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Abstract Antimicrobial resistance in Gram- negative bacteria is one of the greatest threats to 
global health. New antibacterial strategies are urgently needed, and the development of antibiotic 
adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope 
is of ever- growing interest. Most available adjuvants are only effective against specific resistance 
proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultane-
ously compromises several classes of resistance determinants. In particular, we find that impairing 
DsbA- mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile 
colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes 
multidrug- resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combi-
nation with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae 
infected with multidrug- resistant Pseudomonas aeruginosa. This work lays the foundation for the 
development of novel antibiotic adjuvants that function as broad- acting resistance breakers.

Editor's evaluation
This work is based on the idea that targeting protein stability or inhibiting proper protein folding in 
the membrane/periplasmic space might abolish antimicrobial resistances (AMR) in Gram- negative 
bacteria. By targeting the primary disulfide bond formation enzyme DsbA, the authors provide a 
proof- of- principle for the inhibition of β-lactamases, MCR enzymes, and RND efflux pumps of model 
bacterial species as well as clinical isolates. Collectively, the study shows that a chemical inhibitor of 
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the DSB system sensitizes resistant bacteria to several antibiotics such as β-lactams, chloramphen-
icol, and colistin.

Introduction
Antimicrobial resistance (AMR) is one of the most important public health concerns of our time (Roch-
ford et al., 2018). With few new antibiotics in the pharmaceutical pipeline and multidrug- resistant 
bacterial strains continuously emerging, it is more important than ever to develop novel antibacterial 
strategies and find alternative ways to break resistance. While the development of new treatments for 
Gram- negative bacteria is considered critical by the WHO (Tacconelli et al., 2018), identifying novel 
approaches to target these organisms is particularly challenging due to their unique double- membrane 
permeability barrier and the vast range of AMR determinants they produce. For this reason, rather 
than targeting cytoplasmic processes, antimicrobial strategies that inhibit cell- envelope components 
or impair the activity of resistance determinants are being increasingly pursued (Hart et al., 2019; 
Laws et al., 2019; Luther et al., 2019; Nicolas et al., 2019; Srinivas et al., 2010).

The Gram- negative cell envelope is home to many different AMR determinants, with β-lactamase 
enzymes currently posing a seemingly insurmountable problem. More than 6500 unique enzymes 
capable of degrading β-lactam compounds have been identified to date (Supplementary file 1). 
Despite the development of more advanced β-lactam antibiotics, for example the carbapenems 
and monobactams, resistance has continued to emerge through the evolution of many broad- acting 
β-lactamases (Bush, 2018). This constant emergence of resistance not only threatens β-lactams, the 
most commonly prescribed antibiotics worldwide (Meletis, 2016; Versporten et al., 2018), but also 
increases the use of last- resort agents, like the polymyxin antibiotic colistin, for the treatment of 
multidrug- resistant infections (Li et al., 2006). As a result, resistance to colistin is on the rise, due in 
part to the alarming spread of novel cell- envelope colistin resistance determinants. These proteins, 
called mobile colistin resistance (MCR) enzymes, represent the only mobilizable mechanism of poly-
myxin resistance reported to date (Poirel et  al., 2017). Since their discovery in 2015, 10 families 
of MCR proteins have been identified and these enzymes are quickly becoming a major threat to 
the longevity of colistin (Sun et al., 2018). Alongside β-lactamases and MCR enzymes, Resistance- 
Nodulation- Division (RND) efflux pumps further enrich the repertoire of AMR determinants in the 
cell envelope. These multi- protein assemblies span the periplasm and remove many antibiotics 
(Blair et al., 2014; Cox and Wright, 2013), rendering Gram- negative bacteria inherently resistant to 
important antimicrobials.

Inhibition of AMR determinants has traditionally been achieved through the development of antibi-
otic adjuvants. These molecules impair the function of resistance proteins and are used in combination 
with existing antibiotics to eliminate challenging infections (Laws et al., 2019). Whilst this approach 
has proven successful and has led to the deployment of several β-lactamase inhibitors that are used 
clinically (Laws et  al., 2019), it has so far not been able to simultaneously incapacitate different 
classes of AMR determinants. This is because traditional antibiotic adjuvants bind to the active site of 
a resistance enzyme and thus are only effective against specific protein families. To disrupt AMR more 
broadly, new strategies have to be developed that target the biogenesis or stability, rather than the 
activity, of resistance determinants. In this way, the formation of multiple resistance proteins can be 
inhibited at once, instead of developing specific compounds that inactivate individual AMR enzymes 
after they are already in place.

In extracytoplasmic environments protein stability often relies on the formation of disulfide bonds 
between cysteine residues (Goemans et al., 2014; Heras et al., 2007). Notably, in the cell envelope 
of Gram- negative bacteria this process is performed by a single pathway, the DSB system, and more 
specifically by a single protein, the thiol oxidase DsbA (Bardwell et al., 1991; Denoncin and Collet, 
2013; Hiniker and Bardwell, 2004; Kadokura et al., 2004; Martin et al., 1993). DsbA has been 
shown to assist the folding of hundreds of proteins in the periplasm (Kadokura et al., 2004; Dutton 
et al., 2008; Vertommen et al., 2008; Figure 1A), including a vast range of virulence factors (Heras 
et  al., 2009; Landeta et  al., 2018). As such, inhibition of DSB proteins has been proposed as a 
promising broad- acting strategy to target bacterial pathogenesis without impairing bacterial viability 
(Denoncin and Collet, 2013; Heras et al., 2009; Landeta et al., 2018; Heras et al., 2015). Nonethe-
less, the contribution of oxidative protein folding to AMR has never been examined. Since several cell 
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envelope AMR determinants contain multiple cysteines (Bardwell et al., 1991; Piek et al., 2014), we 
hypothesized that interfering with the function of DsbA would not only compromise bacterial virulence 
(Heras et al., 2015), but might also offer a broad approach to break resistance across different mech-
anisms by affecting the stability of resistance proteins. Here, we test this hypothesis by investigating 
the contribution of disulfide bond formation to three of the most important resistance mechanisms in 
the cell envelope of Enterobacteria: the breakdown of β-lactam antibiotics by β-lactamases, polymyxin 
resistance arising from the production of MCR enzymes and intrinsic resistance to multiple antibiotic 
classes due to RND efflux pumps. We find that some of these resistance mechanisms depend on DsbA 
and we demonstrate that when DsbA activity is chemically inhibited, resistance can be abrogated for 
several clinically important enzymes. Our findings prove that targeting protein homeostasis in the cell 
envelope allows the impairment of diverse AMR proteins and therefore could be a promising avenue 
for the development of next- generation therapeutic approaches.

Results
The activity of multiple cell envelope resistance proteins is dependent 
on DsbA
DsbA has been shown to assist the folding of numerous periplasmic and surface- exposed proteins in 
Gram- negative bacteria (Figure 1A; Heras et al., 2009; Landeta et al., 2018; Heras et al., 2015). 
As many AMR determinants also transit through the periplasm, we postulated that inactivation of 
the DSB system may affect their folding, and therefore impair their function. To test this, we first 
focused on resistance proteins that are present in the cell envelope and contain two or more cysteine 
residues, since they may depend on the formation of disulfide bonds for their stability and folding 
(Bardwell et al., 1991; Piek et al., 2014). We selected a panel of 12 clinically important β-lactamases 

eLife digest Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are 
evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 
'Gram- negative bacteria', which have an outer layer – called the cell envelope – that acts as a drug 
barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or 
even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to 
stop these proteins from working.

Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order 
for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called 
DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide 
bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if 
it did, it might open up new ways to treat antibiotic resistant infections.

To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic 
resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to 
antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which 
led to the antibiotic resistance proteins becoming unstable and breaking down because they could 
not fold correctly.

Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic 
species of Gram- negative bacteria made these bacteria more sensitive to antibiotics that they would 
normally resist. To demonstrate that using this approach could work to stop infections by these 
bacteria, Furniss, Kaderabkova et al. used Gram- negative bacteria that produced antibiotic resistance 
proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibi-
otics, which increased their survival rate, indicating that blocking DsbA may be a good approach to 
tackling antibiotic resistant bacteria.

According to the World Health Organization, developing new treatments against Gram- negative 
bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way 
around this is to develop ways to make existing drugs work better. Making drugs that block DsbA 
could offer a way to treat resistant infections using existing antibiotics in the future.

https://doi.org/10.7554/eLife.57974
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Figure 1. Several antimicrobial resistance mechanisms depend on disulfide bond formation. (A) DsbA introduces disulfide bonds into extracytoplasmic 
proteins containing two or more cysteine residues. After each round of oxidative protein folding, DsbA is regenerated by the quinone (Q)- 
containing protein DsbB, which in turn transfers the reducing equivalents to the respiratory chain (RC) (Kadokura et al., 2003). DsbA substrates (in dark 
blue) are distributed throughout the extracytoplasmic space of Gram- negative bacteria. Disulfides are introduced to (1) soluble periplasmic proteins 
(e.g. alkaline phosphatase, β-lactamases; Bardwell et al., 1991), (2) periplasmic domains of inner- membrane proteins (e.g LptA- like enzymes (Piek 
et al., 2014), (3) periplasmic domains of outer- membrane proteins (e.g. RcsF; Denoncin and Collet, 2013), (4) outer- membrane proteins (e.g. OmpA, 
LptD; Denoncin and Collet, 2013; Heras et al., 2009), (5) secreted proteins (e.g. toxins or enzymes; Heras et al., 2009), (6–9) protein components 
of macromolecular assemblies like secretion systems, pili or flagella (Heras et al., 2009) (e.g. (6) GspD, (7) EscC, (8) BfpA, (9) FlgI); all examples are E. 
coli proteins with the exception of LptA. (B) β-lactam MIC values for E. coli MC1000 expressing diverse disulfide- bond- containing β-lactamases (Ambler 
classes A, B and D) are substantially reduced in the absence of DsbA (MIC fold changes: > 2, fold change of 2 is indicated by the black dotted lines); no 
effect is observed for SHV- 27, which is further discussed in Figure 1—figure supplement 3. DsbA dependence is conserved within phylogenetic groups 
(see Figure 1—figure supplement 2). No changes in MIC values are observed for the aminoglycoside antibiotic gentamicin (white bars) confirming 
that absence of DsbA does not compromise the general ability of this strain to resist antibiotic stress. No changes in MIC values are observed for 
strains harboring the empty vector control (pDM1) or those expressing the class A β-lactamase L2- 1, which contains three cysteines but no disulfide 
bond (top row). Graphs show MIC fold changes for β-lactamase- expressing E. coli MC1000 and its dsbA mutant from three biological experiments each 
conducted as a single technical repeat; the MIC values used to generate this panel are presented in Supplementary file 2a. (C) Colistin MIC values for 

Figure 1 continued on next page
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Table 1. Overview of the β-lactamase enzymes investigated in this study.
Enzymes GES- 1, –2 and –11 as well as KPC- 2 and –3 belong to the same phylogenetic cluster 
(GES- 42 and KPC- 44, respectively, see Supplementary file 1). All other tested enzymes belong to 
distinct phylogenetic clusters (Supplementary file 1). The ‘Cysteine positions’ column states the 
positions of cysteine residues after position 30 and hence, does not include amino acids that would 
be part of the periplasmic signal sequence. All β-lactamase enzymes except L2- 1 (shaded in grey; 
PDB ID: 1O7E) have one disulfide bond. The ‘Mobile’ column refers to the genetic location of the 
β-lactamase gene; ‘yes’ indicates that the gene of interest is located on a plasmid, while ‘no’ refers 
to chromosomally encoded enzymes. All tested enzymes have a broad hydrolytic spectrum and are 
either Extended Spectrum β-Lactamases (ESBLs) or carbapenemases. The ‘Inhibition’ column refers 
to classical inhibitor susceptibility that is, susceptibility to inhibition by clavulanic acid, tazobactam, 
or sulbactam.

Enzyme Amblerclass Cysteine positions Mobile Spectrum Inhibition

L2- 1 A C82 C136 C233 no ESBL yes

GES- 1 A C63 C233 yes ESBL yes

GES- 2 A C63 C233 yes ESBL yes

GES- 11 A C63 C233 yes Carbapenemase yes

SHV- 27 A C73 C119 no ESBL yes

OXA- 4 D C43 C63 yes ESBL yes

OXA- 10 D C44 C51 yes ESBL no (Aubert et al., 2001)

OXA- 198 D C116 C119 yes Carbapenemase no (El Garch et al., 2011)

FRI- 1 A C68 C238 yes Carbapenemase no (Dortet et al., 2015)

L1- 1 B3 C239 C267 no Carbapenemase no (Palzkill, 2013)

KPC- 2 A C68 C237 yes Carbapenemase no (Papp- Wallace et al., 2010)

KPC- 3 A C68 C237 yes Carbapenemase no (Papp- Wallace et al., 2010)

SME- 1 A C72 C242 no Carbapenemase yes

E. coli MC1000 expressing diverse MCR enzymes (Figure 1—figure supplement 1) are reduced in the absence of DsbA. Graphs show MIC values (µg/
mL) from four biological experiments, each conducted in technical quadruplicate, to demonstrate the robustness of the observed effects. Gentamicin 
control data are presented in Figure 1—figure supplement 6. (D) Deletion of dsbA reduces the erythromycin, chloramphenicol and nalidixic acid MIC 
values for E. coli MG1655, but no effects are detected for the non- substrate antibiotic gentamicin. The essential pump component AcrA serves as a 
positive control. Graphs show MIC values (µg/mL) from three biological experiments, each conducted as a single technical repeat. Red dotted lines 
indicate the EUCAST clinical breakpoint for chloramphenicol.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phylogenetic analysis of MCR- and EptA- like enzymes found in Proteobacteria.

Figure supplement 2. DsbA dependence is conserved within phylogenetic groups of disulfide- bond- containing β-lactamases.

Figure supplement 3. SHV- 27 function is dependent on DsbA at temperatures higher than 37°C.

Figure supplement 4. Complementation of dsbA restores the β-lactam MIC values for E. coli MC1000 dsbA expressing β-lactamases.

Figure supplement 5. Complementation of dsbA restores the colistin MIC values for E. coli MC1000 dsbA expressing MCR enzymes.

Figure supplement 6. Gentamicin MIC values for E. coli MC1000 strains expressing MCR enzymes.

Figure supplement 7. Deletion of dsbA has no effect on membrane permeability in E. coli MC1000.

Figure supplement 8. Complementation of dsbA restores efflux- pump substrate MIC values for E. coli MG1655 dsbA.

Figure supplement 9. Deletion of dsbA has no effect on membrane permeability in E. coli MG1655.

Figure 1 continued
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from different Ambler classes (classes A, B, and D), most of which are encoded on plasmids (Table 1). 
The chosen enzymes represent different protein structures, belong to discrete phylogenetic fami-
lies (Supplementary file 1) and have distinct hydrolytic activities ranging from the degradation of 
penicillins and first, second and third generation cephalosporins (extended spectrum β-lactamases, 
ESBLs) to the inactivation of last- resort β-lactams (carbapenemases). In addition to β-lactamases, we 
selected five representative phosphoethanolamine transferases from throughout the MCR phylogeny 
(Figure 1—figure supplement 1) to gain a comprehensive overview of the contribution of DsbA to 
the activity of these colistin- resistance determinants.

We expressed our panel of 17 discrete resistance enzymes in an Escherichia coli K- 12 strain (E. 
coli MC1000) and its isogenic dsbA mutant (E. coli MC1000 dsbA) and recorded minimum inhibitory 
concentration (MIC) values for β-lactam or polymyxin antibiotics, as appropriate. We found that the 
absence of DsbA resulted in a substantial decrease in MIC values ( > 2 fold cutoff) for all but one of 
the tested β-lactamases (Figure 1B, Figure 1—figure supplement 2, Supplementary file 2a). For the 
β-lactamase that seemed unaffected by the absence of DsbA, SHV- 27, we performed the same experi-
ment under temperature stress conditions (at 43 °C rather than 37 °C). Under these conditions, the lack 
of DsbA also resulted in a noticeable drop in the cefuroxime MIC value (Figure 1—figure supplement 
3). A similar effect has been described for TEM- 1, whereby its disulfide bond becomes important for 
enzyme function under stress conditions (temperature or pH stress) (Schultz et al., 1987). As SHV- 27 
has the narrowest hydrolytic spectrum out of all the enzymes tested, this result suggests that there 
could be a correlation between the hydrolytic spectrum of the β-lactamase and its dependence on 
DsbA for conferring resistance. In the case of colistin MICs, we did not implement a > 2 fold cutoff for 
observed decreases in MIC values as we did for strains expressing β-lactamases. Polymyxin antibiotics 
have a very narrow therapeutic window, and there is significant overlap between therapeutic and toxic 
plasma concentrations of colistin (Nation et al., 2016; Plachouras et al., 2009). Since patients that 
depend on colistin treatment are often severely ill, have multiple co- morbidities and are at high risk of 
acute kidney injury due to the toxicity of colistin, any reduction in the dose of colistin needed to achieve 
therapeutic activity is considered to be of value (Nation et al., 2019). Expression of MCR enzymes in 
our wild- type E. coli K- 12 strain resulted in colistin resistance (MIC of 3 μg/mL or higher), while the 
strain harboring the empty vector was sensitive to colistin (MIC of 1 μg/mL). In almost all tested cases, 
the absence of DsbA caused re- sensitization of the strains, as defined by the EUCAST breakpoint (E. 
coli strains with an MIC of 2 μg/mL or below are classified as susceptible; Figure 1C), indicating that 
DsbA is important for MCR function. Taking into consideration the challenges when using colistin ther-
apeutically (Nation et al., 2016; Plachouras et al., 2009; Nation et al., 2019), we conclude that dele-
tion of dsbA leads to clinically meaningful decreases in colistin MIC values for the tested MCR enzymes 
(Figure 1C) and that the role of DsbA in MCR function should be further investigated.

Wild- type MIC values could be restored for all tested cysteine- containing enzymes by complemen-
tation of dsbA (Figure 1—figure supplements 4 and 5). Moreover, since DsbA acts on its substrates 
post- translationally, we performed a series of control experiments designed to assess whether the 
recorded effects were specific to the interaction of the resistance proteins with DsbA, and not a result 
of a general inability of the dsbA mutant strain to resist antibiotic stress. We observed no decreases 
in MIC values for the aminoglycoside antibiotic gentamicin, which is not affected by the activity of the 
tested enzymes (Figure 1B, Figure 1—figure supplement 6). Furthermore, the β-lactam MIC values 
of strains harboring the empty- vector alone, or a plasmid encoding L2- 1 (Figure 1B), a β-lactamase 
containing three cysteine residues, but no disulfide bond (PDB ID: 1O7E), remained unchanged. 
Finally, to rule out the possibility that deletion of dsbA caused changes in cell envelope integrity 
that might confound our results, we measured the permeability of the outer and inner membrane 
of the dsbA mutant. To assess the permeability of the outer membrane, we used the fluorescent 
dye 1- N- phenylnaphthylamine (NPN) and complemented our results with vancomycin MIC assays 
(Figure 1—figure supplement 7A). To test the integrity of the entire cell envelope, we used the 
fluorescent dye propidium iodide (PI), as well as the β-galactosidase substrate chlorophenyl red-β-D- 
galactopyranoside (CPRG) (Figure 1—figure supplement 7B). All four assays confirmed that the cell 
envelope integrity of the dsbA mutant is comparable to the parental strain (Figure 1—figure supple-
ment 7). Together, these results indicate that many cell envelope AMR determinants that contain 
more than one cysteine residue are substrates of DsbA and that the process of disulfide bond forma-
tion is important for their activity.

https://doi.org/10.7554/eLife.57974
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Unlike β-lactamases and MCR enzymes, none of the components of the six E. coli RND efflux pumps 
contain periplasmic cysteine residues (Wang et al., 2017), and thus they are not substrates of the DSB 
system. Nonetheless, as DsbA assists the folding of approximately 300 extracytoplasmic proteins, and 
plays a central role in maintaining the homeostasis of the cell envelope proteome (Kadokura et al., 
2004; Dutton et al., 2008; Vertommen et al., 2008), we wanted to assess whether changes in peri-
plasmic proteostasis that occur in its absence could indirectly influence efflux pump function. To do 
this, we determined the MIC values of three antibiotics that are RND efflux pump substrates using E. 
coli MG1655, a model strain for efflux studies, its dsbA mutant, and a mutant lacking acrA, an essential 
component of the major E. coli RND pump AcrAB- TolC. MIC values for the dsbA mutant were lower 
than for the parental strain for all tested substrate antibiotics, but remained unchanged for the non- 
substrate gentamicin (Figure 1D). This indicates that the MG1655 dsbA strain is generally able to resist 
antibiotic stress as efficiently as its parent, and that the recorded decreases in MIC values are specific 
to efflux pump function in the absence of DsbA. As expected for a gene deletion of a pump compo-
nent, the acrA mutant had substantially lower MIC values for effluxed antibiotics (Figure 1D). At the 
same time, even though gentamicin is not effluxed by AcrAB- TolC (Nikaido, 1996), the gentamicin 
MIC of the acrA mutant was twofold lower than that of E. coli MG1655, in agreement with the fact that 
one of the minor RND pumps in E. coli, the aminoglycoside pump AcrD, is entirely reliant on AcrA for 
its function (Aires and Nikaido, 2005; Rosenberg et al., 2000; Yamasaki et al., 2011). As before, the 
observed phenotype could be reversed by complementation of dsbA (Figure 1—figure supplement 
8) and the recorded effects were not due to changes in membrane permeability (Figure 1—figure 
supplement 9). Chloramphenicol is the only antibiotic from the tested efflux pump substrates that has 
a EUCAST breakpoint for Gram- negative bacteria (E. coli strains with an MIC of 8 μg/mL or below are 
classified as sensitive). It is notable that the MIC drop for this pump substrate, caused by deletion of 
dsbA, sensitized the E. coli MG1655 dsbA strain to chloramphenicol (Figure 1D).

Overall, the effect of DsbA absence on efflux pump efficiency is modest and much less substantial 
than that measured for a mutant lacking acrA (2–3- fold decrease in MIC versus 5–16- fold decrease, 
respectively) (Figure 1D). Nonetheless, the recorded decreases in MIC values are robust (Figure 1D) 
and in agreement with previous studies reporting that deletion of dsbA increases the sensitivity of E. 
coli to dyes like acridine orange and pyronin Y (Bardwell et al., 1991), which are known substrates of 
AcrAB- TolC. While it is unlikely that the decreases in MIC values for effluxed antibiotics in the absence 
of DsbA are of clinical significance, it is interesting to explore the mechanistic relationship between 
DsbA and efflux pumps further, because there are very few examples of DsbA being important for the 
function of extra- cytoplasmic proteins independent from its disulfide bond forming capacity (Alonso- 
Caballero et al., 2018; Zheng et al., 1997).

Altered periplasmic proteostasis due to the absence of DsbA results 
in degradation or misfolding of cysteine-containing resistance 
determinants and sub-optimal function of efflux pumps
To understand the underlying mechanisms that result in the decreased MIC values observed for the 
dsbA mutant strains, we assessed the protein levels of a representative subset of β-lactamases (GES- 1, 
L1- 1, KPC- 3, FRI- 1, OXA- 4, OXA- 10, OXA- 198) and all tested MCR enzymes by immunoblotting. 
When expressed in the dsbA mutant, all Ambler class A and B β-lactamases (Table 1), except GES- 1 
which we were not able to visualize by immunoblotting, exhibited drastically reduced protein levels 
whilst the amount of the control enzyme L2- 1 remained unaffected (Figure 2A). This suggests that 
when these enzymes lack their disulfide bond, they are ultimately degraded. We did not detect any 
decrease in protein amounts for Ambler class D enzymes (Table 1, Figure 2B). However, the hydrolytic 
activity of these β-lactamases was significantly lower in the dsbA mutant (Figure 2C), suggesting a 
folding defect that leads to loss of function.

Like with class A and B β-lactamases, MCR enzymes were undetectable when expressed in a 
dsbA mutant (Figure  3A) suggesting that their stability or folding is severely compromised when 
they lack their disulfide bonds. We further confirmed this by directly monitoring the lipid A profile 
of all MCR- expressing strains where deletion of dsbA resulted in colistin MIC values of 2 µg/mL or 
lower (i.e. strains expressing MCR- 3, –4, –5, and –8, Figure 1C) using MALDI- TOF mass spectrometry 
(Figure 3BC). MCR activity leads to the addition of phosphoethanolamine to the lipid A portion of 
bacterial lipopolysaccharide (LPS), resulting in reduced binding of colistin to LPS and, thus, resistance. 

https://doi.org/10.7554/eLife.57974
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Figure 2. β-lactamase enzymes from most classes become unstable in the absence of DsbA. (A) Protein levels 
of disulfide- bond- containing Ambler class A and B β-lactamases are drastically reduced when these enzymes are 
expressed in E. coli MC1000 dsbA; the amount of the control enzyme L2- 1 is unaffected. (B) Protein levels of Class 
D disulfide- bond- containing β-lactamases are unaffected by the absence of DsbA. OXA- 4 is detected as two bands 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.57974
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In E. coli, the major lipid A peak detected by mass spectrometry is present at m/z 1796.2 (Figure 3B, 
first spectrum) and it corresponds to hexa- acyl diphosphoryl lipid A (native lipid A). The lipid A profile 
of E. coli MC1000 dsbA was identical to that of the parental strain (Figure 3B, second spectrum). 
In the presence of MCR enzymes two additional peaks were observed, at m/z 1821.2 and 1919.2 
(Figure 3B, third spectrum). The peak at m/z 1919.2 corresponds to the addition of a phosphoetha-
nolamine moiety to the phosphate group at position 1 of native lipid A, and the peak at m/z 1821.2 
corresponds to the addition of a phosphoethanolamine moiety to the 4ˊ phosphate of native lipid A 
and the concomitant loss of the phosphate group at position 1 (Dortet et al., 2018). For dsbA mutants 
expressing MCR- 3, –5, and –8 (Figure 3C), the peaks at m/z 1821.2 and m/z 1919.2 could no longer 
be detected, whilst the native lipid A peak at m/z 1796.2 remained unchanged (Figure 3B, fourth 
spectrum); dsbA mutants expressing MCR- 4 retain some basal lipid A- modifying activity, nonetheless 
this is not sufficient for this strain to efficiently evade colistin treatment (Figure 1C). Together these 
data suggest that in the absence of DsbA, MCR enzymes are unstable (Figure 3A) and therefore no 
longer able to efficiently catalyze the addition of phosphoethanolamine to native lipid A (Figure 3BC); 
as a result, they cannot confer resistance to colistin (Figure 1C).

As RND efflux pump proteins do not contain any disulfide bonds, the decreases in MIC values for 
pump substrates in the absence of dsbA (Figure 1D) are likely mediated by additional cell- envelope 
components. The protease DegP, previously found to be a DsbA substrate (Hiniker and Bardwell, 
2004), seemed a promising candidate for linking DsbA to efflux pump function. DegP degrades a 
range of misfolded extracytoplasmic proteins including, but not limited to, subunits of higher order 
protein complexes and proteins lacking their native disulfide bonds (Clausen et  al., 2002). We 
hypothesized that in a dsbA mutant the substrate burden on DegP would be dramatically increased, 
whilst DegP itself would not function optimally due to absence of its disulfide bond (Skórko- Glonek 
et al., 2003). Consequently, protein turn over in the cell envelope would not occur efficiently. Since 
the essential RND efflux pump component AcrA needs to be cleared by DegP when it becomes 
misfolded or nonfunctional (Gerken and Misra, 2004), we expected that the reduced DegP efficiency 
in a dsbA mutant would result in accumulation of nonfunctional AcrA in the periplasm, which would 
then interfere with pump function. In agreement with our hypothesis, we found that in the absence 
of DsbA degradation of DegP occurred (Figure 4A), reducing the pool of active enzyme (Skórko- 
Glonek et al., 2003). In addition, AcrA accumulated to the same extent in a dsbA and a degP mutant 
(Figure 4B), suggesting that in both these strains AcrA was not efficiently cleared. Finally, no accumu-
lation was detected for the outer- membrane protein TolC (Figure 4C), which is not a DegP substrate 
(Werner et al., 2003). Thus, in the absence of DsbA, inefficient DegP- mediated periplasmic proteo-
stasis affects RND efflux pumps (Figure 1D) through the accumulation of AcrA that should have been 
degraded and removed from the cell envelope.

The data presented above validate our initial hypothesis. The absence of DsbA affects the stability 
and folding of cysteine- containing resistance proteins and in most cases leads to drastically reduced 
protein levels for the tested enzymes. As a result, and in agreement with the recorded decreases 
in MIC values (Figure 1BC), these folding defects impede the ability of AMR determinants that are 
substrates of DsbA to confer resistance (Figure 4D). In addition, changes in cell envelope protein 

at ~28 kDa. For panels (A) and (B) protein levels of StrepII- tagged β-lactamases were assessed using a Strep- Tactin- 
AP conjugate or a Strep- Tactin- HRP conjugate. A representative blot from three biological experiments, each 
conducted as a single technical repeat, is shown; molecular weight markers (M) are on the left, DnaK was used as 
a loading control and solid black lines indicate where the membrane was cut. (C) The hydrolytic activities of the 
tested Class D β-lactamases and of the Class A enzyme GES- 1, which could not be detected by immunoblotting, 
are significantly reduced in the absence of DsbA. The hydrolytic activities of strains harboring the empty vector or 
expressing the control enzyme L2- 1 show no dependence on DsbA. n = 3 (each conducted in technical duplicate), 
table shows means ± SD, significance is indicated by * = p < 0.05, ns = non- significant.

The online version of this article includes the following source data for figure 2:

Source data 1. Original files of the full raw unedited immunoblots used to prepare Figure 2A.

Source data 2. Uncropped immunoblots used to prepare Figure 2A.

Source data 3. Original files of the full raw unedited immunoblots used to prepare Figure 2B.

Source data 4. Uncropped immunoblots used to prepare Figure 2B.

Figure 2 continued

https://doi.org/10.7554/eLife.57974
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Figure 3. MCR enzymes become unstable in the absence of DsbA. (A) The amounts of MCR proteins are drastically reduced when they are expressed 
in E. coli MC1000 dsbA; the red arrow indicates the position of the MCR- specific bands. Protein levels of StrepII- tagged MCR enzymes were assessed 
using a Strep- Tactin- AP conjugate. A representative blot from three biological experiments, each conducted as a single technical repeat, is shown; 
molecular weight markers (M) are on the left, DnaK was used as a loading control and solid black lines indicate where the membrane was cut. (B) The 
ability of MCR enzymes to transfer phoshoethanolamine to the lipid A portion of LPS is either entirely abrogated or significantly reduced in the absence 
of DsbA. This panel shows representative MALDI- TOF mass spectra of unmodified and MCR- modified lipid A in the presence and absence of DsbA. In 
E. coli, MC1000 and MC1000 dsbA the major peak for native lipid A is detected at m/z 1796.2 (first and second spectrum, respectively). In the presence 
of MCR enzymes (E. coli MC1000 expressing MCR- 3 is shown as a representative example), two additional peaks are observed, at m/z 1821.2 and 1919.2 
(third spectrum). For dsbA mutants expressing MCR enzymes (E. coli MC1000 dsbA expressing MCR- 3 is shown), these additional peaks are not present, 
whilst the native lipid A peak at m/z 1796.2 remains unchanged (fourth spectrum). Mass spectra are representative of the data generated from four 
biological experiments, each conducted as a technical duplicate. (C) Quantification of the intensities of the lipid A peaks recorded by MALDI- TOF mass 
spectrometry for all tested MCR- expressing strains. n = 4 (each conducted in technical duplicate), table shows means ± SD, significance is indicated by 
*** = p < 0.001 or **** = p < 0.0001.

The online version of this article includes the following source data for figure 3:

Source data 1. Original files of the full raw unedited immunoblots used to prepare Figure 3A for which a Strep- Tactin- AP conjugate and an anti- DnaK 
8E2/2 antibody were used.

Source data 2. Uncropped immunoblots used to prepare Figure 3A.

https://doi.org/10.7554/eLife.57974


 Research article      Microbiology and Infectious Disease

Furniss, Kaderabkova, et al. eLife 2022;11:e57974. DOI: https://doi.org/10.7554/eLife.57974  11 of 37

Figure 4. RND efflux pump function is impaired in the absence of DsbA due to accumulation of unfolded AcrA resulting from insufficient DegP activity 
(A, B, C) . (A) In the absence of DsbA the pool of active DegP is reduced. In E. coli MG1655 (lane 1), DegP is detected as a single band, corresponding 
to the intact active enzyme. In E. coli MG1655 dsbA (lane 2), an additional lower molecular weight band of equal intensity is present, indicating that 
DegP is degraded in the absence of its disulfide bond (Hiniker and Bardwell, 2004; Skórko- Glonek et al., 2003). DegP protein levels were assessed 
using an anti- DegP primary antibody and an HRP- conjugated secondary antibody. E. coli MG1655 degP was used as a negative control for DegP 
detection (lane 3); the red arrow indicates the position of intact DegP. (B) The RND pump component AcrA accumulates to the same extent in the E. 
coli MG1655 dsbA and degP strains, indicating that in both strains protein clearance is affected. AcrA protein levels were assessed using an anti- AcrA 
primary antibody and an HRP- conjugated secondary antibody. E. coli MG1655 acrA was used as a negative control for AcrA detection; the red arrow 
indicates the position of the AcrA band. (C) TolC, the outer- membrane channel of the AcrAB pump, does not accumulate in a dsbA or a degP mutant. 
TolC is not a DegP substrate (Werner et al., 2003), hence similar TolC protein levels are detected in E. coli MG1655 (lane 1) and its dsbA (lane 2) and 
degP (lane 3) mutants. TolC protein levels were assessed using an anti- TolC primary antibody and an HRP- conjugated secondary antibody. E. coli 
MG1655 tolC was used as a negative control for TolC detection (lane 4); the red arrow indicates the position of the bands originating from TolC. For all 
panels a representative blot from three biological experiments, each conducted as a single technical repeat, is shown; molecular weight markers (M) are 
on the left, DnaK was used as a loading control and solid black lines indicate where the membrane was cut. (D) Impairing disulfide bond formation in the 
cell envelope simultaneously affects distinct AMR determinants. (Left) When DsbA is present, that is, when disulfide bond formation occurs, degradation 
of β-lactam antibiotics by β-lactamases (marked ‘bla’), modification of lipid A by MCR proteins and active efflux of RND pump substrates lead to 
resistance. The major E. coli RND efflux pump AcrAB- TolC is depicted in this schematic as a characteristic example. (Right) In the asucess of disulfide 
bond formation is impaired, most cysteine- containing β-lactamases as well as MCR proteins are unstable and degrade, making bacteria susceptible to 

Figure 4 continued on next page
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homeostasis due to the lack of DSB activity can result in a generalized, albeit much more modest, 
effect on protein function in this compartment. This is suggested by the fact that prevention of disul-
fide bond formation seems to indirectly affect the AcrAB- TolC efflux pump (Figure 1D), because of 
insufficient turnover of its AcrA component (Figure 4D).

Sensitization of clinical isolates to existing antibiotics can be achieved 
by chemical inhibition of DsbA activity
DsbA is essential for the folding of many virulence factors. As such, inhibition of the DSB system has 
been proposed as a promising anti- virulence strategy (Heras et al., 2009; Landeta et al., 2018; Heras 
et al., 2015) and efforts have been made to develop inhibitors for DsbA (Duprez et al., 2015; Totsika 
et al., 2018), its redox partner DsbB (Figure 1A; Landeta et al., 2015) or both (Halili et al., 2015). 
These studies have made the first steps toward the production of chemical compounds that inhibit the 
function of the DSB proteins, providing us with a laboratory tool to test our approach against AMR.

4,5- Dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one, termed ‘compound 12’ in Landeta et al. (Landeta 
et al., 2015) is a potent laboratory inhibitor of E. coli DsbB and its analogues from closely related 
organisms. Using this molecule, we could chemically inhibit the function of the DSB system. We first 
tested the motility of E. coli MC1000 in the presence of the inhibitor and found that cells were signifi-
cantly less motile (Figure 5AB), consistent with the fact that impairing DSB function prevents the 
formation of the flagellar P- ring component FlgI (Dailey and Berg, 1993; Hizukuri et  al., 2006). 
Furthermore, we directly assessed the redox state of DsbA in the presence of ‘compound 12’ to probe 
whether it was being re- oxidized by DsbB, a necessary step that occurs after each round of oxidative 
protein folding and allows DsbA to remain active (Figure 1A). Under normal growth conditions, DsbA 
was in its active oxidized form in the bacterial periplasm (i.e. C30 and C33 form a disulfide bond), 
showing that it was efficiently regenerated by DsbB (Kishigami et al., 1995; Figure 5C). By contrast, 
addition of the inhibitor to growing E. coli MC1000 cells resulted in accumulation of inactive reduced 
DsbA, thus confirming that DsbB function was impeded (Figure 5C).

After testing the efficacy of the DsbB inhibitor, we proceeded to examine whether chemical inhibi-
tion of the DSB system could be used to broadly impair the function of AMR determinants. We deter-
mined MIC values for the latest generation β-lactam that each β-lactamase can hydrolyze, or colistin, 
for our panel of E. coli MC1000 strains and found that addition of the compound during MIC testing 
phenocopied the effects of a dsbA deletion on β-lactamase and MCR activity (Figure 5DE, Figure 5—
figure supplement 1, Supplementary file 2b). The observed effects are not a result of altered cell 
growth, as addition of the compound does not affect the growth profile of the bacteria (Figure 5—
figure supplement 2A), in agreement with the fact that deletion of dsbA does not affect cell viability 
(Figure 5—figure supplement 2B). Furthermore, the changes in the recorded MIC values are due 
solely to inhibition of the DSB system as no additive effects on MIC values were observed when the 
dsbA mutant harboring a β-lactamase or mcr gene was exposed to the compound (Figure 5—figure 
supplement 3).

Having shown that the DSB system is a tractable target in the context of AMR, we examined the 
effect of chemical inhibition on several species of β-lactamase- expressing Enterobacteria (Suppemen-
tary Table 1 in Supplementary file 3). We chose to test organisms that pose significant clinical or 
societal challenges, such as the ESKAPE pathogens Klebsiella pneumoniae and Enterobacter cloacae 

β-lactams and colistin, respectively. Absence of DsbA has also a general effect on proteostasis in the cell envelope which results in reduced clearance of 
nonfunctional AcrA- like proteins (termed ‘AcrA’ and depicted in dark red color) by periplasmic proteases. Insufficient clearance of these damaged AcrA 
components from the pump complex makes efflux less efficient.

The online version of this article includes the following source data for figure 4:

Source data 1. Original files of the full raw unedited immunoblots used to prepare Figure 4A.

Source data 2. Uncropped immunoblots used to prepare Figure 4A.

Source data 3. Original files of the full raw unedited immunoblots used to prepare Figure 4B.

Source data 4. Uncropped immunoblots used to prepare Figure 4B.

Source data 5. Original files of the full raw unedited immunoblots used to prepare Figure 4C.

Source data 6. Uncropped immunoblots used to prepare Figure 4C.

Figure 4 continued
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Figure 5. Chemical inhibition of the DSB system impedes DsbA function in E. coli MC1000 and phenocopies the β- lactam and colistin MIC changes that 
were observed using a dsbA mutant. (A) Chemical inhibition of the DSB system impedes flagellar motility in E. coli MC1000. A functional DSB system 
is necessary for flagellar motility in E. coli because folding of the P- ring component FlgI requires DsbA- mediated disulfide bond formation (Dailey and 
Berg, 1993). In the absence of DsbA, or upon addition of a chemical inhibitor of the DSB system, the motility of E. coli MC1000 is significantly impeded. 
Representative images of motility plates are shown. (B) Quantification of the growth halo diameters in the motility assays shown in panel (A). n = 3 (each 
conducted as a single technical repeat), graph shows means ± SD, significance is indicated by **** = p < 0.0001. (C) Chemical inhibition of the DSB 
system impedes DsbA re- oxidation in E. coli MC1000. Addition of the reducing agent DTT to E. coli MC1000 bacterial lysates allows the detection of 
DsbA in its reduced form (DsbAred) during immunoblotting; this redox state of the protein, when labeled with the cysteine- reactive compound AMS, 
shows a 1 kDa size difference (lane 2) compared to oxidized DsbA as found in AMS- labeled but not reduced lysates of E. coli MC1000 (lane 3). Addition 
of a small- molecule inhibitor of DsbB to growing E. coli MC1000 cells also results in accumulation of reduced DsbA (lane 4). E. coli MC1000 dsbA was 
used as a negative control for DsbA detection (lane 1). A representative blot from two biological experiments, each conducted as a single technical 
repeat, is shown; DsbA was visualized using an anti- DsbA primary antibody and an AP- conjugated secondary antibody. Molecular weight markers 
(M) are shown on the left. (D) MIC experiments using representative β-lactam antibiotics show that chemical inhibition of the DSB system reduces the 
MIC values for E. coli MC1000 expressing disulfide- bond- containing β-lactamases in a similar manner to the deletion of dsbA (compare with Figure 1B). 
Graphs show MIC fold changes (i.e. MC1000 MIC (µg/mL) / MC1000 + DSB system inhibitor MIC (µg/mL)) for β-lactamase- expressing E. coli MC1000 
with and without addition of a DSB system inhibitor to the culture medium from two biological experiments, each conducted as a single technical 
repeat. Black dotted lines indicate an MIC fold change of 2. The aminoglycoside antibiotic gentamicin serves as a control for all strains; gentamicin 
MIC values (white bars) are unaffected by chemical inhibition of the DSB system (MIC fold changes: < 2). No changes in MIC values (MIC fold changes: 
< 2) are observed for strains harboring the empty vector control (pDM1) or expressing the class A β-lactamase L2- 1, which contains three cysteines 
but no disulfide bond (PDB ID: 1O7E) (top row). The MIC values used to generate this panel are presented in Supplementary file 2b. (E) Colistin MIC 
experiments show that chemical inhibition of the DSB system reduces the MIC values for E. coli MC1000 expressing MCR enzymes in a similar manner 
to the deletion of dsbA (compare with Figure 1C). Colistin MIC values for strains harboring the empty vector control (pDM1) are unaffected by chemical 

Figure 5 continued on next page
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(Mulani et al., 2019), or drug- resistant E. coli strains, which account for 50% of the economic burden 
of resistant infections (O’Neill, 2014). DSB system inhibition in a clinical isolate of K. pneumoniae 
expressing KPC- 2 sensitized the strain to imipenem as defined by EUCAST breakpoints (Figure 6A). 
The efficiency of this double treatment is evident from scanning electron micrographs of the tested 
strains (Figure 6B). Addition of either the DSB system inhibitor or imipenem alone does not cause any 

inhibition of the DSB system. Graphs show MIC values (µg/mL) from four biological experiments, each conducted in technical quadruplicate, to 
demonstrate the robustness of the observed effects.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Original file of the full raw unedited immunoblot used to prepare Figure 5C, for which an anti- DsbA antibody was used.

Source data 2. Uncropped immunoblot used to prepare Figure 5C.

Figure supplement 1. Gentamicin MIC values for E. coli MC1000 strains expressing MCR enzymes.

Figure supplement 2. Chemical inhibition of the DSB system or deletion of dsbA does not compromise the growth of E. coli MC1000.

Figure supplement 3. Changes in MIC values observed using the DSB system inhibitor are due solely to inhibition of the DSB system.

Figure 5 continued

Figure 6. Chemical inhibition of the DSB system sensitizes multidrug- resistant clinical isolates to currently available β-lactam antibiotics. (A) Addition 
of a small- molecule inhibitor of DsbB results in sensitization of a K. pneumoniae clinical isolate to imipenem. (B) Chemical inhibition of the DSB system 
in the presence of imipenem (final concentration of 6 μg/mL) results in drastic changes in cell morphology for the K. pneumoniae clinical isolate 
used in panel (A), while bacteria remain unaffected by single treatments (DSB inhibitor or imipenem). Images show representative scanning electron 
micrographs of untreated cells (top row, left), cells treated with the DSB inhibitor (top row, middle), cells treated with imipenem (top row, right), and cells 
treated with both the DSB inhibitor and imipenem (bottom row). Scale bars are at 400 nm. (C) Addition of a small- molecule inhibitor of DsbB results in 
sensitization of E. coli and C. freundii clinical isolates to imipenem. (D) Chemical inhibition of the DSB system of an E. cloacae clinical isolate harboring 
blaFRI- 1 results in reduction of the aztreonam MIC value by over 180 µg/mL, resulting in intermediate resistance as defined by EUCAST. For panels 
(A), (C) and (D) graphs show MIC values (μg/ml) from two biological experiments, each conducted as a single technical repeat. MIC values determined 
using Mueller- Hinton agar (MHA) in accordance with the EUCAST guidelines (dark blue bars) are comparable to the values obtained using defined 
media (M63 agar, white bars); use of growth media lacking small- molecule oxidants is required for the DSB system inhibitor to be effective. Red dotted 
lines indicate the EUCAST clinical breakpoint for each antibiotic, and purple dotted lines indicate the EUCAST threshold for intermediate resistance.

https://doi.org/10.7554/eLife.57974
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changes in the morphology of K. pneumoniae cells, which remain healthy and dividing (Figure 6B, top 
row). By contrast, the combination of the inhibitor with imipenem (added at a sub- MIC final concentra-
tion of 6 µg/mL), led to dramatic changes in the appearance of the cells, whose integrity was entirely 
compromised (Figure 6B, bottom row). Similarly, E. coli and Citrobacter freundii isolates expressing 
KPC- 2, including multidrug- resistant strains, also showed clinically relevant decreases in their MIC 
values for imipenem that resulted in sensitization when their DSB system was chemically inhibited 
(Figure 6C). For an E. cloacae isolate expressing FRI- 1, chemical inhibition of DsbA caused reduction 
in its aztreonam MIC value by over 180 µg/mL, resulting in intermediate resistance as defined by 
EUCAST breakpoints (Figure 6D).

Along with β-lactamase- expressing strains, we also tested the effect of DsbA inhibition on MCR- 
producing clinical isolates. We found that combination of the DSB system inhibitor with colistin led 
to reduction of the colistin MIC and sensitization of MCR- 1- expressing multidrug- resistant E. coli 
(Figure 7A). In agreement with this, SEM images of this strain after combination treatment using 
sub- MIC amounts of colistin (final concentration of 2 µg/mL) revealed drastic changes in morphology, 
whereby cells blebbed intensely or their contents leaked out (Figure 7B). We tested eight additional 
clinical E. coli isolates that encode diverse MCR enzymes (most of which are multidrug resistant) and 
have colistin MICs ranging from 3 to 16 µg/mL; DSB system inhibition also allowed sensitization to 
colistin (Figure 7C) for tested strains. At the same time, we were able to show that DSB system inhi-
bition in E. coli CNR1790 (i.e. the clinical isolate expressing both MCR- 1 and the ESBL TEM- 15 that 
was sensitized to colistin in Figure 7A), led to a decrease in its ceftazidime MIC, resulting in interme-
diate resistance (Figure 7D). While we did not test the dependence of TEM enzymes on DsbA in our 
panel of E. coli K- 12 strains, we chose to test the effects of DSB system inhibition on E. coli CNR1790 
because we posited that the disulfide bond in TEM- 15 may be important for its function, based on the 
fact that the narrow- spectrum TEM- 1 enzyme has been shown to be reliant on its disulfide under stress 
conditions (Schultz et al., 1987). Validation of our hypothesis provides evidence that DsbA inhibition 
can improve the resistance profile of the same isolate both for β-lactam (Figure 7D) and polymyxin 
(Figure 7A) antibiotics. Together these results, obtained using multiple clinical strains from several 
bacterial species, provide further proof of the significance of our data from heterologously expressed 
β-lactamase and MCR enzymes in E. coli K- 12 strains (Figure 1BC), and showcase the potential of this 
approach for clinical applications.

To determine if our approach for Enterobacteria would be appropriate for other multidrug- resistant 
Gram- negative bacteria, we tested it on another major ESKAPE pathogen, Pseudomonas aerugi-
nosa (Mulani et  al., 2019). This bacterium has two DsbB analogues which are functionally redun-
dant (Arts et al., 2013). The chemical inhibitor used in this study has been shown to be effective 
against DsbB1, but much less effective against DsbB2 of P. aeruginosa PA14 (Landeta et al., 2015), 
making it unsuitable for MIC assays on P. aeruginosa clinical isolates. Nonetheless, deletion of dsbA1 
in a multidrug- resistant P. aeruginosa clinical isolate expressing OXA- 198 (PA43417), led to sensitiza-
tion of this strain to the antipseudomonal β-lactam piperacillin (Figure 8A). In addition, we deleted 
dsbA1 in the multidrug- resistant P. aeruginosa PAe191 strain that produces OXA- 19, a member of 
the OXA- 10 phylogenetic family (Supplementary file 1) and the most disseminated OXA enzyme in 
clinical strains (Mugnier et al., 1998). In this case, absence of DsbA caused a drastic reduction in the 
ceftazidime MIC value by over 220 µg/mL, and sensitized the strain to aztreonam (Figure 8B). These 
results suggest that targeting disulfide bond formation could be useful for the sensitization of many 
more clinically important Gram- negative species.

Finally, to test our approach in an infection context we performed in vivo survival assays using the 
wax moth model Galleria mellonella (Figure 8C). G. mellonella has proven to be an invaluable non- 
vertebrate model for the study of P. aeruginosa pathogenesis as well as for testing antibiotic treat-
ments against this organism (Hill et al., 2014; Miyata et al., 2003), making it an appropriate tool for 
assessing the in vivo efficacy of our approach on a multidrug- resistant strain of this pathogen. Larvae 
were infected with the P. aeruginosa PAe191 strain producing OXA- 19, and its dsbA1 mutant, and 
infections were treated once with ceftazidime at a final concentration below the EUCAST breakpoint. 
No larvae survived beyond 18 hr post infection with P. aeruginosa PAe191, even when treatment with 
ceftazidime was performed (Figure 8C, blue and red survival curves). Deletion of dsbA1 resulted in 
80% mortality of the larvae at 50 hr post infection (Figure 8C, light blue survival curve); this increase in 
survival compared to larvae infected with P. aeruginosa PAe191 is due to the fact that absence of the 
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Figure 7. Chemical inhibition of the DSB system sensitizes multidrug- resistant clinical isolates to colistin. (A) Addition of a small- molecule inhibitor of 
DsbB to a colistin- resistant clinical E. coli isolate expressing MCR- 1 results in sensitization to colistin. (B) Chemical inhibition of the DSB system in the 
presence of colistin (final concentration of 2 μg/mL) results in drastic changes in cell morphology for the E. coli clinical isolate used in panel (A), while 
bacteria remain unaffected by single treatments (DSB inhibitor or colistin). Images show representative scanning electron micrographs of untreated 
cells (top row, left), cells treated with the DSB inhibitor (top row, middle), cells treated with colistin (top row, right), and cells treated with both the 
DSB inhibitor and colistin (bottom row). Scale bars are at 400 nm. (C) Chemical inhibition of the DSB system results in sensitization of four additional 
colistin- resistant E. coli strains expressing MCR enzymes. For panels (A) and (C), graphs show MIC values (µg/mL) from four biological experiments, each 
conducted in technical quadruplicate, to demonstrate the robustness of the observed effects. (D) Use of the DSB system inhibitor on the same clinical 
E. coli isolate tested in panel (A), results in intermediate resistance for ceftazidime as defined by EUCAST. The graph shows MIC values (μg/ml) from two 
biological experiments, each conducted as a single technical repeat. For panels (A), (C), (D), MIC values determined using Mueller- Hinton agar (MHA) 
in accordance with the EUCAST guidelines (dark blue bars) are comparable to the values obtained using defined media (M63 agar, white bars); use 
of growth media lacking small- molecule oxidants is required for the DSB system inhibitor to be effective. For all panels, red dotted lines indicate the 
EUCAST clinical breakpoint for each antibiotic, and purple dotted lines indicate the EUCAST threshold for intermediate resistance.
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principal DsbA protein likely affects the virulence of the pathogen (Landeta et al., 2019). Nonethe-
less, treatment of the dsbA1 mutant with ceftazidime resulted in a significant increase in survival (17% 
mortality) compared to the untreated condition, 50 hr post infection (Figure 8C, compare the light 
blue and pink survival curves). This improvement in survival is even more noticeable if one compares 
the survival of larvae treated with ceftazidime after infection with P. aeruginosa PAe191 versus infec-
tion with P. aeruginosa PAe191 dsbA1 (Figure 8C, compare the red and pink survival curves). Since 
OXA- 19, in this case produced by a multi- drug resistant clinical strain (Supplementaty Table 1 in 
Supplementary file 3, Figure 8B), is a broad- spectrum β-lactamase that cannot be neutralized by 
classical β-lactamase inhibitors (Table 1), these results further highlight the promise of our approach 
for future clinical applications.

Discussion
This work is one of the first reports of a strategy capable of simultaneously impairing multiple types of 
AMR determinants by compromising the function of a single target. By inhibiting DsbA, a non- essential 
cell envelope protein which is unique to bacteria, we can inactivate diverse resistance enzymes and 
sensitize critically important pathogens to several existing antibiotics. This proof of principle will hope-
fully further incentivize the development of DsbA inhibitors and open new avenues toward the incep-
tion of novel adjuvants that will help reverse AMR in Gram- negative organisms.

We have shown that targeting DsbA incapacitates broad- spectrum β-lactamases from three of the 
four Ambler classes (class A, B and D, Figure 1B). This includes enzymes that are not susceptible to 
classical β-lactamase inhibitors (Table 1), such as members of the KPC and OXA families, as well as 
metallo-β-lactamases like L1- 1 from the often pan- resistant organism Stenotrophomonas maltophilia. 
The function of these proteins is impaired without a small molecule binding to their active site, unlike 
most of the currently- used β-lactamase inhibitors which often generate resistance (Laws et al., 2019). 
As DsbA dependence is conserved within phylogenetic groups (Figure 1—figure supplement 2), 

Figure 8. Absence of the principal DsbA analogue (DsbA1) from P. aeruginosa clinical isolates expressing OXA enzymes sensitizes them to existing 
β-lactam antibiotics and dramatically increases the survival of infected G. mellonella larvae that undergo antibiotic treatment. (A) Absence of DsbA1 
sensitizes the P. aeruginosa PA43417 clinical isolate expressing OXA- 198 to the first- line antibiotic piperacillin. (B) Absence of DsbA1 sensitizes the P. 
aeruginosa PAe191 clinical isolate expressing OXA- 19 to aztreonam and results in reduction of the ceftazidime MIC value by over 220 µg/mL. For panels 
(A) and (B) the graphs show MIC values (μg/ml) from two biological experiments, each conducted as a single technical repeat; red dotted lines indicate 
the EUCAST clinical breakpoint for each antibiotic. (C) 100% of the G. mellonella larvae infected with P. aeruginosa PAe191 (blue curve) or infected with 
P. aeruginosa PAe191 and treated with 7.5 µg/mL ceftazidime (red curve) die 18 hr post infection, and only 20% of the larvae infected with P. aeruginosa 
PAe191 dsbA1 (light blue curve) survive 50 hr post infection. Treatment of larvae infected with P. aeruginosa PAe191 dsbA1 with 7.5 µg/mL ceftazidime 
(pink curve) results in 83% survival, 50 hr post infection. The graph shows Kaplan- Meier survival curves of infected G. mellonella larvae after different 
treatment applications; horizontal lines represent the percentage of larvae surviving after application of each treatment at the indicated time point (a 
total of 30 larvae were used for each curve). Statistical analysis of this data was performed using a Mantel- Cox test; n = 30; p =< 0.0001 (significance) (P. 
aeruginosa versus P. aeruginosa dsbA1), p > 0.9999 (non- significance) (P. aeruginosa vs P. aeruginosa treated with ceftazidime), p =< 0.0001 (significance) 
(P. aeruginosa treated with ceftazidime versus P. aeruginosa dsbA1), p =< 0.0001 (significance) (P. aeruginosa dsbA1 versus P. aeruginosa dsbA1 treated 
with ceftazidime).
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based on the number of enzymes belonging to the same phylogenetic family as the β-lactamases 
tested in this study (Supplementary file 1), we anticipate that a total of 195 discrete enzymes rely on 
DsbA for their stability and function, 84 of which cannot be inhibited by classical adjuvant approaches. 
DsbA is widely conserved (Heras et al., 2009), thus targeting the DSB system should not only compro-
mise β-lactamases in Enterobacteria but, as demonstrated by our experiments using P. aeruginosa 
clinical isolates (Figure 8), could also be a promising avenue for impairing the function of AMR deter-
minants expressed by other highly- resistant Gram- negative organisms. As such, together with the fact 
that approximately 56% of the β-lactamase phylogenetic families found in pathogens and organisms 
capable of causing opportunistic infections contain enzymes with two or more cysteines (Supplemen-
tary file 1), we expect many more clinically relevant β-lactamases, beyond those already tested in this 
study, to depend on DsbA.

MCR enzymes are rapidly becoming a grave threat to the use of colistin (Sun et  al., 2018), a 
drug of last resort often needed for the treatment of multidrug- resistant infections (Li et al., 2006). 
Currently, experimental inhibitors of these proteins are sparse and poorly characterized (Zhou et al., 
2019), and only one existing compound, the antirheumatic drug auranofin, seems to successfully 
impair MCR enzymes, through displacement of their zinc cofactor (Sun et  al., 2020). As all MCR 
members contain multiple disulfide bonds, inhibition of the DSB system provides a broadly applicable 
solution for reversing MCR- mediated colistin resistance (Figures 1C, 5E and 7ABC) that would likely 
extend to novel MCR proteins that may emerge in the future. Since the decrease in colistin MIC values 
upon dsbA deletion (Figure 1C) or DsbB inhibition (Figures 5E and 7ABC) is modest, this phenotype 
cannot be used in future screens aiming to identify DsbA inhibitors, because such applications require 
a larger than 4- fold decrease in recorded MIC values to reliably identify promising lead compounds. 
Nonetheless, our findings in this study clearly demonstrate that absence of DsbA results in degrada-
tion of MCR enzymes and abrogation of their function (Figure 3), which, in turn, leads to sensitization 
of all tested E. coli clinical isolates to colistin (Figure 7). This adds to other efforts aiming to reduce 
the colistin MIC of polymyxin resistant strains (Minrovic et al., 2019; Zimmerman et al., 2020). As 
such, if a clinically useful DsbA inhibitor were to become available, it would be valuable to test its 
efficacy against large panels of MCR- expressing clinical strains, as it might offer a new way to bypass 
MCR- mediated colistin resistance.

No clinically applicable efflux pump inhibitors have been identified to date (Sharma et al., 2019) 
despite many efforts to target these macromolecular assemblies as a way to overcome intrinsic resis-
tance. While deletion of dsbA sensitizes the tested E. coli strain to chloramphenicol, the overall effects 
of DsbA absence on efflux function are modest at best (Figure 1D). That said, our investigation of 
the relationship between DsbA- mediated proteostasis and pump function (Figure 4A–C) highlights 
the importance of other cell envelope proteins responsible for protein homeostasis, such as DegP, for 
bacterial efflux. Since the cell envelope contains multiple protein folding catalysts (Goemans et al., 
2014), it would be worth testing if other redox proteins, chaperones, or proteases could be targeted 
to indirectly compromise efflux pumps.

More generally, our findings demonstrate that cell envelope proteostasis pathways have signif-
icant, yet untapped, potential for the development of novel antibacterial strategies. The example 
of the DSB system presented here is particularly telling. This pathway, initially considered merely a 
housekeeping system (Kadokura et al., 2003), plays a major role in clinically relevant bacterial niche 
adaptation. In addition to assisting the folding of 40% of the cell- envelope proteome (Dutton et al., 
2008; Vertommen et al., 2008), the DSB system is essential for virulence (Heras et al., 2009; Landeta 
et al., 2018), has a key role in the formation and awakening of bacterial persister cells (Wilmaerts 
et al., 2019) and, as seen in this work, is required for bacterial survival in the presence of widely used 
antibiotic compounds. As shown in our in vivo experiments (Figure  8C), targeting such a system 
in Gram- negative pathogens could lead to adjuvant approaches that inactivate AMR determinants 
whilst simultaneously incapacitating an arsenal of virulence factors. Therefore, this study not only lays 
the groundwork for future clinical applications, such as the development of broad- acting antibiotic 
adjuvants, but also serves as a paradigm for exploiting other accessible cell envelope proteostasis 
processes for the design of next- generation therapeutics.
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Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Escherichia coli) DH5α

Hanahan and Glover, 
1985

F– endA1 glnV44 thi-1 recA1 
relA1 gyrA96 deoR nupG purB20 
φ80dlacZ∆M15 ∆(lacZYA- 
argF)U169 hsdR17(rK

–mK
+) λ– -

Genetic reagent
(Escherichia coli) CC118λpir Herrero et al., 1990

araD ∆(ara, leu) ∆lacZ74 phoA20 
galK thi-1 rspE rpoB argE recA1 
λpir -

Genetic reagent
(Escherichia coli) HB101

Boyer and Roulland- 
Dussoix, 1969

supE44 hsdS20 recA13 ara- 14 
proA2 lacY1 galK2 rpsL20 xyl- 5 
mtl-1 -

Genetic reagent
(Escherichia coli) MC1000

Casadaban and 
Cohen, 1980

araD139 ∆(ara, leu)7697 ∆lacX74 
galU galK strA -

Genetic reagent
(Escherichia coli) MC1000 dsbA

Kadokura et al., 
2004 dsbA::aphA, KanR -

Genetic reagent
(Escherichia coli)

MC1000 dsbA attTn7::Ptac- 
dsbA This study dsbA::aphA attTn7::dsbA, KanR

Can be obtained from the 
Mavridou lab

Genetic reagent
(Escherichia coli) MG1655 Blattner et al., 1997 K- 12 F– λ– ilvG– rfb-50 rph-1 -

Genetic reagent
(Escherichia coli) MG1655 dsbA This study dsbA::aphA, KanR

Can be obtained from the 
Mavridou lab

Genetic reagent
(Escherichia coli)

MG1655 dsbA attTn7::Ptac- 
dsbA This study dsbA::aphA attTn7::dsbA, KanR

Can be obtained from the 
Mavridou lab

Genetic reagent
(Escherichia coli) MG1655 acrA This study acrA

Can be obtained from the 
Mavridou lab

Genetic reagent
(Escherichia coli) MG1655 tolC This study tolC

Can be obtained from the 
Mavridou lab

Genetic reagent
(Escherichia coli) MG1655 degP This study degP::strAB, StrR

Can be obtained from the 
Mavridou lab

Strain, strain 
background (Escherichia 
coli) BM16 Dortet et al., 2014 blaTEM- 1bblaKPC-2 Human clinical strain

Strain, strain 
background (Escherichia 
coli) LIL- 1 Dortet et al., 2014 blaTEM- 1blaOXA- 9 blaKPC- 2 Human clinical strain

Strain, strain 
background (Escherichia 
coli) CNR1790 Dortet et al., 2018 blaTEM- 15 mcr- 1 Human clinical strain

Strain, strain 
background (Escherichia 
coli) CNR20140385 Dortet et al., 2018 blaOXA- 48mcr- 1 Human clinical strain

Strain, strain 
background (Escherichia 
coli) WI2 (ST1288)

Beyrouthy et al., 
2017 blaOXA- 48blaKPC- 28 mcr- 1 Human clinical strain

Strain, strain 
background (Escherichia 
coli) 1073944 (ST117) Wise et al., 2018 mcr- 1 Human clinical strain

https://doi.org/10.7554/eLife.57974
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Escherichia 
coli) 41,489 Dortet et al., 2018 mcr- 1 Human clinical strain

Strain, strain 
background (Escherichia 
coli) - Dortet et al., 2018 mcr- 1 Human clinical strain

Strain, strain 
background (Escherichia 
coli) 1256822 (ST48) Wise et al., 2018 mcr- 1.5 Human clinical strain

Strain, strain 
background (Escherichia 
coli) 27,841 (ST744) Haenni et al., 2018 blaCTX- M- 55mcr- 3.2 Environmental strain from livestock

Strain, strain 
background (Escherichia 
coli) 1144230 (ST641) Wise et al., 2018 blaCMY- 2mcr- 5 Human clinical strain

Strain, strain 
background (Klebsiella 
pneumoniae) ST234

Nordmann et al., 
2012 blaSHV- 27blaKPC- 2 Human clinical strain

Strain, strain 
background 
(Citrobacter freundii) BM19 Dortet et al., 2014 blaKPC- 2 Human clinical strain

Strain, strain 
background 
(Enterobacter cloacae) DUB Dortet et al., 2015 blaFRI- 1 Human clinical strain

Strain, strain 
background 
(Pseudomonas 
aeruginosa) PA43417 El Garch et al., 2011 blaOXA- 198 Human clinical strain

Genetic reagent 
(Pseudomonas 
aeruginosa) PA43417 This study dsbA1 blaOXA- 198

Can be obtained from the 
Mavridou lab

Strain, strain 
background 
(Pseudomonas 
aeruginosa) PAe191 Mugnier et al., 1998 blaOXA- 19 Human clinical strain

Genetic reagent 
(Pseudomonas 
aeruginosa) PAe191 This study dsbA1 blaOXA- 19

Can be obtained from the 
Mavridou lab

Recombinant DNA 
reagent pDM1 (plasmid) Lab stock GenBank MN128719

pDM1 vector, p15A ori, Ptac 
promoter, MCS, TetR

Recombinant DNA 
reagent pDM1- blaL2- 1 (plasmid) This study -

blaL2- 1 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaGES- 1 (plasmid) This study -

blaGES- 1 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaGES- 2 (plasmid) This study -

blaGES- 2 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaGES- 11 (plasmid) This study -

blaGES- 11 cloned into pDM1, TetR; 
can be obtained from the Mavridou 
lab

Recombinant DNA 
reagent pDM1- blaSHV- 27 (plasmid) This study -

blaSHV- 27 cloned into pDM1, TetR; 
can be obtained from the Mavridou 
lab
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent pDM1- blaOXA- 4 (plasmid) This study -

blaOXA- 4 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaOXA- 10 (plasmid) This study -

blaOXA- 10 cloned into pDM1, TetR; 
can be obtained from the Mavridou 
lab

Recombinant DNA 
reagent pDM1- blaOXA- 198 (plasmid) This study -

blaOXA- 198 cloned into pDM1, TetR; 
can be obtained from the Mavridou 
lab

Recombinant DNA 
reagent pDM1- blaFRI- 1 (plasmid) This study -

blaFRI- 1 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaL1- 1 (plasmid) This study -

blaL1- 1 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaKPC- 2 (plasmid) This study -

blaKPC- 2 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaKPC- 3 (plasmid) This study -

blaKPC- 3 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaSME- 1 (plasmid) This study -

blaSME- 1 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 1 (plasmid) This study -

mcr- 1 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 3 (plasmid) This study -

mcr- 3 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 4 (plasmid) This study -

mcr- 4 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 5 (plasmid) This study -

mcr- 5 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 8 (plasmid) This study -

mcr- 8 cloned into pDM1, TetR; can 
be obtained from the Mavridou lab

Recombinant DNA 
reagent pDM1- blaL2- 1- StrepII (plasmid) This study -

blaL2- 1 encoding L2- 1 with a C- 
terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1- blaGES- 1- StrepII (plasmid) This study -

blaGES- 1 encoding GES- 1 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1- StrepII- blaOXA- 4 (plasmid) This study -

blaOXA- 4 encoding OXA- 4 with an 
N- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1- blaOXA- 10- StrepII (plasmid) This study -

blaOXA- 10 encoding OXA- 10 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1- blaOXA- 198- StrepII (plasmid) This study -

blaOXA- 198 encoding OXA- 198 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1- blaFRI- 1- StrepII (plasmid) This study -

blaFRI- 1 encoding FRI- 1 with a C- 
terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent pDM1- blaL1- 1- StrepII (plasmid) This study -

blaL1- 1 encoding L1- 1 with a C- 
terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1- blaKPC- 3- StrepII (plasmid) This study -

blaKPC- 3 encoding KPC- 3 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 1- StrepII (plasmid) This study -

blaMCR- 1 encoding MCR- 1 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 3- StrepII (plasmid) This study -

blaMCR- 3 encoding MCR- 3 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 4- StrepII (plasmid) This study -

blaMCR- 4 encoding MCR- 4 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 5- StrepII (plasmid) This study -

blaMCR- 5 encoding MCR- 5 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pDM1-mcr- 8- StrepII (plasmid) This study -

blaMCR- 8 encoding MCR- 8 with a 
C- terminal StrepII tag cloned into 
pDM1, TetR; can be obtained from 
the Mavridou lab

Recombinant DNA 
reagent pGRG25 (plasmid)

McKenzie and Craig, 
2006 -

Encodes a Tn7 transposon and 
tnsABCD under the control of 
ParaB, thermosensitive pSC101 ori, 
AmpR

Recombinant DNA 
reagent pGRG25- Ptac::dsbA (plasmid) This study -

Ptac::dsbA fragment cloned within 
the Tn7 of pGRG25; when inserted 
into the chromosome and the 
plasmid cured, the strain expresses 
DsbA upon IPTG induction, AmpR; 
can be obtained from the Mavridou 
lab

Recombinant DNA 
reagent pSLTS (plasmid) Kim et al., 2014 -

Thermosensitive pSC101ori, ParaB 
for λ-Red, PtetR for I- SceI, AmpR

Recombinant DNA 
reagent pUltraGFP- GM (plasmid)

Mavridou et al., 
2016 -

Constitutive sfGFP expression from 
a strong Biofab promoter, p15A ori, 
(template for the accC cassette), 
GentR

Recombinant DNA 
reagent pKD4 (plasmid)

Datsenko and 
Wanner, 2000 -

Conditional oriRγ ori, (template for 
the aphA cassette), AmpR

Recombinant DNA 
reagent pCB112 (plasmid)

Paradis- Bleau et al., 
2014 -

Inducible lacZ expression under 
the control of the Plac promoter, 
pBR322 ori, CamR

Recombinant DNA 
reagent pKNG101 (plasmid) Kaniga et al., 1991 -

Gene replacement suicide vector, 
oriR6K, oriTRK2, sacB, (template for 
the strAB cassette), StrR
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent pKNG101-dsbA1 (plasmid) This study -

PCR fragment containing the 
regions upstream and downstream 
P. aeruginosa dsbA1 cloned in 
pKNG101; when inserted into 
the chromosome the strain is a 
merodiploid for dsbA1 mutant, 
StrR; can be obtained from the 
Mavridou lab

Recombinant DNA 
reagent pRK600 (plasmid) Kessler et al., 1992 -

Helper plasmid, ColE1 ori, 
mobRK2, traRK2, CamR

Recombinant DNA 
reagent pMA- T mcr- 3 (plasmid) This study -

GeneArt cloning vector containing 
mcr- 3, ColE1 ori, (template for mcr- 
3), AmpR; can be obtained from the 
Mavridou lab

Recombinant DNA 
reagent pMK- T mcr- 8 (plasmid) This study -

GeneArt cloning vector containing 
mcr- 8, ColE1 ori, (template for mcr- 
8), KanR; can be obtained from the 
Mavridou lab

Chemical compound, 
drug Ampicillin Melford A40040- 10.0 -

Chemical compound, 
drug Piperacillin Melford P55100- 1.0 -

Chemical compound, 
drug Cefuroxime Melford C56300- 1.0 -

Chemical compound, 
drug Ceftazidime Melford C59200- 5.0 -

Chemical compound, 
drug Imipenem

Cambridge 
Bioscience CAY16039- 100 mg -

Chemical compound, 
drug Aztreonam

Cambridge 
Bioscience CAY19784- 100 mg -

Chemical compound, 
drug Kanamycin Gibco 11815032 -

Chemical compound, 
drug Gentamicin VWR A1492.0025 -

Chemical compound, 
drug Streptomycin ACROS Organics AC612240500 -

Chemical compound, 
drug Tetracycline Duchefa Biochemie T0150.0025 -

Chemical compound, 
drug Colistin sulphate Sigma C4461- 1G -

Chemical compound, 
drug Tazobactam Sigma T2820- 10MG -

Chemical compound, 
drug

Isopropyl β-D- 1- 
thiogalactopyranoside (IPTG) Melford I56000- 25.0 -

Chemical compound, 
drug KOD Hotstart DNA Polymerase Sigma 71086–3 -

Chemical compound, 
drug Nitrocefin Abcam ab145625- 25mg -

Chemical compound, 
drug

1- N- phenylnaphthylamine 
(NPN) Acros Organics 147160250 -
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Chemical compound, 
drug

4- acetamido- 4ˊ-maleimidyl- 
stilbene- 2,2ˊ-disulfonic acid 
(AMS)

ThermoFisher 
Scientific A485 -

Chemical compound, 
drug

4,5- dichloro- 2- (2- chlorobenzyl)
pyridazin- 3- one Enamine EN300- 173996 -

Commercial assay or kit BugBuster Mastermix Sigma 71456–3 -

Commercial assay or kit

Novex ECL HRP 
chemiluminescent substrate 
reagent kit

ThermoFisher 
Scientific WP20005 -

Commercial assay or kit SigmaFast BCIP/NBT tablets Sigma B5655- 25TAB -

Commercial assay or kit
Immobilon Crescendo 
chemiluminescent reagent Sigma WBLUR0100 -

Commercial assay or kit ETEST - Amoxicillin Biomerieux 412,242 -

Commercial assay or kit ETEST - Cefuroxime Biomerieux 412,304 -

Commercial assay or kit ETEST - Ceftazidime Biomerieux 412,292 -

Commercial assay or kit ETEST - Imipenem Biomerieux 412,373 -

Commercial assay or kit ETEST - Aztreonam Biomerieux 412,258 -

Commercial assay or kit ETEST - Gentamicin Biomerieux 412,367 -

Commercial assay or kit ETEST - Erythromycin Biomerieux 412,333 -

Commercial assay or kit ETEST - Chloramphenicol Biomerieux 412,308 -

Commercial assay or kit ETEST - Nalidixic acid Biomerieux 516,540 -

Commercial assay or kit ETEST - Ciprofloxacin Biomerieux 412,310 -

Commercial assay or kit ETEST - Nitrofurantoin Biomerieux 530,440 -

Commercial assay or kit ETEST - Trimethoprim Biomerieux 412,482 -

Antibody
Strep- Tactin- HRP conjugate 
(mouse monoclonal) Iba Lifesciences NC9523094 (1:3,000) in 3 w/v % BSA/TBS- T

Antibody
Strep- Tactin- AP conjugate 
(mouse monoclonal) Iba Lifesciences NC0485490 (1:3,000) in 3 w/v % BSA/TBS- T

Antibody
anti- DsbA
(rabbit polyclonal) Beckwith lab -

(1:1,000) in 5 w/v % skimmed milk/
TBS- T

Antibody
anti- AcrA
(rabbit polyclonal) Koronakis lab -

(1:10,000) in 5 w/v % skimmed milk/
TBS- T

Antibody
anti- TolC
(rabbit polyclonal) Koronakis lab -

(1:5,000) in 5 w/v % skimmed milk/
TBS- T

Antibody
anti- HtrA1 (DegP)
(rabbit polyclonal) Abcam ab231195

(1:1,000) in 5 w/v % skimmed milk/
TBS- T

Antibody
anti- DnaK 8E2/2
(mouse monoclonal) Enzo Life Sciences ADI- SPA- 880- D

(1:10,000) in 5% w/v skimmed milk/
TBS- T

Antibody
anti- rabbit IgG- AP conjugate 
(goat polyclonal) Sigma A3687-.25ML

(1:6,000) in 5% w/v skimmed milk/
TBS- T

Antibody
anti- rabbit IgG- HRP conjugate 
(goat polyclonal) Sigma A0545- 1ML

(1:6,000) in 5% w/v skimmed milk/
TBS- T

Antibody
anti- mouse IgG- AP conjugate 
(goat polyclonal) Sigma A3688-.25ML

(1:6,000) in 5% w/v skimmed milk/
TBS- T

 Continued
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody
anti- mouse IgG- HRP conjugate 
(goat polyclonal) Sigma A4416-.5ML

(1:6,000) in 5% w/v skimmed milk/
TBS- T

Software, algorithm FlowJo Tree Star - version 10.0.6

Software, algorithm Adobe Photoshop CS4 Adobe - extended version 11.0

Software, algorithm Prism GraphPad - version 8.0.2

Software, algorithm blastp Altschul et al., 1990 - version 2.2.28+

Software, algorithm USEARCH Edgar, 2010 - version 7.0

Software, algorithm MUSCLE Edgar, 2004 - -

Software, algorithm FastTree Price et al., 2010 - version 2.1.7

Software, algorithm HMMER Finn et al., 2015 - version 3.1b2

 Continued

Reagents and bacterial growth conditions
Unless otherwise stated, chemicals and reagents were acquired from Sigma Aldrich, growth media 
were purchased from Oxoid and antibiotics were obtained from Melford Laboratories. Lysogeny broth 
(LB) (10 g/L NaCl) and agar (1.5% w/v) were used for routine growth of all organisms at 37 °C with 
shaking at 220 RPM, as appropriate. Unless otherwise stated, Mueller- Hinton (MH) broth and agar 
(1.5% w/v) were used for Minimum Inhibitory Concentration (MIC) assays. Growth media were supple-
mented with the following, as required: 0.25 mM Isopropyl β-D- 1- thiogalactopyranoside (IPTG) (for 
strains harboring β-lactamase- encoding pDM1 plasmids), 0.5 mM IPTG (for strains harboring MCR- 
encoding pDM1 plasmids), 12.5  μg/mL tetracycline, 100  μg/mL ampicillin, 50  μg/mL kanamycin, 
10 μg/mL gentamicin, 33 μg/mL chloramphenicol, 50 μg/mL streptomycin (for cloning purposes), and 
2000–5000 μg/mL streptomycin (for the construction of Pseudomonas aeruginosa mutants).

Construction of plasmids and bacterial strains
Bacterial strains and plasmids used in this study are listed in the Key Resources Table and in Supple-
mentary file 3 - Supplementary Tables 2 and 3, respectively. Oligonucleotides used in this study 
are listed in Supplementary Table 4. DNA manipulations were conducted using standard methods. 
KOD Hot Start DNA polymerase (Merck) was used for all PCR reactions according to the manufactur-
er’s instructions, oligonucleotides were synthesized by Sigma Aldrich and restriction enzymes were 
purchased from New England Biolabs. All DNA constructs were sequenced and confirmed to be 
correct before use.

Genes for β-lactamase and MCR enzymes were amplified from genomic DNA extracted from clin-
ical isolates (Supplementary file 3 - Supplementary Table 5) with the exception of mcr- 3 and mcr- 8, 
which were synthesized by GeneArt Gene Synthesis (ThermoFisher Scientific). β-lactamase and MCR 
genes were cloned into the IPTG- inducible plasmid pDM1 using primers P1- P34. pDM1 (GenBank 
accession number MN128719) was constructed from the p15A- ori plasmid pACYC184 (Chang and 
Cohen, 1978) to contain the Lac repressor, the Ptac promoter, an optimized ribosome binding site 
and a multiple cloning site (NdeI, SacI, PstI, KpnI, XhoI, and XmaI) inserted into the NcoI restriction site 
of pACYC184. All StrepII- tag fusions of β-lactamase and MCR enzymes (constructed using primers P1, 
P3, P9, P11, P13, P15, P17, P21, P23, P25, P27, P29, P35, P36, and P39- P48) have a C- terminal StrepII 
tag (GSAWSHPQFEK) except for OXA- 4, where an N- terminal StrepII tag was inserted between the 
periplasmic signal sequence and the body of the protein using the primer pairs P7/P38, P9/P37, and 
P7/P8. Plasmids encoding ges- 1 and kpc- 3 were obtained by performing QuickChange mutagenesis 
on pDM1 constructs encoding ges- 5 and kpc- 2, respectively (primers P31- P34).

E. coli gene mutants were constructed using a modified lambda- Red recombination method, 
as previously described (Kim et al., 2014) (primers P51- P58). To complement the dsbA mutant, a 
DNA fragment consisting of dsbA preceded by the Ptac promoter was inserted into the NotI/XhoI 
sites of pGRG25 (primers P49/P50) and was reintroduced into the E. coli chromosome at the attTn7 
site, as previously described (McKenzie and Craig, 2006). The dsbA1 mutants of the P. aeruginosa 
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PA43417 and P. aeruginosa PAe191 clinical isolates were constructed by allelic exchange, as previ-
ously described (Vasseur et al., 2005). Briefly, the dsbA1 gene area of P. aeruginosa PA43417 and P. 
aeruginosa PAe191 (including the dsbA1 gene and 600 bp on either side of this gene) was amplified 
(primers P59/P60) and the obtained DNA was sequenced to allow for accurate primer design for 
the ensuing cloning step. Subsequently, 500 bp DNA fragments upstream and downstream of the 
dsbA1 gene were amplified using P. aeruginosa PA43417 genomic DNA (primers P61/P62 [upstream] 
and P63/P64 [downstream]). A fragment containing both regions was obtained by overlapping PCR 
(primers P61/P64) and inserted into the XbaI/BamHI sites of pKNG101. The suicide vector pKNG101 
(Kaniga et al., 1991) is not replicative in P. aeruginosa; it was maintained in E. coli CC118λpir and 
mobilized into P. aeruginosa PA43417 and P. aeruginosa PAe191 by triparental conjugation.

MIC assays
Unless otherwise stated, antibiotic MIC assays were carried out in accordance with the EUCAST 
recommendations using ETEST strips (BioMérieux). Briefly, overnight cultures of each strain to be 
tested were standardized to OD600 0.063 in 0.85% NaCl (equivalent to McFarland standard 0.5) and 
distributed evenly across the surface of MH agar plates. ETEST strips were placed on the surface 
of the plates, evenly spaced, and the plates were incubated for 18–24 hr at 37 °C. MICs were read 
according to the manufacturer’s instructions. β-lactam MICs were also determined using the Broth 
Microdilution (BMD) method, as required. Briefly, a series of antibiotic concentrations was prepared 
by twofold serial dilution in MH broth in a clear- bottomed 96- well microtiter plate (Corning). When 
used, tazobactam was included at a fixed concentration of 4 μg/mL in every well, in accordance with 
the EUCAST guidelines. The strain to be tested was added to the wells at approximately 5 × 104 
colony- forming units (CFU) per well and plates were incubated for 18–24 hr at 37 °C. The MIC was 
defined as the lowest antibiotic concentration with no visible bacterial growth in the wells. Vanco-
mycin MICs were determined using the BMD method, as above. All colistin sulphate MIC assays were 
performed using the BMD method as described above except that instead of twofold serial dilutions, 
the following concentrations of colistin (Acros Organics) were prepared individually in MH broth: 
32 μg/mL, 16 μg/mL, 12 μg/mL, 8 μg/mL, 7 μg/mL, 6 μg/mL, 5.5 μg/mL, 5 μg/mL, 4.5 μg/mL, 4 μg/mL, 
3.5 μg/mL, 3 μg/mL, 2.5 μg/mL, 2 μg/mL, 1.5 μg/mL, 1 μg/mL, 0.5 μg/mL.

The covalent DsbB inhibitor 4,5- dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one (Landeta et al., 2015) 
was used to chemically impair the function of the DSB system. Inactivation of DsbB results in abrogation 
of DsbA function (Kishigami et al., 1995) only in media free of small- molecule oxidants (Dailey and 
Berg, 1993). Therefore, MIC assays involving chemical inhibition of the DSB system were performed 
using M63 broth (15.1 mM (NH4)2SO4, 100 mM KH2PO4, 1.8 mM FeSO4.7H2O, adjusted to pH 7.2 with 
KOH) and agar (1.5% w/v) supplemented with 1 mM MgSO4, 0.02% w/v glucose, 0.005% w/v thia-
mine, 31 µM FeCl3.6H2O, 6.2 μM ZnCl2, 0.76 µM CuCl2.2H2O, 1.62 µM H3BO3, 0.081 µM MnCl2.4H2O, 
84.5 mg/L alanine, 19.5 mg/L arginine, 91 mg/L aspartic acid, 65 mg/L glutamic acid, 78 mg/L glycine, 
6.5 mg/L histidine, 26 mg/L isoleucine, 52 mg/L leucine, 56.34 mg/L lysine, 19.5 mg/L methionine, 
26 mg/L phenylalanine, 26 mg/L proline, 26 mg/L serine, 6.5 mg/L threonine, 19.5 mg/L tyrosine, 
56.34 mg/L valine, 26 mg/L tryptophan, 26 mg/L asparagine and 26 mg/L glutamine. CaCl2 was also 
added at a final concentration of 0.223  mM for colistin sulfate MIC assays. Either DMSO (vehicle 
control) or the covalent DsbB inhibitor 4,5- dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one (final concen-
tration of 50 μM) (Enamine) (Landeta et al., 2015) were added to the M63 medium, as required. The 
strain to be tested was added at an inoculum that recapitulated the MH medium MIC values obtained 
for that strain.

SDS-PAGE analysis and immunoblotting
Samples for immunoblotting were prepared as follows. Strains to be tested were grown on LB or 
MH agar plates as lawns in the same manner as for MIC assays described above. Bacteria were 
collected using an inoculating loop and resuspended in 0.85% NaCl or LB to OD600 2.0 (except for 
strains expressing OXA- 4, where OD600 6.0 was used). For strains expressing β-lactamase enzymes, 
the cell suspensions were spun at 10,000 x g for 10 min and bacterial pellets were lysed by addition 
of BugBuster Master Mix (Merck Millipore) for 25 min at room temperature with gentle agitation. 
Subsequently, lysates were spun at 10,000 x g for 10 min at 4 °C and the supernatant was added to 
4 x Laemmli buffer. For strains expressing MCR enzymes cell suspensions were directly added to 4 x 
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Laemmli buffer, while for E. coli MG1655 and its mutants, cells were lysed as above and lysates were 
added to 4 x Laemmli buffer. All samples were boiled for 5 min before separation by SDS- PAGE.

Unless otherwise stated, SDS- PAGE analysis was carried out using 10% BisTris NuPAGE gels 
(ThermoFisher Scientific) using MES/SDS running buffer prepared according to the manufacturer’s 
instructions and including pre- stained protein markers (SeeBlue Plus 2, ThermoFisher Scientific). 
Proteins were transferred to Amersham Protran nitrocellulose membranes (0.45 µm pore size, GE Life 
Sciences) using a Trans- Blot Turbo transfer system (Bio- Rad) before blocking in 3% w/v Bovine Serum 
Albumin (BSA)/TBS- T (0.1 % v/v Tween 20) or 5% w/v skimmed milk/TBS- T and addition of primary 
and secondary antibodies. The following primary antibodies were used in this study: Strep- Tactin- HRP 
conjugate (Iba Lifesciences) (dilution 1:3,000 in 3 w/v % BSA/TBS- T), Strep- Tactin- AP conjugate (Iba 
Lifesciences) (dilution 1:3,000 in 3 w/v % BSA/TBS- T), rabbit anti- DsbA antibody (dilution 1:1,000 in 
5 w/v % skimmed milk/TBS- T), rabbit anti- AcrA antibody (dilution 1:10,000 in 5 w/v % skimmed milk/
TBS- T), rabbit anti- TolC antibody (dilution 1:5,000 in 5 w/v % skimmed milk/TBS- T), rabbit anti- HtrA1 
(DegP) antibody (Abcam) (dilution 1:1,000 in 5 w/v % skimmed milk/TBS- T) and mouse anti- DnaK 
8E2/2 antibody (Enzo Life Sciences) (dilution 1:10,000 in 5% w/v skimmed milk/TBS- T). The following 
secondary antibodies were used in this study: goat anti- rabbit IgG- AP conjugate (Sigma Aldrich) (dilu-
tion 1:6,000 in 5%  w/v skimmed milk/TBS- T), goat anti- rabbit IgG- HRP conjugate (Sigma Aldrich) 
(dilution 1:6,000 in 5% w/v skimmed milk/TBS- T), goat anti- mouse IgG- AP conjugate (Sigma Aldrich) 
(dilution 1:6,000 in 5%  w/v skimmed milk/TBS- T) and goat anti- mouse IgG- HRP conjugate (Sigma 
Aldrich) (dilution 1:6000 in 5% w/v skimmed milk/TBS- T). Membranes were washed three times for 
5  min with TBS- T prior to development. Development for AP conjugates was carried out using a 
SigmaFast BCIP/NBT tablet, while HRP conjugates were visualized with the Novex ECL HRP chemilu-
minescent substrate reagent kit (ThermoFisher Scientific) or the Immobilon Crescendo chemilumines-
cent reagent (Merck) using a Gel Doc XR + Imager (Bio- Rad).

β-Lactam hydrolysis assay
β-lactam hydrolysis measurements were carried out using the chromogenic β-lactam nitrocefin (Abcam). 
Briefly, overnight cultures of strains to be tested were centrifugated, pellets were weighed and resus-
pended in 150 μL of 100 mM sodium phosphate buffer (pH 7.0) per 1 mg of wet- cell pellet, and 
cells were lysed by sonication. For strains harboring pDM1, pDM1- blaL2- 1, pDM1- blaOXA- 10, and pDM1- 
blaGES- 1, lysates corresponding to 0.34 mg of bacterial pellet were transferred into clear- bottomed 
96- well microtiter plates (Corning). For strains harboring pDM1- blaOXA- 4 and pDM1- blaOXA- 198, lysates 
corresponding to 0.2 mg and 0.014 mg of bacterial pellet were used, respectively. In all cases, nitro-
cefin was added at a final concentration of 400 μM and the final reaction volume was made up to 
100 μL using 100 mM sodium phosphate buffer (pH 7.0). Nitrocefin hydrolysis was monitored at 25 °C 
by recording absorbance at 490 nm at 60- s intervals for 15 min using an Infinite M200 Pro microplate 
reader (Tecan). The amount of nitrocefin hydrolyzed by each lysate in 15 min was calculated using a 
standard curve generated by acid hydrolysis of nitrocefin standards.

NPN uptake assay
1- N- phenylnaphthylamine (NPN) (Acros Organics) uptake assays were performed performed as previ-
ously described (Helander and Mattila- Sandholm, 2000). Briefly, mid- log phase cultures of strains to 
be tested were diluted to OD600 0.5 in 5 mM HEPES (pH 7.2) before transfer to clear- bottomed 96- well 
microtiter plates (Corning) and addition of NPN at a final concentration of 10 μM. Colistin sulphate 
(Acros Organics) was included at a final concentration of 0.5 μg/mL, as required. Immediately after the 
addition of NPN, fluorescence was measured at 60- s intervals for 10 min using an Infinite M200 Pro 
microplate reader (Tecan); the excitation wavelength was set to 355 nm and emission was recorded 
at 405 nm.

PI uptake assay
Exponentially- growing (OD600 0.4) E. coli strains harboring pUltraGFP- GM (Mavridou et al., 2016) 
were diluted to OD600 0.1 in phosphate buffered saline (PBS) (pH 7.4) and cecropin A was added to a 
final concentration of 20 μM, as required. Cell suspensions were incubated at room temperature for 
30 min before centrifugation and resuspension of the pellets in PBS. Propidium iodide (PI) was then 
added at a final concentration of 3 μM. Suspensions were incubated for 10 min at room temperature 
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and analyzed on a two- laser, four- color BD FACSCalibur flow cytometer (BD Biosciences). 50,000 
events were collected for each sample and data were analyzed using FlowJo v.10.0.6 (Treestar).

CPRG hydrolysis assay
The cell envelope integrity of bacterial strains used in this study and of their dsbA mutants, was tested 
by measuring the hydrolysis of the β-galactosidase substrate chlorophenyl red-β-D- galactopyranoside 
(CPRG) by cytoplasmic LacZ, as previously described (Paradis- Bleau et  al., 2014). Briefly, expo-
nentially growing (OD600 0.4) E. coli MC1000 harboring pCB112 or MG1655, as well as their dsbA 
mutants, were diluted to 1:105 in MH broth and plated on MH agar containing CPRG and IPTG at final 
concentrations of 20 μg/mL and 50 μM, respectively. Plates were incubated at 37 °C for 18 hr, were 
photographed, and images were analyzed using Adobe Photoshop CS4 extended v.11.0 (Adobe) as 
follows. Images were converted to CMYK color space format, colonies were manually selected using 
consistent tolerance (26, anti- alias, contiguous) and edge refinement (32 px, 100% contrast), and the 
magenta color was quantified for each image and normalized for the area occupied by each colony.

MALDI-TOF mass spectrometry
Lipid A profiles of strains to be tested were determined using intact bacteria, as previously described 
(Larrouy- Maumus et al., 2016). The peak for E. coli native lipid A is detected at m/z 1796.2, whereas 
the lipid A profiles of strains expressing functional MCR enzymes have two additional peaks, at m/z 
1821.2 and 1919.2. These peaks result from MCR- mediated modification of native lipid A through 
addition of phosphoethanolamine moieties (Dortet et al., 2018). The ratio of modified to unmodified 
lipid A was calculated by summing the intensities of the peaks at m/z 1821.2 and 1919.2 and dividing 
this value by the intensity of the native lipid A peak at m/z 1796.2.

Motility Assay
A total of 500 μL of overnight culture of each strain to be tested were centrifuged and the pellets 
were washed three times in M63 broth before resuspension in the same medium to achieve a final 
volume of 25 μL. Bacterial motility was assessed by growth in M63 medium containing 0.25% w/v 
agar supplemented as described above. DMSO (vehicle control) or the covalent DsbB inhibitor 
4,5- dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one (final concentration of 50 μM) (Enamine) were added 
to the medium, as required. One μL of the washed cell suspension was inoculated into the center of a 
90- mm diameter agar plate, just below the surface of the semi- solid medium. Plates were incubated 
at 37 °C in a humidified environment for 16–18 hr and growth halo diameters were measured.

AMS labeling
Bacterial strains to be tested were grown for 18 hr in M63 broth supplemented as described above. 
DMSO (vehicle control) or the covalent DsbB inhibitor 4,5- dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one 
(final concentration of 50 μM) (Enamine) were added to the medium, as required. Cultures were stan-
dardized to OD600 2.0 in M63 broth, spun at 10,000 x g for 10 min and bacterial pellets lysed by 
addition of BugBuster Master Mix (Merck Millipore) for 25 min at room temperature with gentle agita-
tion. Subsequently, lysates were spun at 10,000 x g for 10 min at 4 °C prior to reaction with 4- aceta
mido- 4ˊ-maleimidyl- stilbene- 2,2ˊ-disulfonic acid (AMS) (ThermoFisher Scientific). AMS alkylation was 
performed by vortexing the lysates in 15 mM AMS, 50 mM Tris- HCl, 3% w/v SDS and 3 mM EDTA (pH 
8.0) for 30 min at 25 °C, followed by incubation at 37 °C for 10 min. SDS- PAGE analysis and immu-
noblotting was carried out as described above, except that 12% BisTris NuPAGE gels (ThermoFisher 
Scientific) and MOPS/SDS running buffer were used. DsbA was detected using a rabbit anti- DsbA 
primary antibody and an AP- conjugated secondary antibody, as described above.

Bacterial growth assays
To assess the effect of DSB system inhibition of the growth of E. coli, overnight cultures of the strains 
to be tested were centrifuged and the pellets were washed three times in M63 broth before transfer 
to clear- bottomed 96- well microtiter plates (Corning) at approximately 5 × 107  CFU/well (starting 
OD600 ~0.03). M63 broth supplemented as described above was used as a growth medium. DMSO 
(vehicle control) or the covalent DsbB inhibitor 4,5- dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one (final 
concentration of 50 μM) (Enamine) were added to the medium, as required. Plates were incubated 
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at 37 °C with orbital shaking (amplitude 3 mm, equivalent to ~220 RPM) and OD600 was measured at 
900- s intervals for 18 hr using an Infinite M200 Pro microplate reader (Tecan). The same experimental 
setup was also used for recording growth curves of E. coli strains and their isogenic mutants, except 
that overnight cultures of the strains to be tested were diluted 1:100 into clear- bottomed 96- well 
microtiter plates (Corning) (starting OD600 ~0.01) and that LB was used as the growth medium.

Galleria mellonella survival assay
The wax moth model Galleria mellonella was used for in vivo survival assays (McCarthy et al., 2017). 
Individual G. mellonella larvae were randomly allocated to experimental groups; no masking was 
used. Overnight cultures of the strains to be tested were standardized to OD600 1.0, suspensions were 
centrifuged and the pellets were washed three times in PBS and serially diluted. Ten μl of the 1:10 dilu-
tion of each bacterial suspension was injected into the last right abdominal proleg of 30 G. mellonella 
larvae per condition; an additional 10 larvae were injected with PBS as negative control. Immediately 
after infection, larvae were injected with 4 μl of ceftazidime to a final concentration of 7.5 μg/ml in 
the last left abdominal proleg. The larvae mortality was monitored for 50 hr. Death was scored when 
larvae turned black due to melanization, and did not respond to physical stimulation.

SEM imaging
Bacterial strains to be tested were grown for 18  hr in MH broth; the covalent DsbB inhibitor 
4,5- dichloro- 2- (2- chlorobenzyl)pyridazin- 3- one (final concentration of 50 μM) (Enamine) was added to 
the medium, as required. Cells were centrifuged, the pellets were washed three times in M63 broth, 
and cell suspensions were diluted 1:500 into the same medium supplemented as described above; 
the covalent DsbB inhibitor (final concentration of 50 μM) and/or antibiotics (final concentrations of 
6 μg/mL and 2 μg/mL of imipenem and colistin, respectively) were added to the cultures, as required. 
After 1 hr of incubation as described above, 25 μl of each culture was spotted onto positively charged 
glass microscope slides and allowed to air- dry. Cells were then fixed with glutaraldehyde (2.5% v/v in 
PBS) for 30 min at room temperature and the slide was washed five times in PBS. Subsequently, each 
sample was dehydrated using increasing concentrations of ethanol (5% v/v, 10% v/v, 20% v/v, 30% v/v, 
50% v/v, 70% v/v, 90% v/v [applied three times] and 100% v/v), with each wash being carried out by 
application and immediate removal of the washing solution, before a 7- nm coat of platinum/palladium 
was applied using a Cressington 208 benchtop sputter coater. Images were obtained on a Zeiss Supra 
40 V Scanning Electron Microscope at 5.00 kV and with ×26,000 magnification.

Statistical analysis of experimental data
The total numbers of performed biological experiments and technical repeats are mentioned in the 
figure legend of each display item. Biological replication refers to completely independent repetition 
of an experiment using different biological and chemical materials. Technical replication refers to 
independent data recordings using the same biological sample. For MIC assays, all recorded values 
are displayed in the relevant graphs; for MIC assays where three or more biological experiments 
were performed, the bars indicate the median value, while for assays where two biological experi-
ments were performed the bars indicate the most conservative of the two values (i.e. for increasing 
trends, the value representing the smallest increase and for decreasing trends, the value representing 
the smallest decrease). For all other assays, statistical analysis was performed in GraphPad Prism 
v8.0.2 using an unpaired T- test with Welch’s correction, a one- way ANOVA with correction for multiple 
comparisons, or a Mantel- Cox logrank test, as appropriate. Statistical significance was defined as p < 
0.05. Outliers were defined as any technical repeat >2 SD away from the average of the other tech-
nical repeats within the same biological experiment. Such data were excluded and all remaining data 
were included in the analysis. Detailed information for each figure is provided below:

Figure 2C unpaired T- test with Welch’s correction; n = 3; 3.621 degrees of freedom, t- value = 
0.302, p = 0.7792 (non- significance) (for pDM1 strains); 3.735 degrees of freedom, t- value = 0.4677, 
p = 0.666 (non- significance) (for pDM1- blaL2- 1 strains); 2.273 degrees of freedom, t- value = 5.069, p = 
0.0281 (significance) (for pDM1- blaGES- 1 strains); 2.011 degrees of freedom, t- value = 6.825, p = 0.0205 
(significance) (for pDM1- blaOXA- 4 strains); 2.005 degrees of freedom, t- value = 6.811, p = 0.0208 (signif-
icance) (for pDM1- blaOXA- 10 strains); 2.025 degrees of freedom, t- value = 5.629, p = 0.0293 (signifi-
cance) (for pDM1- blaOXA- 198 strains).
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Figure 3C one- way ANOVA with Tukey’s multiple comparison test; n = 4; 24 degrees of freedom; 
F value = 21.00; p = 0.000000000066 (for pDM1-mcr- 3 strains), p = 0.0004 (for pDM1-mcr- 4 strains), 
p = 0.000000000066 (for pDM1-mcr- 5 strains), p = 0.00066 (for pDM1-mcr- 8 strains).

Figure  5B one- way ANOVA with Bonferroni’s multiple comparison test; n = 3; 6  degrees of 
freedom; F value = 1878; p = 0.000000002 (significance).

Figure 8C Mantel- Cox test; n = 30; p =< 0.0001 (significance) (P. aeruginosa versus P. aeruginosa 
dsbA1), p > 0.9999 (non- significance) (P. aeruginosa vs P. aeruginosa treated with ceftazidime), p =< 
0.0001 (significance) (P. aeruginosa treated with ceftazidime versus P. aeruginosa dsbA1), p =< 0.0001 
(significance) (P. aeruginosa dsbA1 versus P. aeruginosa dsbA1 treated with ceftazidime).

Figure  1—figure supplement 7A (left graph): one- way ANOVA with Bonferroni’s multiple 
comparison test; n = 3; 6 degrees of freedom; F value = 39.22; p = 0.0007 (significance), p = 0.99 
(non- significance).

Figure  1—figure supplement 7B (left graph): one- way ANOVA with Bonferroni’s multiple 
comparison test; n = 3; 6 degrees of freedom; F value = 61.84; p = 0.0002 (significance), p = 0.99 
(non- significance).

Figure 1—figure supplement 7B (right graph): unpaired T- test with Welch’s correction, n = 3; 
4 degrees of freedom; t- value = 0.1136, p = 0.9150 (non- significance).

Figure 1—figure supplement 9A (left graph): one- way ANOVA with Bonferroni’s multiple compar-
ison test; n = 3; 6 degrees of freedom; F value = 261.4; p = 0.00000055 (significance), p = 0.0639 
(non- significance).

Figure  1—figure supplement 9B (left graph): one- way ANOVA with Bonferroni’s multiple 
comparison test; n = 3; 6 degrees of freedom; F value = 77.49; p = 0.0001 (significance), p = 0.9999 
(non- significance).

Figure 1—figure supplement 9B (right graph): unpaired T- test with Welch’s correction, n = 3; 
4 degrees of freedom; t- value = 0.02647, p = 0.9801 (non- significance).

Bioinformatics
The following bioinformatics analyses were performed in this study. Short scripts and pipelines were 
written in Perl (version 5.18.2) and executed on macOS Sierra 10.12.5.
β-lactamase enzymes. All available protein sequences of β-lactamases were downloaded from 

http://www.bldb.eu (Naas et al., 2017) (5 August 2021). Sequences were clustered using the ucluster 
software with a 90% identity threshold and the cluster_fast option (USEARCH v.7.0 (77)); the centroid 
of each cluster was used as a cluster identifier for every sequence. All sequences were searched for 
the presence of cysteine residues using a Perl script. Proteins with two or more cysteines after the first 
30 amino acids of their primary sequence were considered potential substrates of the DSB system 
for organisms where oxidative protein folding is carried out by DsbA and provided that translocation 
of the β-lactamase outside the cytoplasm is performed by the Sec system. The first 30 amino acids 
of each sequence were excluded to avoid considering cysteines that are part of the signal sequence 
mediating the translocation of these enzymes outside the cytoplasm. The results of the analysis can 
be found in Supplementary file 1.

MCR enzymes. E. coli MCR- 1 (AKF16168.1) was used as a query in a blastp 2.2.28+ (Altschul 
et al., 1990) search limited to Proteobacteria on the NCBI Reference Sequence (RefSeq) proteome 
database (21 April 2019) (evalue <10e- 5). A total of 17,503 hit sequences were retrieved and clus-
tered using the ucluster software with a 70% identity threshold and the cluster_fast option (USEARCH 
v.7.0 (77)). All centroid sequences were retrieved and clustered again with a 20% identity threshold 
and the cluster_fast option. Centroid sequences of all clusters comprising more than five sequences 
(809 sequences retrieved) along with the sequences of the five MCR enzymes tested in this study 
were aligned using MUSCLE (Edgar, 2004). Sequences which were obviously divergent or truncated 
were manually eliminated and a phylogenetic tree was built from a final alignment comprising 781 
sequences using FastTree 2.1.7 with the wag substitution matrix and default parameters (Price et al., 
2010). The assignment of each protein sequence to a specific group was done using hmmsearch 
(HMMER v.3.1b2) (Finn et al., 2015) with Hidden Markov Models built from confirmed sequences of 
MCR- like and EptA- like proteins.
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