICV 

measured by Partial correlation. Correlation coefficients and p-values for each association are shown.

Adjusted for TICV

Respirometry Parameters TGM TWM

Basal Respiration R = −0.105 R = 0.510

p = 0.734 p = 0.062

Maximal Respiration R = 0.051 R = 0.313

p = 0.870 p = 0.277

Spare Respiratory Capacity R = 0.165 R = 0.143

p = 0.589 p = 0.627

ATP-linked Respiration R = −0.144 R = 0.445

p = 0.638 p = 0.110

FAO R = 0.089 R = 0.251

p = 0.761 p = 0.366

FAO+ComplexI R = 0.166 R = 0.282

p = 0.571 p = 0.308

FAO+ComplexI+ComplexII R = −0.003 R = 0.322

p = 0.991 p = 0.242

Max ETS R = 0.030 R = 0.386

p = 0.918 p = 0.156
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Table 5:

Relationship between PBMC respiration and MoCA scores (raw values and values adjusted for age) measured 

by Pearson correlation (raw values) (first panel) and partial correlation (adjusted for age) (second panel). 

Pearson correlation coefficients and p-values for each association are shown. Bold type = p-value ≤ 0.05.

Raw values Adjusted for age

Respirometry Parameters MoCA MoCA

Basal Respiration R = 0.571 R = 0.579

p = 0.026 p = 0.030

Maximal Respiration R = 0.301 R = 0.328

p = 0.276 p = 0.252

Spare Respiratory Capacity R = −0.067 R = −0.050

p = 0.812 p = 0.866

ATP-linked Respiration R = 0.479 R = 0.484

p = 0.071 p = 0.079

FAO R = 0.196 R = 0.191

p = 0.468 p = 0.495

FAO+ComplexI R = −0.002 R = 0.006

p = 0.995 p = 0.982

FAO+Compl exI+ComplexII R = 0.131 R = 0.153

p = 0.630 p = 0.586

Max ETS R = 0.155 R = 0.175

p = 0.566 p = 0.534
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