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Origami-based Building Blocks for 
Modular Construction of Foldable 
Structures
Davood Mousanezhad, Soroush Kamrava & Ashkan Vaziri

Origami, widely known as the ancient Japanese art of paper folding, has recently inspired a new 
paradigm of design for mechanical metamaterials and deployable structural systems. However, lack of 
rationalized design guidelines and scalable manufacturing methods has hindered their applications. To 
address this limitation, we present analytical methods for designing origami-based closed-loop units 
with inherent foldability, and for predicting their folding response (e.g., folding force, bistability, and 
area and volume change by folding). These units can be employed as building blocks for application-
driven design and modular construction of foldable structures with desired performance and 
manufacturing scalability.

Origami-based systems1–3 can exhibit unique properties such as tunable stiffness4, tunable chirality5, tuna-
ble thermal expansion6, programmable collapse7, programmable curvature8, auxeticity (i.e., having negative 
Poisson’s ratio)9–11, multi-stability4,10,12, and self-foldability13, making them promising candidates for applica-
tions such as reconfigurable architected materials14, deployable solar panels15, fold-core sandwich panels16,17, 
three-dimensional (3D) cell-laden microstructures18, flexible medical stents19, flexible electronics20, MEMS and 
NEMS21, potentiometric bio-sensing22, soft pneumatic actuators23, and self-folding robots and structures24. While 
these recent advancements have highlighted the potential of origami-based design approaches9,10,25,26, lack of 
robust and application-driven design guidelines and scalable manufacturing methods has limited their applica-
tions. Here, we present an analytical method to create a wide range of origami-based closed-loop units – in the 
form of polygons – which can be used as building blocks for rational design and modular construction of foldable 
structures.

Figure 1a shows a well-known one degree-of-freedom (DoF) origami called Miura-ori, constructed by folding 
a flat sheet of paper. Miura-ori is characterized by four crease lines which are formed when two identical acute 
angles, α, meet their supplementary angles, π α− . Then, folding along the crease lines will result in one mountain 
and three valley folds, which can be quantified in terms of the angle between the mountain (i.e., line AB) and 
front valley (i.e., line BC) fold lines, β π α π∈ −[ 2 , ]1 . 21β π α= −  and 1β π=  represent the extreme cases at 
which the origami is at fully-folded configurations under out-of-plane and in-plane folding directions, respec-
tively, as shown in Fig. 1a. To enable creating a wide range of foldable designs, we now define two origami-based 
crease patterns which (in contrast to Miura-ori) cannot be made out of a single sheet of paper (see Fig. 1b,c). This 
means that an adhesive material (e.g., glue) is needed for attaching the parts together (see Supplementary 
Information for details). Crease pattern shown in Fig. 1b is constructed by connecting together four identical 
acute angles, α, resulting in a one DoF pattern at which the fold pattern can be characterized by four valley folds 
with [0, 2 ]2β α∈  as the angle between front (i.e., line BC) and rear (i.e., line AB) valley fold lines. Similarly, the 
crease pattern shown in Fig. 1c forms when four identical obtuse angles, π α− , meet. This also results in a single 
DoF pattern at which the fold pattern is characterized by two mountain and two valley folds with [0, 2 ]3β α∈  as 
the angle between the two mountain fold lines (i.e., lines AB and BC). We should note that 2β  and β3 are two 
variables that control the folding of these two crease patterns, with 22 3β β α= = , and 02 3β β= = , represent the 
extreme cases at which the patterns are at fully-folded configurations under out-of-plane and in-plane folding 
directions, respectively (see Fig. 1b,c). Interestingly, we can show that 2β  and β3 are related to β1 through the rela-
tions, β β π β= = −2 3 1 (see Supplementary Information for details).

Next, we propose an analytical method for designing foldable closed-loop units – in the form of polygons – 
with one DoF by attaching at least two different crease patterns presented in Fig. 1. For the three crease patterns 
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introduced in Fig. 1, the angle between the middle crease lines (shown by dashed lines) can be presented as β, and 
π β−  (we use β instead of 1β  for the sake of simplicity). These angles, along with their explementary angles, 2π β−  
and π β+ , serve as internal and/or external angles of the final configurations of closed-loop units. For each pol-
ygon with n sides, the summation of internal angles must be equal to π−n( 2) , where n is the number of fold pat-
terns used to construct the polygon. Denoting m1, m2, m3, and m4, as the number of internal angles, β, 2π β− , 
π β− , and π β+  (i.e., + + + =m m m m n1 2 3 4 ), we can now present the following geometrical relation:

β π β π β π β π+ − + − + + = + + + − .m m m m m m m m(2 ) ( ) ( ) ( 2) (1)1 2 3 4 1 2 3 4

Since the right-hand-side of this equation is a constant for an arbitrary closed-loop unit, to achieve a foldable 
configuration, the left-hand-side must be independent of the folding variable, β. This yields, m m 21 2− = , and 
m m 23 4− = , meaning that n m m m m( )1 2 3 4= + + +  must be an ‘even integer’ greater than or equal to four. 
Furthermore, we can show that Equation (1) results in −n( 2) 1  solutions for m m m m( , , , )1 2 3 4  for an n-sided 
closed-loop unit (see Supplementary Information for details). Based on this, =n 4 results in the smallest config-
uration in the shape of a ‘quadrangle’ with two internal angles of β and the other two internal angles of π β−  [i.e., 

=m m m m( , , , ) (2, 0, 2, 0)1 2 3 4 ].
However, foldability is not necessarily guaranteed for a closed-loop unit constructed by an arbitrary combina-

tion of the angles that satisfies Equation (1). This means that the ‘sequence’ of these angles in forming the final 
closed-loop configuration is a key factor that dictates the foldability versus rigidity of the unit. For example, for 
the quadrangular unit discussed above [which satisfies Equation (1)], the only foldable unit is obtained when 
identical angles are not adjacent to each other (i.e., the sequence: π β− , β, π β− , β), while the other possible con-
figuration (i.e., the sequence: π β− , π β− , β, β) will result in a rigid unit. This will be discussed next by deriving a 
set of mathematical expressions which represent topological constraints on the sequence of internal angles to 
guarantee foldability.

Figure 2a shows a schematic diagram of the middle crease lines of an arbitrary closed-loop unit with n sides, 
where Li (with i as an integer varying between 1 and n) is the length of the (i)th crease line, θ +j j( )( 1) (with j as an 
integer varying between 1 and −n 1) is the internal angle between the j( ) th and (j + 1)th crease lines (positive when 
counterclockwise), and n1θ  is the internal angle between the last and the first crease lines (positive when counter-

Figure 1.  Origami-based fold patterns used to construct closed-loop units. (a) The well-known ‘Miura-ori’ fold 
pattern is constructed out of a single sheet of paper when two identical acute angles, α, meet their 
supplementary angles, π α− , where folding along four crease lines will result in one mountain and three valley 
folds (for the sample shown, 3α π= ). Miura-ori is a single DoF foldable origami at which folding is 
quantified in terms of the angle between the mountain (i.e., line AB) and front valley (i.e., line BC) fold lines 
(i.e., initially collinear fold lines), [ 2 , ]1β π α π∈ − . Complete folding is achieved at β π α= −21  and β π=1  for 
out-of-plane and in-plane folding directions, respectively. (b) and (c) The fold patterns shown are constructed 
when four identical angles meet (acute angles, α, or obtuse angles, π α− ), which makes it impossible for them to 
be folded out of a single sheet of paper. The patterns have one DoF foldability, where folding behavior is 
characterized by the angle between middle crease lines (i.e., lines AB and BC), β2 and 3β . We can show that β2 
and β3 are related to β1 through the relations, β β π β= = −2 3 1 (see Supplementary Information for details). 
Complete folding is achieved at β β α= = 22 3  and 02 3β β= =  for out-of-plane and in-plane folding 
directions, respectively.
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clockwise). For the unit to be closed-loop at an arbitrary folding level (i.e., for any value of the angle, β), the vector 
summation of the middle crease lines must be equal to zero, i.e., 

��
L 0i

i n
i1∑ ==

= , where 
��
Li is the vector representation 

of the (i)th crease line with magnitude Li directing along the corresponding crease line. Considering the coordi-
nate system shown in Fig. 2a, this vector equation can be presented as (see Supplementary Information for 
details):

∑ ∑

∑ ∑

θ

θ

−











=

−











= .

=

=
+

=

= −

+

=

=

=

= −

+

L

L

( 1) cos 0,

( 1) sin 0
(2)

i

i n
i

i
j

j i

j j

i

i n
i

i
j

j i

j j

1

1

1

1

( )( 1)

2 1

1

( )( 1)

Using Equation (2), we can now check the validity of all combinations of internal angles given by Equation (1) 
to see if they result in a foldable closed-loop unit. For example, for a quadrangular configuration with angle 
sequence (π β− , β, π β− , β), applying Equation (2) results in =L L1 3 and L L2 4=  to satisfy foldability. However, 
Equation (2) cannot be satisfied for a quadrangular configuration with angle sequence (π β− , π β− , β, β) [see 
Supplementary Information for details]. Figure 2b shows a foldable quadrangular unit with L L L L1 2 3 4= = =  
= 1 inch. As we mentioned earlier, the closed-loop units presented here cannot be made by folding a single sheet 
of paper. This means that we must fold multiple sheets of paper (at least two), then attach them together (using an 
adhesive) to construct the units. Note that the quadrangular unit shown in Fig. 2b retains the single DoF property 
and foldability of underlying crease patterns in both out-of-plane and in-plane directions (see Fig. 2b – middle 
and right columns).

Based on mathematical expressions presented here, we developed a MATLAB (MathWorks, Natick, MA) code 
to first find the solutions of Equation (1) for n-sided polygons, then use Equation (2) to select foldable closed-loop 
unit designs assuming L L Ln1 2= = … = . Our results show that n 6=  results in no possible foldable design, 
while n 8=  results in 6 solutions which are shown in Fig. 3 (see Supplementary Information for details on these 
designs). In this figure, the center of each underlying crease pattern (i.e., vertices of the polygon made by middle 
crease lines) is labeled by capital letters. The first two configurations can be recreated using tessellations of the 
foldable quadrangular construction shown in Fig. 2b and thus, do not represent new configurations. Note that all 
these closed-loop units are one DoF flat-foldable (i.e., capable of transforming into a flat configuration) in 
out-of-plane and in-plane directions, except the last two configurations which are flat-foldable only in one direc-
tion while their foldability in the other direction is restricted due to ‘geometrical interference’ (i.e., self-contact) at 
points C and G.

Performing the analysis for n 10=  returns no possible solution, while n 12=  will result in 141 closed-loop 
constructions that satisfy both Equations (1) and (2). Here, we present a selected set of these closed-loop units in 
Supplementary Fig. S2 (see Supplementary Information for details on these designs). Again, all these units are one 
DoF flat-foldable in both out-of-plane and in-plane directions.

Figure 2.  Origami-based closed-loop units. (a) Schematic diagram of the middle crease lines of an arbitrary 
closed-loop unit (constructed by using fold patterns introduced in Fig. 1) with n sides, where Li ( ≤ ≤i n1  is an 
integer) is the length of the ith crease line, j j( )( 1)θ +  ( j n1 1≤ ≤ −  is an integer) is the internal angle between the 
jth and +j( 1)th crease lines (positive when counterclockwise), and n1θ  is the internal angle between the last and 
first crease lines (positive when counterclockwise). (b) The smallest closed-loop unit with one DoF foldability in 
out-of-plane and in-plane directions, constructed by using fold patterns introduced in Fig. 1, where =n 4, 

= = =L L L L1 2 3 4 (=1 inch for the sample shown), and the sequence of internal angles (π β− , β, π β− , β) [note 
β β= 1]. For the sample shown, 3α π= . Top row shows isometric views of the unit at an intermediate folding 
level, while the bottom row shows top and side views of the unit at an unfolded as well as fully-folded 
configurations under out-of-plane ( 2β π α= − ) and in-plane (β π= ) directions. We used alphabets, A–D, to 
label the vertices of the middle crease lines.

http://S2
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The closed-loop units can be stacked up – in out-of-plane direction – to create foldable tubular constructions. 
Here, we assume an infinite repetition of a ‘representative volume element’ (RVE; same as closed-loop unit), and 
analytically investigate the kinematics and folding kinetics of tubular constructions by studying the in-plane 
cross-sectional area, volume, and out-of-plane folding force needed to keep them at an arbitrary folding level. 
Figure 4a shows an example of an RVE and the corresponding tubular construction – composed of five RVEs 
stacked on top of each other in the out-of-plane direction – at an arbitrary folding level, where a and b are side 
lengths, α= γ( )H b2 sin( )sin

2
 is the RVE’s height, and dihedral angles, [0, ]γ π∈  and ξ π∈ [0, ] are another 

forms of representation of the single DoF of the unit (similar to β) which can be derived from the following equa-
tions (see Supplementary Information for derivations):

Figure 3.  All foldable closed-loop units with n 8= , constructed by using fold patterns introduced in Fig. 1. All 
the units are one DoF foldable in out-of-plane and in-plane directions, with L L L1 2 8= = … =  (=1 inch for 
the samples shown). Complete folding in one direction is restricted for the units shown in the last two rows due 
to geometrical interference (i.e., self-contact). The sequence of internal angles for each unit is given in 
Supplementary Information. For the samples shown, 3α π=  . Left column shows a top view of each unit at an 
unfolded configuration, while middle and right columns show top and side views of units at fully-folded 
configurations under out-of-plane ( 2 )β π α= −  and in-plane ( )β π=  directions. We used alphabets, A-H, to 
label the vertices of the middle crease lines.
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Equation (3) holds true for all closed-loop unit constructions introduced in this paper. Now we quantify fold-
ing level by defining a non-dimensional parameter called ‘folding ratio’ as, − γ( )1 sin

2
, which varies from 0 (i.e., 

γ π= ) to 1 (i.e., 0γ = ) [see Supplementary Information for derivation]. Based on this definition, complete fold-
ing in in-plane direction corresponds to a folding ratio of 0, while complete out-of-plane folding results in a 
folding ratio of 1. In-plane cross-sectional area, defined as the in-plane area bounded by closed-loop unit (or 
tubular construction) [such as the area of the polygon formed by middle crease lines] is equal to a sin( )2 β  for the 
unit presented in Fig. 4a and is constant through the height at any folding ratio. The in-plane cross-sectional area 
for the first four units with =n 8 and =n 12, shown in Fig. 3 and Supplementary Fig. S2, can be obtained using 
similar equations as a2 sin( )2 β  and a3 sin( )2 β , respectively. Moreover, the in-plane cross-sectional area for the 
last two units shown in Fig. 3 is given as β β−a2 sin( ) [1 cos( )]2  and a2 sin( ) [1 cos( )]2 β β+ . Also, the last con-
figuration shown in Supplementary Fig. S2 has an in-plane cross-sectional area of a5 sin( )2 β . Figure 4b depicts 
the variation of ‘normalized area’ (i.e., in-plane cross-sectional area normalized by a2) as a function of folding 
ratio for all closed-loop units presented in this paper with 3α π=  . Results show that except for closed-loop 
units with geometrical interference, the normalized area rises from zero (i.e., in-plane fully-folded configuration) 
up to a turning point (i.e., maximum point), then decreases towards smaller values, and finally follows a plateau 

Figure 4.  Folding kinematics and kinetics of foldable tubular constructions. (a) A sample RVE and the 
corresponding tubular construction – composed of five RVEs stacked on top of each other in the out-of-plane 
direction at an arbitrary folding level, with a and b as side lengths, H as the RVE’s height, and dihedral angles, 

[0, ]γ π∈  and [0, ]ξ π∈ , as another forms of representation of the single DoF of the unit (similar to β). (b) 
and (c) Normalized area (defined as the in-plane cross-sectional area of closed-loop units, normalized with 
respect to a2) and normalized volume (defined as the volume bounded by closed-loop units, normalized with 
respect to a3) versus the folding ratio for all foldable units with n 4=  and n 8= , and for a selected set of foldable 
closed-loop units with =n 12. (d), (e), and (f) Normalized folding force (defined as the out-of-plane folding 
force normalized with respect to the spring constant per unit crease length, k, and number of polygon sides, n, 
i.e., F k n( )) versus the folding ratio for all the RVEs studied in this paper.

http://S2
http://S2
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regime until the unit reaches the other fully-folded configuration (i.e., out-of-plane). Note that the maximum 
normalized area occurs at β π= 2 , where folding ratio ~ 0.18. This behavior is different for closed-loop units 
with geometrical interference. For the range of folding ratio at which these units are foldable, the normalized area 
is greater compared to other units with equal number of sides, n, due to a separation between points C and G at 
all folding ratios (see Fig. 3). Similar behavior is observed for normalized volume [defined as the volume bounded 
by closed-loop unit (i.e., in-plane cross-sectional area multiplied by the height, H), normalized by a3], except at 
the folding ratio of 1, at which the normalized volume becomes zero due to the fully-folded configuration of the 
units, see Fig. 4c.

Next, for folding force calculations, we assume that tubular constructions are made of rigid plates connected 
together at straight crease lines by linear torsional springs with a spring constant per unit length of k N( ). Using 
the principle of minimum total potential energy on RVE, we derived the following closed-form expression for 
out-of-plane folding force, F (see Supplementary Information for derivation):

γ γ ξ ξ

α γ
= −

− + − ξ
γ


F kn2

( ) ( )
sin( ) cos( 2)

,
(4)

a
b

d
d0 0

where 0γ  and ξ0 denote the free angles of horizontal and inclined torsional springs, respectively, and ξ γd d  can 
be calculated using Equation (3). The equation given above clearly show that the folding force is proportional to 
the number of polygon sides, n. For instance, the folding force of an RVE with =n 12 is three times the force of 
an RVE with =n 4 (with same geometrical characteristics).

Figure 4d plots the normalized out-of-plane folding force versus the folding ratio for different values of a/b 
(ranging from zero to infinity), for all the RVEs studied in this paper. Note that normalization was performed 
with respect to the spring constant per unit crease length, k, and number of polygon sides, n, i.e., F k n( ) . Results 
were plotted for α π= 3, and free angle of torsional springs achieved at 30 γ π=  (folding ratio = 0.5; 0β  and 
ξ0 can be calculated from Equation (3) by plugging 0γ  instead of γ). In Fig. 4e, we plotted the normalized 
out-of-plane folding force versus the folding ratio for a set of α, varying between the extreme cases, α = 0 and 

2α π=   for 1a
b

=  and γ π= 30 . Also, to highlight the effect of the free angles of torsional springs, we plot the 
normalized out-of-plane folding force versus the folding ratio for 1a

b
= , α π= 3, and different values of γ0 

varying between the extreme cases, 00γ =  and 0γ π= , Fig. 4f. Results clearly show that for 0γ  greater than ~ 
0 85 π. , a ‘bistability’ (i.e., having two stable configurations) is observed for RVEs under the out-of-plane folding 
force - independent of the number of polygon sides, n. For instance, the RVEs with γ π= 11 120 , exhibit local 
extremum points at folding ratios of ~ 0.07 (local maximum) and ~ 0.51 (local minimum). This demonstrates the 
existence of two stable configurations – one at folding ratio of close to 0, where the folding force is zero, and – the 
other one at the local minimum point at folding ratio of ~ 0.51. Existence of bistability in certain unit designs 
highlights their potential application in designing foldable structures for energy absorption, energy harvesting, 
and impact mitigation3,12,27,28.

Tessellation of closed-loop units or tubular constructions in the in-plane direction can create planar and 3D 
periodic foldable cellular structures, respectively. This results in creation of a wide range of foldable structures 
with one degree-of-freedom (DoF) with properties that are governed by their building blocks. Figure 5a,b show 
examples of tubular and 3D periodic cellular structures constructed with tessellation of closed-loop units with 
n 4=  (i.e., the smallest foldable closed-loop unit) and =n 12 (see Supplementary Information for more exam-
ples). In each example, the closed-loop units are first stacked on top of each other, in out-of-plane direction, to 
create a foldable tubular configuration. Tessellation of these tubular units in 2D in-plane area will form the final 
assembly of foldable 3D periodic cellular structures. Foldability of these 3D cellular structures in out-of-plane and 
in-plane directions are also demonstrated in both folding directions. Figure 5c,d show two examples of modular 
constructions made by using more than one type of closed-loop unit. To this end, the ‘unit cells’ are first created 
by employing multiple types of closed-loop units. Then, a planar tessellation of these unit cells will result in the 
final assembly of periodic structures. The closed-loop units, as well as the associated unit cell for each modular 
construction are shown in the figures. Both examples shown are fully-foldable in out-of-plane and in-plane fold-
ing directions.

In summary, we presented a set of mathematical expressions to design foldable Miura-based closed-loop 
origami units, which can further be used as building blocks for modular design of foldable structures including 
tubular, and 2D and 3D cellular constructions. Almost all the structures given have one DoF with flat-foldability 
in out-of-plane and in-plane folding directions. The folding kinematics and kinetics of the constructed foldable 
structures can be tuned through a number of geometrical parameters of their building blocks as well as the spe-
cific design (pattern) of the foldable structure. The work presents a novel and application-driven approach for 
developing origami-based foldable and deployable structures with modular construction through the design of 
their underlying building blocks.

Methods
Fabrication of the origami-based units and structures.  All the samples were fabricated out of paper 
(thickness ~ 0.01 in), where the cuts and crease lines were made using a Silhouette CAMEO cutting machine 
(Silhouette America, Inc., Lindon, UT). Parts of closed-loop units or tubular constructions that can be made 
out of a single sheet of paper were first cut, and then folded along predefined crease lines. The folded parts were 
then glued together to form the final closed-loop or tubular configurations (see Supplementary Information for 
details). The modular constructions were achieved by gluing the underlying closed-loop or tubular constructions 
together.
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Figure 5.  Modular construction of foldable structures using the closed-loop units introduced in this paper as 
the building blocks. (a) and (b) Tubular and 3D periodic cellular structures constructed with tessellation of 
foldable closed-loop units with n 4=  and =n 12, respectively. The closed-loop units are first stacked on top of 
each other – in out-of-plane direction – to create a foldable tubular configuration. Tessellation of these tubular 
units in 2D in-plane area will form the final assembly of foldable 3D periodic cellular structures. We employed 
an adhesive material (i.e., glue) to link the adjacent tubular structures together to form the final assemblies. 
Figures demonstrate the foldability of these 3D cellular structures in both out-of-plane and in-plane folding 
directions. (c) and (d) Two examples of modular constructions, each created by employing multiple types of 
closed-loop units as the building blocks. The closed-loop units for each modular construction are shown on the 
top of each example.
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