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A role for an HTLV-1 vaccine?

Lee Ratner*

Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis,
MO, United States
HTLV-1 is a global infection with 5-20 million infected individuals. Although

only a minority of infected individuals develop myelopathy, lymphoproliferative

malignancy, or inflammatory disorders, infection is associated with

immunosuppression and shorter survival. Transmission of HTLV-1 is through

contaminated blood or needles, mother-to-child exposure through breast-

feeding, and sexual intercourse. HTLV-1 is a delta retrovirus that expresses

immunogenic Gag, Envelope, TAX, and Hbz proteins. Neutralizing antibodies

have been identified directed against the surface envelope protein, and

cytotoxic T-cell epitopes within TAX have been characterized. Thus far, there

have been few investigations of vaccines directed against each of these

proteins, with limited responses, thus far. However, with new technologies

developed in the last few years, a renewed investigation is warranted in search

for a safe and effective HTLV-1 vaccine.
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HTLV-1 is prevalent in many parts of the world, including Central & South America,

Caribbean Islands, Africa, northeast Iran, southern Japan, Melanesia, Australia, where

endemic rates are 5-10%, but in some isolated communities endemic rates as high as 50%

have been identified (1, 2). However, several large and highly populated regions in India

and North and East Africa have not been screened. In the US, the prevalence of HTLV

infection is 0.1-0.2% (3). HTLV-1 strains are highly conserved with <2% overall

divergence for cosmopolitan strains (HTLV-1a) from most areas of the world, with up

to 10% divergence with strains from Australia and Melanesia (HTLV-1c)(Figure 1) (4).

Strains from central Africa (HTLV-1b, d-g) are somewhat more divergent than the

HTLV-1a strains.

Diseases caused by HTLV-1 include an aggressive CD4+ lymphoproliferative

malignancy, designated adult T-cell leukemia lymphoma (ATLL) and spastic

paraparesis, known as HTLV-1 myelopathy (HAM) or tropical spastic paraparesis

(TSP) (5). Although, only 5-10% of infected individuals develop these disorders,

HTLV-1 is associated with many other clinical inflammatory disorders,

immunosuppression, and shortened survival (6). Sequence differences in the virus do

not correlate with disease development (7). HTLV-1 causes a lifelong persistent infection,
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which is never truly silent (8). This led to an increased focus by

the WHO on HTLV epidemiology and prevention strategies,

which included a recommendation to develop a global strategy

for the elimination of HTLV-1 (9).

Transmission of HTLV-1 is through contaminated blood or

needles, sexual intercourse, and breast feeding (10). Rarely,

HTLV is transmitted through ritual scarification practices (11).

Zoonotic transmission through severe bites from simian T-cell

leukemia virus type 1 infected non-human primates have also

occurred among hunters in central Africa (12). Transmission of

HTLV-1 from mother-to-child can be reduced by screening and

education, which is a nationwide strategy in Japan (13).

Horizontal transmission of HTLV-1, by sexual intercourse or

blood transfusion is also preventable (14). An additional

emerging concern is HTLV-1 infection upon organ

transplantation (15). Attempts to facilitate screening remain to

be developed.

After transmission, a balance between virus replication,

expansion of infected cells, and immune response to the virus

leads to the establishment of a proviral load “set point” after

HTLV-1 acquisition. However, there have been few studies of

acute HTLV-1 infection aimed at assessing the determinants and

kinetics of the set point. In a study of three individuals who

acquired HTLV-1 infection after organ transplantation, the
Frontiers in Immunology 02
proviral load set point was reached within 6 weeks (15). Thus,

therapeutic approaches to infection prophylaxis have a limited

time window in which to act. Nevertheless, it remains unclear

whether transmission through other routes establishes the

proviral set point with similar kinetics.

Cellular transfer of virus occurs more commonly via cell-to-

cell contacts than via free virus particles (16). Two types of cell-

cell contacts have been described to be critical for HTLV-1

transmission, tight junctions and cellular conduits (17). Non-

exclusive mechanisms of virus transmission at cell-cell contacts

include polarized budding into synaptic clefts and cell surface

transfer of viral biofilms at virological synapses (18, 19). In

contrast to CD4+ T-cells, dendritic cells can be infected with

cell-free virus and, to a greater extent, via viral biofilms (20).

HTLV-1 is a member of the d retrovirus family, which also

includes HTLV-2 and bovine leukemia virus (BLV) (21). HTLV-

2 is not clearly associated with disease, whereas BLV is a cause of

B cell lymphoproliferative disorders in cattle. HTLV-1 encodes

classical retrovirus structural proteins from group-specific

antigen (gag) and envelope (env) genes, and enzymes from the

protease (pr) and polymerase (pol) genes that encode the viral

protease, reverse transcriptase (RT), and integrase (IN). Virus

infection is mediated by a receptor complex on the cell surface

and the virus particle is taken into cells by membrane fusion.
FIGURE 1

Phylogenetic representation of the HTLV-1 genotypes and subgroups. An alignment of complete LTR sequences (774 nucleotides long) from
178 HTLV-1 strains was obtained. The unrooted phylogenetic tree was generated with the neighbor-joining method using the GTR model
(gamma=0.50). Branch lengths are drawn to scale, with the bar indicating 0.01 nucleotide replacements per site. Numbers on each node
indicate the percentage of bootstrap samples (of 1000 replicates). HTLV-1 genotypes (a-g) and subgroups with HTLV-1a and HTLV-1c are
presented. Published with permission from the author and journal (4).
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Virus uncoating activates RT to copy the two copies of the plus-

strand viral RNA genome into a dsDNA copy that is integrated

into cellular DNA by the viral IN. Transcription is mediated by

cellular RNA polymerase II, and viral RNAs may be spliced or

unspliced prior to export from the nucleus. Translation produces

viral proteins, including the Gag, Gag-Pr, and Gag-Pr-Pol

polyprotein precursors which are processed into individual

components during virus budding. Envelope is synthesized

and processed in the reticuloendothelial-Golgi system,

transported to the plasma membrane, and incorporated into

the budding virus. Regulatory proteins, are encoded from

multiple spliced RNAs and include the transactivator protein,

TAX, the regulator of splicing and nuclear export, REX, the helix

zipper protein, HBZ, as well as proteins designated p12, p27, and

p30 that are presumed to regulate virus replication and/

or pathogenesis.

HTLV-1 encodes two oncoproteins, TAX and HBZ (22–24).

TAX promotes cytoplasmic signaling through various receptors

and causes abnormal cell cycle regulation, genetic instability, and

inhibition of DNA repair and apoptosis (25). HBZ counteracts

the functions of TAX promoting a persistent latent infection

(26). HBZ regulates signaling pathways important for

inflammation, transcription, apoptosis, autophagy, histone

methylation, and T-cell differentiation (27).
HTLV-1 envelope glycoprotein

The HTLV-1 env gene encodes the gp62, 488 amino acid

envelope precursor glycoprotein which is cleaved by furin-like

enzymes into a 20 amino acid (AA) signal peptide, a 292 amino

acid gp45 surface envelope protein (SU) and a 176 amino acid

gp21 transmembrane envelope protein (TM). SU has four

asparagine (N)-linked glycosylation sites (AA 140, 222, 244,

and 272; Figure 2), and TM has a single N-linked glycosylation

site (AA 404), a disulfide bond (AA 393-400), and a S-

palmitylated cysteine residue (AA 462). TM includes the

fusion peptide (AA 313-333), and two coiled coil, heptad

repeat (HR) domains (AA 341-387 and 397-429).

SU mediates infection by binding to cellular entry factors

heparin sulfate proteoglycans (HSPG), glucose transporter 1

(GLUT-1), and neuropilin-1 (NRP-1) (28). Subsequent

conformational changes include isomerization of a SU-TM

intersubunit disulfide result in fusion of the viral and cellular

membranes (29). Although the crystal structure for SU has not

yet been determined, it has been proposed to contain two

separate folding domains separated by a proline-rich linker

peptide (PRR; Figure 2) (30). The N-terminal region,

designated the receptor-binding domain (RBD) is necessary

and sufficient for binding to GLUT-1. The C-terminal domain

includes the binding site for HSPG.

Retroviral envelope proteins, like those of coronaviruses,

arenaviruses, filoviruses, pneumoviruses, and orthomyxoviruses
Frontiers in Immunology 03
are class I fusion proteins (31). They are all type I single-pass

trans-membrane proteins that form non-covalently linked

homotrimers in their pre- and post-fusion conformations. The

structural hallmark of class I fusion proteins is the parallel

trimeric a-helical coiled-coil in the post-fusion C-terminal

subunit (TM in the case of retroviruses). This long a-helix of

the coiled coil contains the HR with non-polar amino acids at

positions 1 and 4 of the repeats. The C-terminal portion of the

a-helix runs antiparallel to the N-terminal portion along the

grooves of the coiled-coil to complete the post-fusion hairpin,

thereby making a trimeric postfusion six-helix bundle. Detailed

structures are available for many of these proteins in each

conformation. A common feature of these proteins is their

dynamic conformational changes, presenting open and closed

forms in equilibrium (32). There is a large body of research

indicating that it is the closed form that is recognized by the

known broadly neutralizing antibodies, whereas the epitopes

exposed in the open form which do not bind these antibodies
Neutralizing anti-HTLV-1 antibodies

Polyclonal and monoclonal antibodies to HTLV-I envelope

proteins, including SU, have been demonstrated to neutralize

HTLV-I infection (33–36). Neutralizing antibodies were

observed in HTLV-1 infected individuals, which can prevent

infection (37–40). These antibodies may interfere with receptor

or coreceptor recruitment, or prevent receptor-induced changes

in SU conformation that are required to activate the fusogenic

properties of envelope (41). Major neutralizing domains of SU

have been mapped to 4 domains (AA 53-75, 88-107, 175-215,

and 287-311, Figure 2) (35, 36, 42). Efficacy of neutralizing

antibodies was demonstrated by passive transfer of anti-

envelope antibodies which block blood-borne or milk-borne

HTLV-1 infection of rabbits (43–47)
HTLV-1-specific cellular immunity

HTLV-1 infection elicits a strong CTL response (48). The

frequency of HTLV-1-specific CTLs may be very high with up to

10% of circulating CD8+ T cells recognizing a single

immunodominant CTL antigen target, TAX (49). The

frequency of HTLV-1-specific CTLs is correlated with the

HTLV-1 proviral load (50). This raised the hypothesis that

HTLV-1-specific CTLs may fail to eradicate the virus, and

may contribute to the inflammatory tissue damage with

disease. presentation However, there is also evidence that CTL

responses to HTLV-1 may be protective. Higher expression of

CTL effector proteins is correlated with lower proviral load (51).

In addition, the immunodominant TAX protein is subject to

positive selection in vivo (52). Envelope-specific CTLs have also

been detected, but are present at low frequencies (53, 54). T-cell
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epitopes within envelope in HLA-A2-positive individuals were

mapped to residues 175-183, 182-190, 239-247, 395-403, and

442-450 (55, 56). The lytic efficiency of the CD8+ T cell

response, as measured by the fraction of HTLV-1-expressing

cells eliminated per CD8+ cell per day, was found to be inversely

correlated with both the proviral load and the rate of

spontaneous proviral expression (57). However, ATLL patients

have weak CTL responses to HTLV-1 antigens (58).
Vaccination against HTLV-1

Preventative vaccines are highly effective against a wide

range of viral diseases, including cancer viruses, hepatitis B

virus and human papilloma virus (59). There has also been a

resurgence in therapeutic cancer vaccines (60), including

malignancies caused by viruses (61), as well as non-viral

cancers associated with production of neoantigens (62).

However, most efforts focused on a vaccines for retroviruses

have been concerned with HIV, and with very limited success,

thus far (63). Nevertheless, an inactivated viral vaccine for

feline leukemia virus has been developed that provides

protection against heterologous strain infection (64). The

vaccine did not prevent infection, but it did induce an

antibody response and results in proviral loads more than

100-fold lower than challenged but non-vaccinated cats, that

were detectable for a shorter time interval. A recombinant

feline leukemia virus vaccine (PureVAX) is also commercially

available, which utilizes a canary pox vector to express a
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mutated envelope, gag, and a truncated polymerase protein,

resulting in 93% efficacy (65)

Several studies have evaluated vaccines against BLV (66).

Inactivated BLV, crude lysates from persistently infected cell

lines, peptide antigens, poxvirus-expressed BLV antigens, or

DNA vaccines led to partial protection, with declining

neutralizing antibody titers and poor stimulation of CTL

responses. An attenuated BLV vaccine was made with

deletions in TAX and the antisense accessory (G4) genes,

resulting in a virus capable of very low levels of infectivity and

replication, which is commercially available (67).

Kazanji et al. tested a chimeric peptide vaccine composed of

B- and T-cell epitopes of HTLV-1 (68). They identified high titer

antibodies and a high frequency of interferon g-expressing cells

against the envelope and TAX immunogens, but not against

individual TAX peptides. After challenge, partial protection was

achieved as evidenced by lower proviral loads in immunized

compared to control animals. Studies with peptide

immunization had previously been performed in rabbits by

Takehara et al. (43). In that case, rabbits were vaccinated with

a peptide corresponding to Env amino acids 175-196. Although

pre-challenge sera from these rabbits showed high titers of anti-

HTLV-1 Env antibodies, after challenge, virus was recovered

from all rabbits.

A highly attenuated poxvirus expressing the entire HTLV-1

envelope protein was used to immunize New Zealand white

(NZW) rabbits (69). The animals were protected from HTLV-1

infection, but not protected upon re-challenge 5 months later

with 10- to 100-fold greater infectious virus load. It was unclear
FIGURE 2

Localization of the neutralizing regions and the domains and residues involved in HSPGs, NRP-1, and GLUT-1 binding within the HTLV-1 SU
protein. The 90-94 motif identified as critical for direct NRP-1 binding corresponds to a minimal neutralizing epitope, and contains the R94
residue required for HTLV-1 particle infectivity. R94, as well as D106 and Y114 that mediate binding of the H1-RBD to target cells are required
for H1-RBD-mediated receptor interference. The C-terminal domain of the SU contains the determinants for HSPG binding. Published with
permission from the author and the journal (28).
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whether the lack of protection to re-challenge was a result of

being overwhelmed with a large dose of virus, or due to the

presence of a viral variant that evaded the immune response.

Hokada et al. also inoculated rabbits with a recombinant

vaccinia virus carrying the HTLV-1 envelope gene (70). This

vaccine elicited anti-envelope and antibodies, but neutralizing

antibodies were not detected. In addition, this vaccine did not

prevent infection.

Nakamura et al. immunized 4 cynomolgus monkeys with 4-

6 doses of E coli-produced HTLV-1 envelope protein (71). These

animals were protected against infection, when challenged with a

live HTLV-1 producing cell line, MT2. However, 2 monkeys

inoculated with fewer doses did not produce antibodies that

block HTLV-1 induced syncytium formation and were not

protected against challenge with MT2 cells.

Ibuki et al. inoculated 2 cynomolgus monkeys with a

recombinant vaccinia virus expressing the HTLV-1 envelope,

and elicited neutralizing antibodies, and these animals were

protected against infection (72). Kazanji et al. tested several

HTLV-1 vaccines in squirrel monkeys (73). These included

attenutated vaccinia virus-derived HTLV-1 env and/or gag

expression vectors. However, after 3 inoculations, only one of

three animals was protected against infection. Since naked DNA

has also been used to induce neutralizing antibodies against

HTLV-1 envelope glycoproteins in mice (74, 75), Kazanji et al.

also incorporated this reagent in their studies (73). Priming

animals with an env DNA vaccine followed by the recombinant

vaccinia virus expressing env and gag resulted in protection of all

three inoculated animals.

Kabirit et al. synthesized a multi-epitope chimeric protein

with TAX, Env, and Gag immunodominant epitopes encapsulated

in biodegradation poly(D,L-lactide-co-glycolide) nanoparticles

(76). This preparation elicited antibody and cytokine responses

in mice, but efficacy against infection was not reported. Humoral

and cell-mediated immune response against the HTLV-1

envelope were detected in the protected animals.

A recombinant HTLV-1 glycoprotein protein vaccine was

made against the HTLV-1c glycoprotein (77). This subunit

vaccine utilized a molecular trimerization domain clamp to

stabilize the prefusion conformation of the glycoprotein (78).

This approach was previously used to stabilize influenza A

hemagglutinins, using HIV-1-derived heptad regions. For the

HTLV-1c envelope vaccine, the clamp was modified to negate

production of anti-HIV-1 envelope antibodies. Use of several

different adjuvants resulted in strong antigen-specific responses

in mice.

MHC-I-bound HTLV-1 peptides have been identified

which give rise to HTLV-1-specific CTLs in vivo (79). A

therapeutic vaccine to activate TAX-specific CTLs was

developed using TAX peptide-pulsed dendritic cells, resulting

in favorable clinical outcomes in three ATLL patients (80, 81).

These investigators also demonstrated that dendritic cells from

peripheral blood mononuclear cells of a chronic ATLL patient
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evoked TAX-specific CTL-responses (82). However, since half of

all ATLL patients lose the ability to express TAX, this approach

may have limited utility (83). MacNamara et al. quantified the

contribution of all HLA class I alleles to host protection against

infection with HTLV-1 (84). They concluded that CD8+ cell

response to HBZ are most effective. HTLV-1 carriers who had

MHC class 1 alleles which could preferentially bind and present

epitopes from HBZ were more likely to have low proviral loads,

and less likely to develop disease than carriers who had MHC

alleles which weakly bound HBZ peptides. Vaccination with a

recombinant vaccinia virus expressing HBZ resulted in CTLs

with anti-lymphoma effects in HBZ transgenic mice (85). In

addition, this vaccine produced HTLV-1-specific T cell

responses in infected rhesus monkeys (85).
RNA vaccines

Messenger RNA (mRNA)-based vaccines hold the promise to

revolutionize the infectious disease prevention field by addressing

current manufacturing challenges and offering novel vaccine

compositions (86). Critical quality attributes are high efficiency

of expression with a 5’cap, 5’untranslated region of optimal length

with key regulatory elements, codon optimization, 3’poly-A tail

length appropriate for translation, and lack of impurities that

induce inflammatory cytokines and reduce expression. The use of

lipid nanoparticle (LNP) formulations stabilize the mRNA and

facilitate cellular uptake. As of 2020, 12 clinical trials for mRNA-

based infectious disease vaccines were completed for infectious

agents including respiratory syncytia virus, rabies, chikungunya,

zika, parainfluenza, influenza, and cytomegaloviruses. The recent

success of coronavirus-19 mRNA vaccines has re-energized the

field (87). These vaccines, based on a “universal” LNP delivery

system, have proven tolerable and highly efficacious. Challenges

remaining include thermal instability of the mRNA cargo, further

optimization of the nanoscale delivery platform to produce target-

specific immunoactivation and prolong the duration of the effect,

achieving a “one-shot” approach, achieving low cost for low- to

middle-income countries, lack of clarity about the longevity and

type of immunoprotection offered, and hypersensitivity reactions.

This approach is worthy of investigation for HTLV-1.
Clinical vaccine trials

A safe and effective vaccine preparation in animal studies

will eventually be considered for clinical trials. This would

include phase 1 safety and pharmacokinetics studies in

volunteers. Phase 2 and 3 trials would then be targeted to a

population at risk of acquisition of HTLV-1. The largest and

most suitable population would likely be individuals at

significant risk of sexual acquisition of HTLV-1 in an

endemic region.
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Conclusions

Previous studies in rabbits and monkeys suggest that

inoculation with HTLV-1 gene products may provide

protection against infection. The ideal vaccine candidate and

method of inoculation remains to be deciphered. In addition,

immune correlates of response remain to be determined.

Although some studies suggest that neutralizing antibodies

against the HTLV-1 envelope protein may provide protection

against infection, the role of cytotoxic T lymphocyte responses

against envelope and other viral proteins remains to be fully

characterized. In addition, antibody-dependent cellular

cytotoxicity, known to occur in primary infection (88–90),

could also be important in vaccine protection.

The WHO issued a technical report in 2020 with a strong

recommendation for global strategies to eliminate transmission of

HTLV-1 (9). Thus, further studies of possible efficacy and safety of

HTLV-1 vaccines is warranted. It will be interesting to determine

why some people who are infected with HTLV-1, manage to

maintain a very low proviral load set-point, and have a very low

risk of disease. Analysis of such HTLV-1 “elite controllers” could

provide important details to defining a protective response to the

virus. If a safe and effective vaccine can be developed, it remains

unclear which individuals might benefit from its use. Individuals at

greatest risk of acquisition of HTLV-1, include people who are

sexual partners of HTLV-1 infected subjects. In addition, a vaccine

could have benefits in preventing maternal-to-child transfer.

Although control of breast-feeding was effective in Japan in

preventing vertical transmission, limiting breast-feeding in

developing countries might cause malnutrition issues with

newborns, so vaccination might have unique advantages in these
Frontiers in Immunology 06
settings. Thus, the highest prevalence of such individuals will be

sexually active individuals in HTLV-1 endemic areas.
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