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Abstract
The growing interest in studying social behaviours of swarming fruit flies, Drosophila mela-
nogaster, has heightened the need for developing tools that provide quantitative motion

data. To achieve such a goal, multi-camera three-dimensional tracking technology is the

key experimental gateway. We have developed a novel tracking system for tracking hun-

dreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking

algorithm, this work offers additional contributions in three aspects: body detection, orienta-

tion estimation, and data validation. To demonstrate the opportunities that the proposed

system offers for generating high-throughput quantitative motion data, we conducted exper-

iments on five experimental configurations. We also performed quantitative analysis on the

kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found

that there exists an asymptotic distance between fruit flies in swarms as the population den-

sity increases. Further, we discovered the evidence for repulsive response when the dis-

tance between fruit flies approached the asymptotic distance. Overall, the proposed

tracking system presents a powerful method for studying flight behaviours of fruit flies in a

three-dimensional environment.

Introduction
Social behaviours of swarming fruit flies, Drosophila melanogaster, have recently attracted in-
creasing scientific attention [1]. Such studies may deepen our understanding of the neural
mechanisms underlying social behaviours [2]. The rising of such research activities is fueled by
recent advances of the video tracking technology. The video tracking method can automatically
measure individual’s motion states using videos from different camera views [3]. Previous
studies have made contributions on developing methods for tracking fruit flies walking in
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planar arenas (2D) [4–9] or for tracking fruit flies flying in cubic or cylindrical arenas (3D)
[10–14]. Collective behaviour [15], however, usually happens in a large group of animals, such
as bird flocks [16, 17], fish shoals [18–20], and insect swarms [21–25]. Acquiring individual’s
3D motion state through time is still an open problem while the population size is large or the
population density is high.

In order to obtain 3D quantitative motion data of swarming fruit flies, multiple synchro-
nized and calibrated cameras are employed to capture videos. It needs methods to establish
cross-view and cross-frame correspondence for methods to achieve the tracking purpose. Due
to severe occlusion and mutually similar appearance, finding correspondences across multiple
views is a severe challenge. And moreover, since we have to film the entire swarm in the cam-
eras’ field-of-view (FOV), each fruit fly only takes up a few pixels in the images. Such images
makes resolving pixels of body and wings more challenging. From this viewpoint, previous
methods [14, 23, 24, 26, 27] may have the following limitations: (I) The detected result is unsta-
ble. Due to the fast wing strokes of fruit flies (less than 4 ms per wing stroke [28]), detected ob-
jects which include pixels of the wings and body decrease the accuracy on computing their
barycenters; (II) The fruit fly’s orientation cannot be reconstructed. Since the pixels of body
and wings cannot be resolved, there are no sufficient visual cues for estimating a fly’s orienta-
tion in 3D.

We propose in this paper a multi-camera tracking system for acquiring motion data (the lo-
cation and orientation) of individuals of swarms of fruit flies through time. Videos of fruit flies
were captured by three synchronized and calibrated high-speed cameras, in which fruit flies
were flying in a confined cubic flight arena. We propose an approach to detect pixels corre-
sponding to a fruit fly’s body and an algorithm for computing the fly’s orientation. The orienta-
tion information not only helps increasing the efficiency of tracking fruit flies but also helps
validating and correcting the estimated motion state. The tracking system has successfully ac-
quired individual motion data of hundreds of fruit flies through time. We show the results of
experiments on five experimental configurations to demonstrate the opportunities that our sys-
tem offers for generating high-throughput quantitative motion data. We performed quantita-
tive analysis on the kinematics and the spatial structure and the motion patterns of fruit fly
swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the
population density increases, and we discovered that fruit flies have a strong tendency to turn
away when the distance between them approached the asymptotic distance. Overall, the pro-
posed tracking system presents a powerful method for studying flight behaviours of fruit flies
in a 3D environment.

Methods
We have developed an experimental imaging system consisting of a transparent cubic flight
arena, two planar lights, and three high-speed cameras (Section 2.1). The three cameras are em-
ployed to capture videos of flying fruit flies. Videos are the raw observation for the tracking sys-
tem. Fig 1 shows the overview of the proposed tracking method. The first step of the system is
to extract high level observations (measurements) from the raw observation (Section 2.2). Mea-
surements are input to the proposed tracking algorithm. At the tracking step (Section 2.3), the
system exploits an “one-to-one” strategy, meaning that it creates (or invokes) one tracker to
track one target using measurements associated with the target. After the motion state of a tar-
get has been estimated, the system invokes a validating and correcting process (Section 2.4) to
achieve results that are more accurate.
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2.1 Experimental imaging system
The flight arena is a Lucite cube of side length 360 mm (inner). The arena was built by gluing
by five transparent acrylic planks with chloroform. A feeding-tube matched open-top sunroof
in 50 mm diameter circle was handled on escape-proof inner besieged flange. Three mono-
chrome high-speed digital video cameras (IO Industries Canada, Flare 4M 180-CL, 2040v ×
2048h pixels at 100 fps) were placed approximately 900 mm from the cubic arena against two
orthogonally placed back-lit cool-running lamps. Each lamp was made by LED arrays and cov-
ered by a diffusion sheet to generate gentle and flicker-free planar illumination. The cameras
were mounted with 17–35 mm lens. The supporting information (S1 Fig) shows the experi-
mental equipment.

2.2 Detection
Previous studies [10–14, 23] have demonstrated that the illumination was usually provided by
front-lighting in laboratory. The front-lighting means lights and cameras are placed at the
same side of the targets. It has the advantage of showing the rich texture of targets and the
background. The rich texture however makes target detection and resolving body’s pixels very
difficult. The back-lighting is the opposite, i.e. the targets are imaged as silhouettes against
plain white background. In our problem, we moved the lights to the side of targets opposite the
cameras, meaning that targets were back-lit in camera views. Fig 2a shows an image in which
fruit flies were back-lit in the camera view. We presented a simple and efficient detecting ap-
proach in this paper. The proposed approach makes full use of the different levels of transpar-
ency between the wings and body of a fruit fly, in which the pixels of a fly’s wings have higher
intensities than pixels of its body. The proposed detecting approach segments an image into
blobs. Each blob is an image area with pixels’ locations and intensities, and each blob represents
the observation of a certain fruit fly in a camera view. To simplify notation, all definitions in
this section ignore subscripts for cameras and moments.

2.2.1 Segmenting blobs. In the first step, we subtract a Gaussian background model from
an acquired image. Given a pixel i which denotes the location of a certain pixel in a certain
camera view, let μ(i) be its mean intensity and σ(i) be its standard deviation of intensities

Fig 1. Diagram of the tracking system. Three steps are detailed in section 2 (Methods).

doi:10.1371/journal.pone.0129657.g001
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through time. We compute μ(i) and σ(i) according to a sequence of consecutively acquired im-
ages in the camera view. That is, μ and σ define the Gaussian background model in the camera
view.

The pixel i in a certain acquired image is segmented as a foreground pixel if its intensity sat-
isfies the constraint:

IðiÞ � mðiÞ
sðiÞ < �C1 ð1Þ

where I denotes the acquired image. Connected foreground pixels are clustered as blobs b 2 {1,
. . ., bn}. We choose the constant value C1 = 1.5 which guarantees that each blob includes pixels
of a fly’s wings and body. Fig 2b shows the segmented blobs of the image patch.

2.2.2 Removing wings pixels. Fruit flies can make wing-strokes very fast (e.g. less than 4
ms [28] for one wing-stroke), meaning the wings’ positions between consecutive frames are in-
consistent unless the camera’s frame-rate is very high, such as 2,000 frames per second. That is
unusual for conventional multi-camera system. From this viewpoint, methods, such as [14,
27], which included the wings pixels in the detecting results were not precise enough.

In the second step, we use local Gaussian models to remove pixels of wings from blobs.
Given a blob b, let μb denote its mean intensity and σb denote its standard deviation of the in-
tensities. These variables, μb and σb, are computed using all pixels belonging to the blob b. The
local Gaussian model of the blob b is thereby defined by μb and σb. This second step is a refine-
ment step and is computed as

blobðb; iÞ ¼
1

IðiÞ � mb

sb

< �C2

0 otherwise

ð2Þ

8><
>:

where b 2 {1, . . ., bn} denotes the blobs and i 2 {ib,1, . . ., ib,n} denotes the pixels of a certain
blob b. If blob(b, i) is equal to 0, we remove the pixel i from the blob b. We choose the constant
value C2 = 1.5 which guarantees most of pixels of a fly’s body being preserved after refinement.
Fig 2c shows the image patch overlaid with the refined blobs. This step makes full use of the dif-
ferent levels of transparency between a fruit fly’s wings and its body (i.e. the pixels of a fly’s
wings have higher intensities than those of its body). This is achieved thanks to the fruit flies
were back-lit in camera views.

Fig 2. Detecting. (a) The image at the left was filmed by a back-lit camera and the patch marked by the green rectangle was zoomed at the right. (b) The
patch was overlaid with red blobs which were detected using background subtraction. (c) The patch was overlaid with refined blobs in which the pixels of
wings were removed. (d) The result of fitting each blob with an ellipse.

doi:10.1371/journal.pone.0129657.g002
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2.2.3 Fitting blob with ellipse. In order to fit a blob with an ellipse accurately, it is usually
that fitting a 2D Gaussian to the locations of all pixels in the blob. Given the parameters of the
best-fitting Gaussian, the parameters of the ellipse can be computed. Instead of just computing
the mean and covariance of all pixels in the blob, we compute a weighted mean and covariance.
Let w(i) denote the weight of pixel i, the weight w(i) is defined as the normalized distance of
the pixel i’s intensity to the background model which is defined by μ and σ:

wðiÞ ¼ jIðiÞ � mðiÞj
sðiÞ ð3Þ

Therefore, the weighted mean and covariance of the pixels of the blob b are computed as:

m0
b ¼ 1

W

X
i

wðiÞ � i; i 2 fib;1; :::; ib;ng ð4Þ

S0
b ¼ 1

W

X
i

wðiÞ � ði� m0
bÞði� m0

bÞT ; i 2 fib;1; :::; ib;ng ð5Þ

whereW = ∑i w(i), i 2 {ib,1, . . ., ib, n} defines the weight’s normalization constant, and i 2 {ib,1,
. . ., ib,n} denotes the pixels belonging to the blob b. The weighted mean and covariance not
only improve the robustness to non uniform illumination (e.g. a single threshold for all im-
ages), but also give us the sub-pixel accuracy on fitting ellipses. The mean m0

b defines the center
of the ellipse, and the covariance S0

b defines the axis and the direction of the ellipse. Fig 2d
shows the results of fitting each blob with an ellipse.

2.2.4 Measurements definition. We refer to a blob and the ellipse fitted to it as ameasure-
ment. Let χ denote ameasurement, each measurement includes two components:

w ¼ fb; eðbÞg ð6Þ
where b denotes the blob with pixel locations and intensities, and e(b) defines the ellipse fitting
to the blob. We used 3 cameras in our experiments and therefore the set of all available mea-
surements at a certain moment was defined as {χv,i j v 2 {1, 2, 3}, i 2 {1, . . ., iv,n}}.

2.3 Tracking
Previous studies [10–14, 23] have proposed methods that model targets as points and estimat-
ing only targets’ locations in 3D. In order to encompass orientation information, we model a
target as a directed line-segment in 3D (the center-axis of a target). Fig 3 shows the modeling

approach. The fruit fly in our system is denoted by fx; y; z; y; �;~lg where~l is a constant scalar.
The constant scalar~l denotes the length of center axis (In our problem,~l ¼ 2:73mm is the av-
erage body length of fruit flies). Here (x, y, z) denotes the location of the fruit fly and (θ, ϕ) de-
notes its orientation.

The proposed tracking algorithm is based on the Bayesian inference framework. Fig 4
shows the overview of the tracking algorithm. In our tracking algorithm, the motion state of
targets propagates (location (x, y, z) is predicted and orientation (θ, ϕ) is computed explicitly)
in 3D space through time. The location of a target (x, y, z) at moment t is predicted by the dy-
namic model conditioned on its location at moment t−1. We developed a measurements asso-
ciation algorithm which associates 2D measurements in all views with a 3D target after its
location being predicted at each moment. Measurements which have been associated with a
certain target generate amatchedmeasurement pair (MMP). The orientation of the target (θ,
ϕ) is then computed using the MMP. The predicted location (x, y, z) and computed orientation
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Fig 4. Overview of the tracking algorithm. By exploiting the particle filtering solution, we use ~nP ¼ 200 particles sampling the posterior distribution of the
motion state of a fruit fly at moment t. Each particle includes two components: the fly’s location (x, y, z) and the fly’s orientation (θ, ϕ). The location component
is predicted by using the dynamic model and the fly’s location at moment t−1. After the location component is predicted, an MMP is associated with the
particle. Then the orientation component is computed using the MMP. And then the tracking algorithm computes the weight of the particle. If there are more
than one MMP (e.g. since the target is associated with two measurements inCamera 1, the algorithm thereby generates two MMPs (χ1,1, χ2,2, χ3,3) and (χ1,2,
χ2,2, χ3,3)), the algorithm choose the MMP having highest weight (e.g. (χ1,1, χ2,2, χ3,3)) and the orientation computed by the MMP. Finally, the motion state of
the fly at moment t is the expectation computing by the weighted particles.

doi:10.1371/journal.pone.0129657.g004

Fig 3. The fruit fly’s model. (a) The front image of an adult fruit fly. (b) The articulated model of the fruit fly. (c) A fruit fly locates at (x, y, z). Its orientation is
defined by two angles (θ, ϕ) against the world’s coordinate system. θ is an angle from x-axis and ϕ is an angle from horizontal (the x-y plane). Combining the
location (x, y, z) and orientation (θ, ϕ), it defines a directed line-segment in 3D space, the center-axis of the fruit fly.

doi:10.1371/journal.pone.0129657.g003
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(θ, ϕ) form a sampled motion state of the target (a particle). The probability of each particle is
evaluated by incorporating in the MMP of the target at moment t. In brief, the proposed track-
ing algorithm is a particle filtering solution for a Bayesian inference problem.

2.3.1 Location prediction. We adopt the Bayesian tracking framework and construct the
following eight-dimensional model to define the system state

fx; y; z; x�; y�; z�; y; �g ð7Þ

where the “−” superscripted terms denote the location of the target at previous moment.
In order to reduce the state space, we partition the state space into two parts: the location

state X(x, y, z, x−, y−, z−) and the orientation state O(θ, ϕ). We thereby predict a target’s location
state using the dynamic model and the target’s location state at moment t−1, and leave the ori-
entation state being computed explicitly.

We adopt the first-order linear extrapolation (FLE) as the dynamic model. The FLE model
assumes that the next location of a target is defined by the linear extrapolation of the last two
locations. The transition function is defined as:

Xt ¼
2I3 � I3

I3 03

" #
Xt�1 þ vt ð8Þ

where I3 is a 3 × 3 identity matrix and vt *N(0, S) is the transition noise.
Let Z1:t = {Zi, i = 1, . . ., t} denote the set of all available observation up to moment t, the

Bayesian inference can be formulated as a problem of estimating the posterior probability p
(XtjZ1:t) [29]. Under the first-order Markov assumption and the Bayes’ rule, we can get the
well-known equation of Bayesian filtering

pðXtjZ1:tÞ / pðZtjXtÞ
Z

pðXtjXt�1ÞpðXt�1jZ1:t�1Þdxt�1; ð9Þ

where p(ZtjXt) is called the observation model. In our problem, Zt ¼ fZv
t g3v¼1

denotes the col-
lection of measurements from all 3 camera views at moment t.

By using the particle filtering solution for the Bayesian inference problem, the posterior of a
target’s motion state at moment t, p(XtjZ1:t), is approximated by a set of weighted particles:
fðsnt ;wn

t Þjn 2 1:::~npg. We set ~np ¼ 200 in our experiments. Each particle snt is associated with a
weight wn

t which is proportional to the likelihood of the sampled motion state given the obser-
vation at moment t, in which the sampled motion state is represented by the particle. New par-
ticles are drawn from particles in the previous step using importance sampling [29] and move
independently according to the dynamic model. Given a set of particles fðsnt ;wn

t Þjn 2 1:::~npg,
the estimated motion state of the target at moment t, X̂ t , is computed as the expectation

X̂ t ¼ EðXtjZ1:tÞ ¼
X~np
n¼1

wn
t s

n
t ð10Þ

In our problem, each particle is defined as snt ¼ ðXn
t ;O

n
t ;
~lÞ. At this point, we have the incom-

plete particle snt ¼ ðXn
t ; �;~lÞ. The � denotes the uninitialized value.

2.3.2 Measurement association. At each moment, many measurements are extracted
from images. We have to decide which measurement is the observation of a certain target in a
certain camera view. That is, a measurement has to be assigned to a target if the target is “ob-
served” in that camera view. This is the task of measurement association, and we propose the
pixels occupancy test (POT) algorithm for solving the task. The POT algorithm simultaneously
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solves the association problem across all camera views. The POT algorithm is based on the idea
of probability gating. A gate is a surface with constant probability [30, 31]. In our work it
should be an ellipsoid according to the shape of a fruit fly. However, here we employ a sphere
gate since there is no orientation state at this point. Let Γ define the association between the

particle snt ðXn
t ; �;~lÞ and measurements χv,i, v = 1..3, i = 1..iv,n. It is computed as

GðXn
t Þ ¼ fðwv;i; ZÞjZ > Zc; v ¼ 1::3; i ¼ 1::iv;ng

Z ¼ cardðOðXn
t ; wv;iÞÞ

cardðwv;iðbÞÞ

OðXn
t ; wv;iÞ ¼ fPvU 3gT wv;iðbÞ

ð11Þ

where card(�) defines the function which counts the number of elements in a set of pixels, and
χv,i(b) denotes the blob’s pixels of the measurement χv,i. Here U3 denotes the discrete 3D points

sampled from the surface of a sphere which locates at Xn
t ðx; y; zÞ with the diameter equal to~l ;

and Pv is the projection matrix of camera v. Therefore, OðXn
t ; wv;iÞ defines the common pixels

between χv,i(b) and pixels which are projected into camera v from U3; and η is proportional to
the rate of common pixels, η 2 [0, 1].

In Eq (11), ηc is a scalar positive-valued percolation threshold which varies from 0 to 1 for
leveraging the restriction on association. Larger ηcmeans more restrictive association. In prac-
tice, we prefer ηc = 0.5 in the first tens of frames. And then ηc is set to a smaller value ηc = 0.25.
Particles, which cannot associate with one measurement in any views, are labeled as “missing
particle” and thereby ignored, i.e. the association had to succeed across all camera views. Be-
sides, since the perspective effect causes many 2D occlusions in dense population it is accept-
able that one measurement is associated with two or more particles.

2.3.3 Orientation computation. Measurements defined by GðXn
t Þ form an MMP (c.f.

There may probably be more than one MMP. Please see Fig 4, the legend.). An MMP includes
one measurement in each camera view. The ellipses of the MMP are employed to compute the
target’s orientation according to the pinhole camera model in Euclid geometry. The geometric
interpretation of computing the orientation is shown in Fig 5a.

Fig 5a shows the orientation On
t of the particle can be computed from the direction of the

cross line between two planes F1 and F2. However, the direction of the cross line may become
problematic while the measurement is close to circular. If the measurements of an MMP are
close to circular, the major axis of ellipse might have nothing to do with the plane in which the
center-axis lies (as shown in Fig 5b). Let γ define the ratio between the major-axis to the minor-
axis of an ellipse (i.e. γmeasures the level of circle for a measurement), and let α define the
angle between the computed orientation and the real one. We compute the error � as � = 1−cos
(α). Fig 5c shows the error � as a function of the ratio γ. It suggests the error � is less than 0.01
while γ satisfies γ� 1.3. In our case, we can choose two ellipses from an MMP (it includes 3
measurements from 3 camera views), which all satisfy γ� 1.3. That is, the orientation On

t can

be computed accurately. At this point, we have the particle snt been completed: snt ¼ ðXn
t ;O

n
t ;
~lÞ.

2.3.4 Weight computation. The particle snt ¼ ðXn
t ;O

n
t ;
~lÞ represents a sampled motion

state of a certain target at moment t. As aforementioned, after the location state Xn
t having been

predicted, the orientation state Ot is computed independently at moment t. That is, wn
t , the

weight of the particle can be computed as:

wn
t / pðZtjXn

t ;O
n
t Þ ¼ polðZtjOn

t ÞpalðZtjXn
t Þ ð12Þ
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where Zt denotes the observation at moment t and is defined by GðXn
t Þ. The weight includes

two factors: pol, the orientation likelihood; and pal, the appearance likelihood.
Orientation Likelihood pol defines the likelihood which is computed using the orientation’s

temporal consistency between consecutive moments. Let the target’s orientation at moment t
−1 be Ot−1(θ, ϕ), this likelihood is computed as

polðZtjOn
t Þ / exp �

~dðOn
t ðy; �ÞÞ �~dðOt�1ðy; �ÞÞ

k ~dðOn
t ðy; �ÞÞ kk ~dðOt�1ðy; �ÞÞ k

 !

~dðy; �Þ ¼ ð sin ð�Þ � cos ðyÞ; sin ð�Þ � sin ðyÞ; cos ð�ÞÞT
ð13Þ

where~dð�Þ defines the direction vector of a target’s orientation.
Appearance likelihood pal defines the likelihood which is computed using the appearance’s

temporal consistency between consecutive moments. The target’s appearance is the blobs of
the MMP which is associated with the target. The intensities of all pixels in the blob jointly en-
code features of a target’s intrinsic appearance, depth, background and illumination. These fac-
tors are approximately constant for consecutive frames while the target were filmed by high-

Fig 5. Orientation computation. (a) The geometric interpretation of the orientation computation. Here I1 and I2 denotes the image plane of Camera 1(red)
andCamera 2(blue) respectively. The line-segment hx11 ; x12i(red) denotes the ellipse’s major axis in I1. And the line-segment hx2

1 ; x
2
2i(blue) denotes the ellipse’s

major axis in I2. The projection rays of those end-points define two planeΦ1 andΦ2 respectively, e.g. two red rays defineΦ1. The orientationOn
t can be

computed from the direction of the cross line (the longer green line-segment) between two planesΦ1 andΦ2. All definitions are defined in the world
coordinate system. (b) The problematic orientation computation. The measurement is drawn in red, and red dashed lines are the major-axis and minor-axis of
its ellipse. A generative shape according to the particle state ðXn

t ;O
n
t ;
~lÞ is re-projected intoCamera 2 (see S2 Fig, the generative shape model). The green

pixels are re-projected pixels and the yellow pixels are identical pixels. (c) The error � as a function of the ratio γ. Here γ defines the length ration between the
major-axis and the minor-axis of an ellipse.

doi:10.1371/journal.pone.0129657.g005
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speed cameras. The likelihood is thereby computed as

palðZtjXn
t Þ ¼

Y3
v¼1

exp ðZ � nccðwv;i; appearanceðvÞÞÞ; ðwv;i; ZÞ 2 GðXn
t Þ ð14Þ

where ncc(�) is the function to compute normalized cross correlation coefficient of the blobs of
two measurements. Here, function appearance(v) denotes the function to get the appearance of
the target in camera view v. The target’s appearance is updated and stored at moment t−1.

2.4 Validation and correction

At the end of the tracking process, the motion state ðXt;Ot;
~lÞ of a certain target is computed

according to Eq (10) at moment t. In order to validate the motion state of a target automatical-
ly, we employ the POT algorithm (c.f. Section 2.3.2) again. The POT algorithm associates mea-
surements with a certain target across camera views, but here the discrete 3D points U3 in Eq
(11) are now sampled from the surface of a generated shape. We implemented a parameterized

generative shape U3ðXt;Ot;
~lÞ in term of a profile curve revolving around the center-axis (see

S2 Fig, the profile ρ and the generative shape UðXt;Ot;
~lÞ). The center-axis is a line-segment

which is defined by fXtðx; y; zÞ;Otðy; �Þ;~lg. A similar idea of generating shape model had
been presented by Fontaine et al. [32].

In order to invoke restrictive validation, we choose ηc = 0.8 (c.f. Eq (11)). The validation is
successful if the target has been associated with at least one measurement in each camera view;
otherwise failures. If the target is associated with more than one measurement in a certain cam-
era view, we choose the most likely measurement. The successful result forms only one MMP.
In the second part of this step, we reconstruct a candidate 3D location by triangulation using
the ellipse’s center of each measurement in the MMP. If the distance between the target 3D lo-

cation and the candidate 3D location is larger than~l , we update the 3D location of the target
using the average of these two locations. The last part of this step is to update and to store the
appearance of a target. The appearance of a target is the MMP with a time stamp. The tracking
system updates and stores the appearance of an active target in run-time memory.

Experiments and Results
The cameras were calibrated using the method proposed in [33, 34] and synchronized by a
hardware timing mechanism. All videos were captured at 100 frames per second. The captured
videos were first stored in DVR Express1 and then exported as jpeg format images (IO Indus-
tries Canada, DVR Express1 Core Camera Link Full, monochrome, 10 × 8 bit, Full, 1TB × 3).
The capturing and exporting processes were controlled by the Core View™ online console soft-
ware. All software was running on a computer with Intel1 Core™ i5-2500 CPU 3.3GHz and
8GB RAM. The proposed tracking method was implemented in the MATLAB™ environment
with “Machine Vision Toolbox” [35]. The evaluation of tracking performance is provided in S1
File and the raw code is provided in S2 File.

3.1 Experiment set up
3.1.1 Animals. Wild-type Canton fruit flies were fed basic medium (corn flour broth with

brown sugar) 3–5 days after eclosion. The flies were housed at 25°C room temperature and
60% relative humidity under 12 hour light-dark circadian clock without sexual discrimination.
The number of flies in each feeding tube was estimated at 120–150 individuals at a normal
hatchability ratio after a three-day oviposition by the fresh postnatal parental generation.
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3.1.2 Imaging. The fruit flies were housed in a transparent cubic flight arena, and videos
were captured by three back-lit cameras. We have collected videos according to five experiment
configurations. For each session, the fruit flies were totally refreshed. At the beginning of each
session, we added tubes (c.f. The fruit flies are originally in the feeding tube.) of flies to the
arena through the open-top sunroof (see S1 Fig). The course of flight usually lasted for tens of
seconds. We filmed the entire course of flight on each session and discarded the first 2 seconds
(200 frames) of each video to compensate for bias on flight behaviours. Table 1 shows the list
of videos. The lengths of each video varied, but all were longer than 30 seconds (i.e. 3000
frames).

3.2 The raw data
During experiments, we found that many fruit flies flew intermittently in the arena. The rea-
son, we believe, is probably the absence of continuous visual stimuli or olfaction stimuli. Our
system does not attempt to maintain the identity consistency on fruit flies over extended dura-
tions. In this study, if a fruit fly disappeared, for example it landed on a wall for a while, it was
labeled with a different identity by the tracking system when the fly appeared again. As a result,
the consecutive motion states of a fruit fly (with a unique identity) mainly continued for hun-
dreds of frames, although we have captured rather longer video sequences (thousands of
frames). The sequence of consecutive motion states are usually called trajectories. Table 1
shows the number of trajectories of each configuration. We prefer to call these results, which
known as trajectories, the raw data (see S3 Fig, which shows the snapshot of the raw data of a
typical configuration, T03).

3.3 Velocity statistics
Since each fruit fly’s motion data has been obtained through time, we can thereby compute
fruit flies’ kinetic measurement, such as velocity v, angular velocity av and speed s which is the
magnitude of velocity v at each moment. Fig 6a shows the statistics of speed. It shows that the
measured mean speed μs is greater than 400 mm/s (see the lower panel of Fig 6a), while the
measured standard deviation σs increases from 200 mm/s to 400 mm/s as the population size
increases. Considering the z-score (a.k.a the standard score) of speed denotes the fluctuation of
speed, we computed the z-scores of all configurations and reported the PDFs of z-scores of
each configuration in Fig 6a (the upper panel). The z-score of speed zs is computed as zs = (s
−μs)/σs. Fig 6a shows the fluctuation of fruit flies’ speed usually narrows down (i.e. the ampli-
tude of fluctuation decreases) as the population size increases. That is, the flight of fruit flies in
a denser population environment is less volatile than those in a less dense environment. It sug-
gests fruit flies have probably awareness of the environment. The black arrow in Fig 6a (the

Table 1. Video sets and raw results.

video set id # fruit flies configuration # trajectories # NND Demo

� 1sec � 3sec

T01091009401 � 150 T01 994 246 63,306 S1 Video

T02091009601 � 300 T02 1447 435 96,225 S2 Video

T03091009701 � 400 T03 2518 618 184,339 S3 Video

T04100309901 � 500 T04 3578 791 247,509 S4 Video

T05100310101 � 600 T05 4693 916 318,875 S5 Video

doi:10.1371/journal.pone.0129657.t001
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upper panel), which points to the direction of growing population size, shows the long tails of
speed fluctuation. These tails are nearly exponential and grow monotonically with the popula-
tion size, which suggest that fruit flies in a denser population environment perform faster ma-
noeuvres. It probably are these long tails which cause the standard deviation of speed increases
as the population size increases. On the other hand, previous studies [36, 37] have demonstrat-
ed that the fruit fly exhibits a flight pattern in which straight flight sequence interspersed with
rapid turn called saccades. Fig 6d shows the statistic of angular velocity. The measured mean
angular velocity μav is greater than 400 degree/s (see the lower panel of Fig 6d), while Fig 6d
(the upper panel) shows that the angular velocity av is less than the mean μav in most of mo-
ments. That is, the angular velocity is usually less than 400° per seconds. But the nearly expo-
nential tails (indicated by dashed-line in grey) suggest that fruit flies have also often taken the
rapid turn.

Considering the velocity components, Fig 6b and 6c show the statistics of velocity compo-
nents: vy (the horizontal velocity component, the other horizontal velocity component vx is
statistically the same) and vz (the vertical velocity component). Anisotropy of the motion is ev-
ident. The fruit flies move more actively in horizontal than in vertical. The PDFs of z-scores of
the horizontal velocity zvy = (vy−μvy)/σvy and of the vertical velocity zvz = (vz−μvz)/σvz have sim-
ilar Gaussian shapes (but not Gaussian, see the upper panel of Fig 6b and 6c). Even though
these PDFs deviate from Gaussian values at the tails, they suggest the mean velocity μvy and μvz
of all configurations over time are approximately zero (see the lower panel of Fig 6b and 6c).
That is, fruit flies in the arena do not show an overall polarisation, as shown in the inset of

Fig 6a. Here the polarisation is defined as F ¼ jPN
i¼1~vi=vij=N , where N is the number of fruit

flies and~vi is the velocity of fruit fly i. The polarisation measures the degree of alignment of the

Fig 6. Statistics of fruit flies’ kinematics. The measured data of different configurations are color coded. The upper row shows the PDFs of measured z-
scores z and the lower panel shows the measured mean μ and standard deviation σ. (a) The PDFs of z-scores of speed, zs, of all configurations. The black
arrow shows the direction of growing population size. The inset shows the polarisation value in six seconds (more data is not present). (b, c) The PDFs of z-
scores of velocity components: (b) the horizontal component, zvy, and (c) the vertical direction, zvz, of all configurations. The distributions are nearly Gaussian
(an empirical Gaussian curve is shown in grey), with small deviation in the tails. (d) The PDFs of z-scores of angular velocity, zav, of all configurations. The
dashed-line shows the nearly exponential long tails on the high angular velocity.

doi:10.1371/journal.pone.0129657.g006
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directions of motion, where its value F 2 [0, 1]. The polarisation of each configuration is small
through time.

Fig 6 shows the statistics of velocity of fruit flies in the confined arena. These results indicate
that the fruit flies’ kinematics are statistically similar with that of midges [23]. Midges are
known to form swarms under visual markers, such as stagnant water [23, 24]. We here, howev-
er, observed that fruit flies in the arena flew almost randomly in the arena.

3.4 Spatial structure
Even when hundreds of fruit flies were free-flying in the arena at the same time, no collision
was ever observed. We speculate that the spatial organization of fruit flies may manifest the so-
cial structures. The clearest characterization of the spatial structure of fruit flies within a swarm
is the probability distribution of the nearest-neighbour distance. The nearest-neighbour dis-
tance is the minimum Euclidean distance between a fruit fly and other fruit flies in a swarm. In
the later text, we refer to the nearest-neighbour distance asNND. Table 1 shows the number of
NNDs of each configuration. At each moment, there were many fruit flies landing on walls of
the arena. Therefore, in order to avoid the bias introduced by those landing fruit flies (i.e. edge
effects), we ignored a fly’s motion data if its distance to any walls of the arena is less than 20
mm. Fig 7a shows the PDFs of NND distributions of all configurations. It shows that the aver-
age NND and the deviation decrease as the population size increases. Moreover, considering
the population size of T05 is larger than that of T04, the similar PDFs of T04 and T05 indicate
there exists an asymptotic saturation against the increasing population size.

In order to confirm whether there exists some biological forces or social forces among fruit
fly swarms, we created a simulation system. The system simulated physical random particles
(a.k.a Brownian motion in which social forces are absent) moving in a confined volume. The
virtual volume was equal to the volume of the flight arena. The number of particles was equal
to the number of fruit flies at each moment of each configuration. At the initial step, random
particles were uniformly distributed in the volume. Each simulation ran on 3000 steps. We also
evaluated the NND distribution of each simulation. Fig 7b shows the comparison between the
PDF of NND distribution of T03 and that of the correspondent simulation. The NNDs should
follow a Poisson distribution for random particles. But the Poisson distribution fitting the dis-
tribution of the simulation compares poorly with that of fruit flies. The distribution of fruit

Fig 7. The NND distributions. The PDFs are represented by normalized histograms. (a) The PDFs ofNND distributions of all configurations. (b) The
comparison between the PDFs of NND distributions of T03 and the correspondent simulation (random particles). (c) The relationship between the average
NND and the population densities at each moment of all configurations. (d) The average NND y as a power function of the population density x.

doi:10.1371/journal.pone.0129657.g007
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flies obviously skews to the left. The difference between it and that of random particles is signif-
icant (P< 0.005, t-test).

Fig 7c shows that the NND decreases as the population density increases. The first dimen-
sion of each data element reported in Fig 7c is the average population density at a certain mo-
ment within a certain configuration, and the second dimension of each data element is the
average NND at the moment within the configuration. It is obvious that the NND shows a
power-law distribution against the population density. To quantify the relationship, we fit the
data in Fig 7c with a decaying power function in the form

y ¼ A � x�B þ C ð15Þ
where x denotes the population density and y denotes the NND. The constant A determines
the overall scale of the variation with x, whereas B is the decaying rate constant. The constant C
gives the asymptotic value for the average NND for all configurations. The interesting thing is
the constant C denotes the exclusive distance between a fruit fly and its neighbours. Fig 7d
shows the best fitting result. The best fitting C is C = 15.11 ± 0.89. It means that fruit flies have
a high tendency to take the repulsive response when the distance between them approached

C = 15.11 ± 0.89 mm. Considering the average body length of the fruit flies (~l ¼ 2:73mm), C

can also be expressed as C � 5~l � 6~l .

3.5 Acceleration towards nearest-neighbour

For each fruit fly in a swarm, C � 5~l � 6~l denotes the exclusive distance to other flies. If this re-
sult is significant, its effect should also be apparent in the motion statistics. We therefore mea-
sured the probability distribution of the angular direction of a fruit fly’s acceleration towards
its nearest neighbours. Given a reference fruit fly, we computed the angular direction of its ac-
celeration with respect to the direction of its nearest neighbour,~n (see Fig 8, the legend). The
angular direction is defined by two angles (the azimuth and the elevation). We repeated this
computation by taking each fruit fly within a configuration as reference individuals, and
mapped the probability density conditioned on the NND. In Fig 8a and 8b the NND condition

(between 6~l and 8~l) is omitted for clarity.
Fig 8a shows the distribution in which all data were computed conditioned on the NND is

< 6~l ; in this way, that of Fig 8b were computed conditioned on the NND is> 8~l . Both distribu-
tions are anisotropic, but the former has three obvious clusters. The left and right clusters (see
Fig 8a) indicate a strong tendency towards a repulsive response. On the other hand, Fig 8b does
not exhibit special manoeuvres. Fruit flies’ acceleration scattered when they met their nearest

neighbours at distance> 8~l . Fig 8a shows another data cluster which is the cluster centering on
h0, 0i. It indicates that there were fruit flies accelerated directly towards their nearest neigh-
bours. This manoeuvre can be thought as representing “chasing” behaviour.

Discussion
In this paper, we detailed our tracking system which was designed for acquiring the motion
data of individuals of fruit fly swarms through time. The fruit fly swarms were housed in a
cubic flight arena. Three synchronized and calibrated high-speed cameras satisfy the minimum
requirement of the system for resolving the ambiguity between targets. More cameras may in-
crease the ability of resolving targets in a more dense population. The proposed tracking algo-
rithm is easily tunable for more cameras because of the well designed measurement association
algorithm. Beside, with the help of the “one-to-one” strategy, the proposed tracking algorithm
is uncoupled from the population size. The computing time cost is linear to the population
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size. That is, the proposed tracking algorithm is suitable for tracking more targets depending
on the capability of computers (multi-thread).

The probability distribution of the nearest-neighbour distances shows the spatial structure
of fruit flies within a swarm. This distribution is significantly different to that of random parti-
cles (non social forces simulation). The average nearest-neighbor distance of all experimental
configurations show the property of asymptotically approaching saturation. Further, by evalu-
ating the distribution of angular direction of fruit flies’ acceleration towards their nearest-
neighbours, we found the evidence proving the existence of the asymptotical distance. Fruit
flies have a strong tendency to take the repulsive response when the distances between them

approached 6~l (the average body length is~l ¼ 2:73mm). This result is consistent with previous
findings reported by Maimon et al. [10], who observed a strong decay in the probability of a
fruit fly’s approaching small post if the post subtended a visual angle of� 10° on the fly’s reti-

na. At distance between fruit flies approaching 6~l , a fly subtends a visual angles of� 10° on an-
other fly’s retina. And therefore, fruit flies exhibit a high tendency to turn away from each
others. Though there exists obvious interaction between a fruit fly and other flies, swarms of
fruit flies in our experiments did not show an overall polarisation. On the average, unlike bird
flocks [17], here the average polarisation is� 0.02. It suggests that these fruit flies have little
tendency to align their motion with their neighbours.

In conclusion, this study provided a detailed 3D tracking system for obtaining quantitative
3D motion data of individuals of the fruit fly swarms through time. The result of quantitative
analysis shows that the fruit flies in a confined arena are not free particles. Behaviour rules exist
in a fruit fly swarm and probably affect individual’s behaviours in the swarm. Understanding
the detailed origin of their behaviours will be an interesting topic for future research.

Supporting Information
S1 Fig. The illustration of the equipment arrangement.
(PDF)

Fig 8. Probability density of the angular direction of fruit flies’ acceleration toward their nearest neighbours. For each fruit fly i, we defined the unit
vector~ni in the direction of its nearest neighbour. We then computed the angular direction of the fly i’s acceleration with respect to the direction of its nearest-
neighbour,~ni. That is, we measured the azimuth and elevation of the fly i’s acceleration against the coordinate system which is defined by rotating the x-axis
of the world’s coordinate system to~ni. The azimuth is θ 2 [−180°, 180°] and the elevation is ϕ 2 [−90°, 90°]. The center point (θ = 0°, ϕ = 0°) corresponds to
the direction of nearest neighbours~n. (a) All data were computed assuming the NND was less than 6~l . (b) All data were computed assuming the NND was
greater than 8~l .

doi:10.1371/journal.pone.0129657.g008
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S2 Fig. The generative shape model ofDrosophila.
(PDF)

S3 Fig. Summary of the raw data of typical configuration, T03.
(PDF)

S1 File. The performance evaluation of the proposed tracking method.
(PDF)

S2 File. The raw code. Readers can also download the release package using DOI: 10.5281/
zenodo.13677
(ZIP)

S1 Video. Demo video of the raw data of configuration T01.
(MOV)

S2 Video. Demo video of the raw data of configuration T02.
(MOV)

S3 Video. Demo video of the raw data of configuration T03.
(MOV)

S4 Video. Demo video of the raw data of configuration T04.
(MOV)

S5 Video. Demo video of the raw data of configuration T05.
(MOV)
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