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Phosphatidylserine-Targeted Nanotheranostics
for Brain Tumor Imaging and Therapeutic
Potential
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Abstract
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in
normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying
mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor
vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing
PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-
selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have
recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood–brain
barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers,
are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential
image-guided drug delivery to treat brain tumors.
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Mechanisms for Maintenance and Loss of
Phosphatidylserine Asymmetry

Asymmetric Distribution of Phosphatidylserine in Normal
Cell Membrane

Biological cell membrane is composed of phospholipid bilayer,

of which the outer leaflet is formed predominantly with the

cholinephospholipids while the anionic aminophospholipids such

as phosphatidylserine (PS) are restricted to the inner leaflet.1,2

The asymmetric distribution of PS is maintained by a group of

P-type ATPases, known as aminophospholipid translocases, that

catalyzes the transport of aminophospholipids from the outer

leaflet to the inner leaflet of the plasma membrane against the

concentration gradient.2,3 Several Rhesus-associated proteins

may also play a role on maintaining the PS asymmetry.2,3

Disruption of PS Asymmetry in Apoptotic or
Necrotic Cells

Loss of PS asymmetry, which results in the appearance of PS at

the cell surface, occurs often under pathophysiological

conditions, that is, apoptosis and necrosis. Accompanying with

the influx of Ca2þ into the cytoplasm at the early stage of cell

death, the activity of translocase to transport PS inward is inhib-

ited, whereas an adenosine triphosphate (ATP)-independent

scramblase is activated to disrupt the PS asymmetry by moving
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the PS outward to the cell surface. Consequently, the membrane

distribution of PS becomes gradually symmetric with increased

number of PS on the outer leaflet.4-6 However, it is noteworthy

that the translocase activity is reversible following the Ca2þ

efflux, which can lead to restoration of lipid asymmetry. As a

result of loss of PS asymmetry, the cell surface-exposed PS may

serve as an eat-me signal recognized by PS receptor on macro-

phages such as T-cell immunoglobulin and mucin families and

the TYRO3, AXL, and MERTK to initiate the phagocytosis.7,8

PS Exposure in Tumor Vascular Endothelial Cells

It has recently been observed that PS becomes exposed on the outer

surface of endothelial cells (ECs) in tumor blood vessels, whereas

vascular ECs in normal tissues, even in those highly angiogenic

ovarian blood vessels during ovulation, lack exposed PS. Although

it is not fully understood how and why tumor vascular ECs expose

PS to the outer plasma membrane, several factors of characteristic

tumor microenvironment are believed to contribute to this phe-

nomenon.9-11 Indeed, hypoxia, low pH, and tumor-specific cyto-

kines such as interleukin 1 and tumor necrosis factor a (TNF-a)

have been correlated with the PS abnormality (Figure 1).9-11 In our

study, incubation of TNF-a with human vascular umbilical vein

cells observed massive PS exposure on the cell surface (unpub-

lished data). These factors may perturb the ATP-dependent translo-

case activity and/or enhance the ATP-independent scramblase

activity to transport PS outward.12-14 Importantly, these PS-

exposed ECs are viable and not subject to apoptotic process.15,16

Unlike the apoptotic cells, they are not costained by anti-active

caspase 3 antibody and can resume growth and reestablish phos-

pholipid asymmetry, which enable them to evade immune surveil-

lance.11,17,18 Examination of large panels of tumor types has found

that PS exposure on luminal surface of tumor vasculature is uni-

versal despite the extent of exposure that varies between tumors,

ranging from about 15% to 50%.9,19,20 In response to cancer treat-

ment such as radiotherapy18,21 and/or chemotherapy,22 signifi-

cantly increased PS exposes on the tumor vascular ECs.

Phosphatidylserine-Targeting Antibody and
Its Mode of Action

Phosphatidylserine-targeting antibodies have been developed

by the Thorpe laboratory, including murine antibodies 2aG4

and 3G4 and a chimeric monoclonal antibody

bavituximab.10,20-23 The antibodies recognize PS complexed

with the PS-binding protein, b2-glycoprotein 1 (b2GP1).24 The

b2GP1 is a 50-kDa glycoprotein that binds weakly to anionic

phospholipids under physiological conditions. With the PS anti-

bodies, the binding of b2GP1 to exposed PS is enhanced to form a

stable multivalent complex of antibody b2GP1-PS.25 Since there

are abundant b2GP1 in blood, it is unnecessary for in vivo study to

have exogenous b2GP1. The PS antibodies are observed to loca-

lize to PS-positive blood vessels in multiple tumor models after

systemic infusion. Further studies have shown that the PS-bound

antibodies induce monocytes to bind to the tumor vasculature and

destroy it by antibody-dependent cellular cytotoxicity, leading to

tumor growth inhibition.21,22 Antitumor effects of these antibodies

are enhanced by chemotherapy,22 radiation,18,21 and small mole-

cule tyrosine kinase inhibitor,19 all of which increase the levels of

exposed PS in the tumors and thus amplify the target for attack by

the antibodies. More recent studies have suggested that exposed

PS suppresses host immunity against tumor cells and PS-targeting

antibodies enhance antitumor effect with immune checkpoint

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or

Programmed cell death protein 1 (PD-1) blockade by inducing

more CD8þ T cells and fewer immune suppressive myeloid-

derived suppressor cells and M2 macrophages.26-29 Bavituximab,

the chimeric monoclonal PS-targeting antibody (blood half-life

*30 hours), is in advanced clinical trials in patients with lung and

breast cancer.30,31 More recently, a new, fully human PS-targeting

antibody, PGN635, is similar in affinity to bavituximab (Kd

�10�10 M).32-34 In vitro binding assay has demonstrated its high

specificity for the cell-exposing PS. The PS antibodies have a more

restricted specificity for PS than does annexin V, known as a PS-

binding ligand. Annexin V also recognizes Phosphatidylethanola-

mine (PE) in addition to PS and other anionic phospholipids.9,25

Moreover, annexin V has a blood half-life of 3 to 7 minutes, which

may limit its use for clinical imaging and measuring peak probe

uptake responses to therapy.34 We have exploited F(ab0)2 fragment

PGN635 (blood half-life *16 hours) for development of

PS-targeted imaging probes and nanoplatforms, which will be

described in details in the following sections.

Phosphatidylserine-Targeted Molecular
Cancer Imaging

In vivo molecular imaging enables visualization of cellular and

molecular events in living organisms.35,36 Unlike the invasive

Figure 1. Schematic mechanisms for PS asymmetry in normal cell membrane and its loss in tumor vascular endothelial cells. PS indicates
phosphatidylserine.
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pathohistological examination, molecular imaging provides a

noninvasive means to assess sensitivity and specificity of dis-

ease biomarkers. Various imaging modalities have been

applied for evaluation of PS as a cancer biomarker.

Near-Infrared Optical Imaging

Optical imaging is increasingly being used in preclinical cancer

research.37,38 It is being used in particular to study cancer-

specific markers, drug pharmacokinetics, and to monitor drug

effects in small animals.39-41 The attraction of the technique is

that it is inexpensive, simple to conduct, and gives real-time

results. In the clinic, optical imaging by visualizing fluores-

cently labeled tumor cells has recently emerged as an attractive

approach to facilitate intraoperative identification of tumor

margins or sentinel lymph node metastases.42,43 We have thus

previously labeled the F(ab0)2 fragment of PGN635 with a near-

infrared (NIR) dye, IRDye 800CW to image U87 glioma xeno-

grafts in a mouse model.32 Near-infrared optical imaging

revealed a clear tumor contrast as early as 4 hours post (intra-

venous) IV injection of PGN-800CW, which became maximal

24 hours later. Pretreatment of gliomas with a single dose of

6 Gy irradiation to induce increased PS exposure resulted in

significantly enhanced tumor contrast. Localization of

PGN-800CW to tumors was antigen specific, since an

800CW-labeled control probe of irrelevant specificity did not

localize to the tumors. Similarly, Gong et al observed signifi-

cantly higher uptake of PGN-800CW in docetaxel-treated than

nontreated PC3 prostate tumors.34 Compared to the visible

fluorophores, NIR fluorescence penetrates more deeply into

tissues, as evidenced in the above study of imaging orthotopic

glioma in mice.32 Clinical applications of optical imaging are

currently limited to the detection of tumor margins or deposits

during surgery, to the detection of superficial tumors, and to the

detection of deep-seated tumors by endoscopy.

Positron Emission Tomography and Single-Photon
Emission Computed Tomography Imaging

Both positron emission tomography (PET) and single-photon

emission computed tomography (SPECT) are nuclear medicine

imaging techniques involving introduction of radioactive tra-

cers into patients and detection of gamma rays emitted directly

or indirectly from the tracer. Because of the superb sensitivity

and clinical applicability of PET and SPECT imaging, devel-

opment of radiotracers for cancer imaging has attracted intense

interest. Technetium-99m (99mTc, t1/2 �6 hours) has been used

to label annexin V for SPECT in humans and has shown prog-

nostic value for various cancers.44,45 However, to best match

the biological half-life of PS-targeting antibody (bavituximab,

*30 hours), those radioisotopes with longer half-life of radio-

active decay are preferable. Jennewein et al selected arsenic

radioisotope,74As (bþ, t1/2 ¼ 17.8 days) in their study to

radiolabel bavituximab for PET imaging of prostate tumors

in rats .46 N-succinimidyl S-acetylthioacetate-modified bavi-

tuximab was used to react with 74As (Arsenic triiodide [AsI3])

to achieve stable conjugates. The PET imaging data showed

that the prostate tumor-to-liver ratio was 22 for bavituximab

compared with 1.5 for an isotype-matched control antibody at

72 hours postinjection. To obtain shorter blood residence times

than those required for 74As-bavituximab imaging, Stafford

and colleagues chose to use the F(ab0)2 fragment of PGN635

(blood half-life �16 hours) conjugated with iodine-124, 124I

(t1/2 ¼ 4.2 days).33 Forty-eight hours after injection, PET ima-

ging detected 124I-PGN635 F(ab0)2 uptake in the PC3 prostate

tumors in mice that was significantly higher than that of the
124I-labeled F(ab0)2 of a control antibody. An SPECT imaging

radioisotope, indium-111 (111In, t1/2 ¼ 2.8 days), was also used

to radiolabel the full-length bavituximab in a study of non–

small cell lung cancer (NSCLC) xenografts.47 Similar to the

PET findings, the SPECT imaging detected a peak uptake

(tumor to muscle ratio ¼ 5.2) by the NSCLC tumors at 72

hours post IV injection of 111In-DOTA-bavituximab.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a commonly used ima-

ging tool for clinical disease diagnosis. Despite its inherently

low sensitivity, MRI has high spatial resolution and excellent

soft tissue contrast. In comparison to paramagnetic

gadolinium-based T1 contrast agents, superparamagnetic iron

oxide nanoparticle (SPIO) has much higher molar relaxivity

and is thus widely used for molecular MRI applications.48-50

We have previously conjugated polyethylene glycol PEGylated

SPIO with PGN635 F(ab0)2 to evaluate the feasibility of MRI to

study its tumor vascular-targeting specificity in 4T1 mouse

mammary tumors.51 Consistent with other imaging modalities,

MRI clearly visualized intratumoral signal loss due to specific

binding of PGN635 F(ab0)-SPIO to tumor vascular ECs. Impor-

tantly, MRI provided more detailed information about intratu-

moral distribution of the nanoprobes, which was determined to

colocalize with histological staining of tumor vascular ECs.

Unlike the T1-positive contrast, SPIO, the T2 contrast agent

SPIO generates negative contrast on T2- or T2*-weighted

images. It is noticeable that signal loss due to SPIO shortening

of T2 relaxation time is often difficult to differentiate from

those low signals induced by B0 inhomogeneity or susceptibil-

ity artifacts. To overcome it, we applied the “hot spot” analysis

approach in our study, which was found useful to distinguish

SPIO-induced signal voids from initial baseline level of dark

signals (Figure 2).51

Development of PS-Targeted Lipid-Based
Nanoplatforms

Rationale for Developing PS-Targeted Liposomal
Nanocarrier

Nanoparticles are emerging as promising carriers of drugs or

imaging agents because of their advantageous properties such

as large payload capacity, prolonged blood circulation time,

and protection of the enclosed molecules from interacting with

Wang et al 3



blood components.52-55 Among various types of nanoparticles,

lipid-based liposomes and micelles are the most investigated

for biomedical applications. Several Federal Drug Administra-

tion (FDA)-approved drug preparations utilizing liposomal

delivery systems have shown promises in the treatment of

various cancer types in clinic. Liposomes are composed of

either natural or synthetic amphiphilic lipids. Amphiphilic or

hydrophobic molecules can be solubilized in the bilayer,

whereas the aqueous core can be loaded with water-soluble

biomaterials. We have previously fabricated PS-targeted lipo-

somes (PS-L) by conjugating PGN635 F(ab0)2 to distal termini

of Polyethylene glycol (PEG) chains.56,57 To prove that the

enhanced tumor-targeted imaging can be achieved by the lipo-

somal delivery system, we encapsulated IRDye 800CW to the

core of PS-L to conduct optical imaging of gliomas.56 In com-

parison to the nonliposomal probe, PGN-800CW, the liposo-

mal PS-L-800CW achieved >10-fold increase in tumor

contrast by in vivo optical NIR imaging (tumor to normal

ratio ¼ 20).56 Accompanied with increased tumor contrast,

there was significantly less accumulated PS-L-800CW in the

liver and spleen. The large payload of 800CW dye and

increased binding affinity owing to multiple surface antibodies

per liposome likely contribute to the enhancement.

Another reason behind developing lipid-based nanoparticles

for PS-targeted nanodelivery systems is due to their ability to

deliver the cargos into cytoplasm. As mentioned above, the

mode of action of PS-targeting antibodies is that they bind to

b2GP1-PS to form complexes that remain on external cell

membrane without entry into the cell, which is evidenced by

visualizing the cell membrane-localized complexes by immu-

nofluorescence microscopy. The cell membrane localization

was also observed for the conjugates of PS antibodies with

fluorescent dyes or metallic SPIO nanoparticles in our studies

(Figure 3). Intriguingly, when PS-L loaded with the dye and/or

SPIO were incubated with the PS-exposed cells, intracellular

localization of the dye or SPIO was clearly seen (Figure 3).

Although exact mechanisms accounting for this disparity are

not fully clear, it is believed that the cell surface bound PS-L

leads to close apposition and subsequent fusion or hemifusion

between the lipid layers of liposome and cell membrane and

then the release of the cargos into the cytosol. Indeed, others

have reported similar findings of other types of lipid-based

nanoparticles, targeting cell surface molecules.58-61

PS-Targeted Liposomal Nanoprobes for Brain Tumor
Imaging

The most common types of malignant brain tumors in adults

are brain metastasis and primary glioblastoma multiforme

(GBM), both of which are highly lethal, with a median survival

of less than a year.62,63 Existence of blood–brain barrier (BBB)

constitutes a critical challenge for accurate diagnosis and effec-

tive treatment.64-67 It is well recognized that disruption of the

BBB occurs with tumor growth; however, the tumor BBB dis-

ruption is incomplete even at the late stage of these malignant

brain tumors, which prevents sufficient therapeutic or diagnos-

tic agents from entry in the tumor in brain parenchyma.68,69

Much effort has been made to improve delivery of thera-

peutic or imaging agents to brain tumors by penetrating the

BBB.70-73 Although various strategies have been explored to

improve drug permeation into brain tumors via physical or

chemical means to manipulate the tumor BBB, limited suc-

cess has been achieved. Clearly, the discovery of a glioma-

specific biomarker will be critical for development of a

glioma-targeted nanodelivery system. Ideally, this biomarker

needs to be accessible to its ligands or antibodies. Thus, vas-

cular luminal surface-exposed molecules have attracted

intense interests.74 A number of endogenous transporters on

the surface of the blood vessels are well known for their roles

on receptor-mediated transport of large molecules across the

BBB. This process is recognized as the receptor-mediated

transport. Such receptors as transferrin receptor, low-density

lipoprotein receptor, insulin-like growth factor receptor, and

nicotinic acetylcholine receptor have been well investigated in

functionalizing various nanocarriers, aiming to transport their

cargos into brain tumor parenchyma.75-77 Tumor angiogenic

factors such as vascular endothelial growth factor and its

transmembrane receptor and various integrins have also been

extensively explored for developing brain tumor–targeted

Figure 2. Quantitative “hot spot” analysis of heterogeneous intra-
tumoral distribution of PGN635 F(ab0)2-SPIO. Hot spots maps were
created by identifying hypointense regions in tumor on T2-weighted
images and then overlapping them on the corresponding T2-weighted
images. A, Baseline level of hot spots prior to injection of PGN-SPIO
was presented in a representative nonirradiated and irradiated tumor
(arrowhead). Increased hot spots were observed in both of the
tumors after injection of PGN-SPIO. Compared to the nonirradiated
tumor, the irradiated tumor appeared to have more hot spots. B, In
contrast, there was essentially no change in hot spots before and after
injection of the control antibody conjugates, Aur-SPIO in either a
nonirradiated or irradiated tumor (arrowhead). Adapted from Zhou
et al.51 SPIO indicates superparamagnetic iron oxide nanoparticle.
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nanoplatforms. In particular, a large number of nanocarriers

utilizing antibodies or cyclic Arg-Gly-Asp peptides targeting

avb3 integrin have been convincingly shown to deliver ther-

apeutic or imaging agents to brain tumor tissues.78,79 The

abovementioned receptors are constitutively expressed on the

BBB of normal brain; however, their overexpression on the

proliferating tumor ECs could lead to preferential delivery to

the brain tumor.

Our published and unpublished studies have investigated

PS exposure on tumor vascular ECs of various brain tumor

xenografts of the established brain tumor cell lines or patient-

derived xenografts (PDX) cells.56,80 Unlike the tumor angio-

genic markers such as avb3 integrin, immunohistological exam-

inations have shown that extensive PS exposure is not only

present in the angiogenic tumor vessels but also in those of the

infiltrative tumors, but not in the normal brain.21,32 This is

important for developing brain tumor–targeted therapeutics

because the infiltrative tumor cells that often co-opt with non-

disruptive, preexisting brain blood vessels account ultimately for

cancer recurrence. Thus, PS exposure on the luminal surface of

tumor, but not normal blood vessels in the brain, establishes

itself a highly specific biomarker for brain tumors. We thus

hypothesize that the systemically administered PS-L binds spe-

cifically to tumor vascular ECs, becomes subsequently interna-

lized into the cells, and then enables its cargos to be efficiently

delivered to brain tumor parenchyma by penetrating the BBB.

To test this, we exploited the PS-L loaded with dual imaging

contrast agents: SPIO in the core and NIR dye in the lipid layers

for multimodal imaging of human U87 gliomas growing ortho-

topically in mice.81 Both in vivo optical imaging and MRI

depicted clear tumor contrast, distinct from the surrounding nor-

mal brain. Intriguingly, longitudinal MRI revealed temporal and

spatial intratumoral distribution of the PS-L by following MRI

contrast changes, which appeared punctate in tumor periphery at

an earlier time point (4 hours) and became clustering and dis-

seminated throughout the tumor at 24 hours postinjection (Fig-

ure 4). The noticeable pattern of punctate MRI signal changes at

4 hours post IV injection may result from the vascular phase of

PS-L-IO/DiR when significant numbers of the circulating PS-L-

IO/DiR bound to the PS exposed on tumor vascular ECs but not

yet penetrated the vessels. The timing of the vascular phase

actually coincided well with our previous studies of using

PGN635 to localize to exposed PS in tumors, in which our

histopathological analysis determined massive PGN635 binding

to tumor vascular ECs at 4 hours. Following the vascular phase,

the tissue phase was occurring over time after subsequent inter-

nalization by ECs and then followed by extravasation through

the tumor BBB and extravascular tissue distribution of the PS-L-

IO/DiR, which was reflected as the widespread clustering dark

signals in both tumor center and periphery on T2-weighted MRI

at 24 hours. It is well recognized that the physical features of

nanocarriers have significant effects on their intratumoral diffu-

sibility. Nance et al have recently shown that with appropriate

PEG coating and a neutral surface charge, the actual size of

Figure 3. Differential behavior of PS-targeted SPIO and PS-targeted liposomal SPIO. Left: adult bovine aortic endothelial cells (ABAE) were
pretreated with a single dose of 6 Gy radiation to induce PS exposure. The cells were incubated with conjugates of PGN635 F(ab0)2-SPIO (PS-
SPIO) or PS-targeted liposomal SPIO (PS-L-SPIO) for 1 hour. Prussian blue staining detected PS-SPIO primarily localizing externally on the cell
membrane (top), while abundant PS-L-SPIO were detected in the cytosol (bottom). Right: 24 hours after IV injection of PS-SPIO or PS-L-SPIO,
double staining of iron (Prussian blue; blue) and vascular endothelial cells (anti-CD31; brown) in tumor tissue specimens revealed punctate iron
of PS-SPIO colocalizing with tumor vessels (arrows; top); by contrast, clustering, widespread iron signals of PS-L-SPIO observed in a breast
tumor (bottom). Adapted from Zhou et al51 and Zhang et al.57 IV indicates intravenous; PS, phosphatidylserine; PS-L, PS-targeted liposomes;
SPIO, superparamagnetic iron oxide nanoparticle.
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nanoparticles can go up to 114 nm without significantly affect-

ing their movement within brain tissues.82 In our study, the

PEGylated PS-L-IO/DiR had a mean size of 110 nm and a

surface charge near to 0, which may also contribute to the wide

distribution of the PS-L-IO/DiR in glioma.

Phosphatidylserine-Targeted
Nanotheranostics for Image-Guided Drug
Delivery

It is well recognized that effectiveness of a nanodrug is often

governed by the kinetics of drug release and distribution after

systemic administration.83,84 There is an increasing interest in

developing nanotheranostics, an integrated system of imaging

agents with anticancer drugs.85-92 Ideally, the nanotheranostic

system enables the noninvasive in vivo imaging to monitor the

nanodrug delivery to not only their targets but also off-target

sites. In particular, some potent chemotherapeutic agents are

known for their severe toxicity to normal tissues as well.

Arsenic trioxide (ATO) is such an exemplary anticancer drug.

Arsenic trioxide is approved by the FDA for the treatment of

acute promyelocytic leukemia (PML). Arsenic trioxide has also

demonstrated significant activity in treating solid tumors in

preclinical studies. Several recent studies have shown that ATO

is able to reverse glioblastoma resistance to mechanistic target

of rapamycin (mTOR)-targeted therapies by inhibiting PML

protein signaling93 and deplete the cancer stem-like cell popu-

lation by inhibiting Hedgehog and Notch pathways.94-96 How-

ever, clinical use of ATO on solid tumors has generally been

limited by its systemic cytotoxicity.

Nanoencapsulated ATO within a cancer-targeted nanodeliv-

ery system may have a potential to alleviate its damage to

healthy tissues. Swindell et al. and Chen et al. have recently

shown a successful strategy to utilize transition metals such as

nickel or copper to actively load ATO into liposome. Nickel or

copper and ATO form a complex in the core of liposome,

preventing the leakage of ATO from liposomes.97,98 The sta-

bility of the complex depends on pH: It is stable at a neutral pH,

while it releases the therapeutic As3þ at a low pH, that is, pH

<6.98 Utilizing the transition metal approach, we have recently

developed a novel nanohybrid of ATO complex with

manganese.80 We chose to use manganese (Mn2þ) to entrap

ATO into liposome because Mn provides paramagnetic MRI

contrast. With 5 unpaired electrons, Mn2þ is among the best T1

contrast agents.85,99-101 However, the formation of As-Mn pre-

cipitates in the core of liposomes possesses magnetic suscept-

ibility effects, resulting in a dark MRI signal. However, after

the cell uptake and exposure to the low pH in the endosome–

lysosome system, the As-Mn complex decomposes to release

ionic As3þ, the active form of ATO and Mn2þ, which gives a

bright signal on T1-weighted images. Thus, the convertible

MRI contrast of Mn can serve as a surrogate of delivery and

release of free ATO from its inactive nanoformulation. As for

other dual functional nanoformulations, of which imaging

probes and drugs are often loaded separately into a different

compartment of a nanocarrier, that is, core and shell or surface

conjugation via a linker, inconsistent release or leakage of the

imaging agents with the drugs could be encountered after

administration, which will hinder the imaging-based accurate

monitoring of drug distribution. Built into the previously estab-

lished PS-targeted nanoplatform, the nanoencapsulated ATO

enables GBM-targeted delivery while minimizing off-target

effects. Our in vitro studies have demonstrated that PS-L-As-

Mn effectively kills temozolomide-resistant GBM PDX cells.80

Figure 4. Longitudinal MRI of intratumoral biodistribution of the PS-L nanoprobe in orthotopic U87 glioma. Left: T2-weighted MR images were
acquired before and at different time points postinjection of PS-L-IO/DiR (2.5 mg Fe/kg) via a tail vein of a mouse bearing orthotopic U87 glioma.
The hyperintense tumor was depicted (outlined) on 3 consecutive sections before injection. At 4 hours postinjection, signal voids (arrows)
started to be seen primarily in tumor periphery (arrows), which became more apparent in both the peripheral and central tumor (arrows) at 24
hours. Right: the targeting specificity of PS-L-IO/DiR was also confirmed with a control nonirrelevant antibody-labeled nanoprobe, Aur-L-IO/
DiR, showing no obvious signal change over time. Adapted from Zhang et al.81 MRI indicates magnetic resonance imaging; PS, phosphatidylserine;
PS-L, PS-targeted liposomes.
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Extensive studies are needed to investigate its in vivo specific

binding, pH-responded release kinetics, and ultimately the abil-

ity of PS-L-As-Mn to serve as a useful nanotheranostic agent

for image-guided delivery of ATO in the GBM PDX models.

Conclusions

In summary, we have demonstrated the utility of PS-targeted

liposomal nanoplatform for molecular cancer imaging, in par-

ticular, brain tumors imaging via its ability to penetrate the

tumor BBB. By encapsulating extremely toxic chemotherapeu-

tic agents, that is, ATO, the PS-targeted delivery of ATO spe-

cifically to brain tumors may be useful to treat those malignant

brain tumors resistant to the current standard of care, while

minimizing its systemic side effects. Furthermore, develop-

ment of PS-targeted nanotheranostics by incorporating imaging

contrast agents with anticancer drugs into the same nanostruc-

ture may enable image-guided drug delivery to treat brain

tumors. Because PS is the same molecule and has the same

distribution and regulation in all mammalian species, it is likely

that the mouse data will extrapolate to humans. Along with its

favorable safety profile, the PS-targeted lipid-based nanoplat-

form may be expedited for clinical evaluation of its applicabil-

ity as a nanocarrier of diagnostic and therapeutic agents for

patients with brain tumor.
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