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A commentary on

Prestimulus Theta Oscillations and Connectivity Modulate Pain Perception

by Taesler, P., and Rose, M., (2016). J. Neurosci. 36, 5026–5033. doi: 10.1523/JNEUROSCI.3325-
15.2016

Pain experience includes the fine-grain integration of both attentive and automatic (bottom-up;
Legrain et al., 2012), as well as affective and intentional (top-down; Buschman and Miller, 2007)
processes. While the neural underpinnings of post-stimulus pain processing have been deeply
explored (Hauck et al., 2008), the oscillatory brain activity preceding pain processing is less far
investigated.

In a recent issue of Journal of Neuroscience, Taesler and Rose (2016) addresses this topic by
recording EEG from healthy participants who were forced to judge as “painful” or “non-painful”
series of electrical stimulations delivered on their own left-hand. Painful stimulation was elegantly
kept constant at the painful-threshold of each participant, and a subtractive approach (“painful”
minus “non-painful” trials) was adopted to study the EEG signatures underlying pain processing.
Results revealed enhanced pre-stimulus theta and gamma activity. Specifically, pre-stimulus
theta power was both increased and decreased over fronto-temporal ipsilateral and contralateral
electrodes, respectively. Instead, pre-stimulus gamma power was enhanced over frontal and
temporal electrodes. Tellingly, while the ipsilateral reduction of theta-band power paralleled a
decreased theta-band connectivity over frontal-lateral electrodes, the contralateral increase resulted
in an enhanced connectivity of a bilateral fronto-temporal/centro-parietal network. Also, the
connectivity-pattern of the gamma increased between Fz and a parieto-temporal cluster around P6.
Interestingly, source-analysis revealed likely generators in the bilateral insular cortex and posterior
cingulate cortex for the theta, and contralateral insular cortex for the gamma band.

While this paper provides interesting and novel findings, we believe that these results deserve
to be further discussed and interpreted in view of (i) the state-of-art literature of pain, and (ii)
an integrated neurocognitive model of that takes into account both pain and negative-feedback
processing.

First, the core of discussion of the authors aims at interpreting pre-stimulus theta oscillations as
the vehicle by which both contra- and ipsi-lateral insular cortices communicate to process painful
stimulation. This relevant result is compared to two previous studies (Sarnthein et al., 2006;Walton
et al., 2010) on chronic-pain patients, in which, however, only post-stimulus theta oscillations were
related to pain processing. Thus, while Taesler and Rose provided relevant additions to the literature
on pain processing, a direct comparison with these latter studies is still difficult to be assessed
given the different neurocognitive mechanisms underlying the processing of pain in individuals
with chronic sensitization respect to healthies (Bushnell et al., 2013).
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Moreover, the pre-stimulus theta-band power increase can
be viewed from a different perspective when considering that
the paradigm of Taesler and Rose, by delivering in each trial
a constant painful stimulation after a fixation-cross, induces
a strong “stimulus–stimulus” association. This trial-by-trial
“stimulus–stimulus” reinforcement, can induce an expectancy of
pain thatmight lead the neurocognitive system of pain processing
to be active before the onset of the actual painful stimulation.
Such an affective and anticipatory activation is in keeping with
previous evidences (Palermo et al., 2015; Sawamoto et al., 2000)
showing that expectation of pain amplifies brain responses to
the somatosensory stimulation and activates mainly the anterior
cingulate cortex and insular cortices.

Consequently, given that both insular cortices and various
regions of the middle-frontal cortex (Ridderinkhof et al.,
2004), are linked to pre- and post-conflict monitoring (Yeung
et al., 2004), feedback-monitoring and reinforcement-learning
(Holroyd and Coles, 2002) via increasing theta band oscillations
(Cohen, 2014), we argue that the pain processing system can
share the same temporal dynamics as the performance (and
conflict) monitoring system (Shackman et al., 2011). In fact,
it is worth noting how in Taesler and Rose the displacement
of theta oscillations from pre- to post-stimulus, evolves
from insular cortices to fronto-central and dorso-lateral
ones. In this view, we suggest that the temporal dynamics
of processing painful stimulation can develop from an early
affective, orienting/salience response to unpleasant/unfavorable
outcomes—processed by right and left insular cortices
prior to painful stimulation—to a late processing of the
unfavorable/painful outcome itself—processed by frontal
regions after painful stimulation. Accordingly, the theta-related
connectivity pattern showed by Taesler and Rose, seems to
resemble the pattern of activation usually found when the
so-called “saliency network”—mostly governed by the anterior
insular cortex—attempt to elicit a (re)orienting response
before negative outcomes. In fact, it is arguably known how
the activation of the anterior insular activity, by signaling an
increased likelihood to receive unfavorable outcomes, aims at
rapidly calling for additional cognitive control or behavioral
adjustment (Klein et al., 2007). Thus, considering that in Taesler
and Rose, participants were always stimulated at their own
painful threshold, the activity in the insular cortices could
have governed, via theta increase, two different processes,
namely: (i) the integration of personally/motivationally
information linked to painful stimulation and (ii) the
preparatory allocation of cognitive and physical resources
of salience processing. While the latter is in keeping with
previous evidence (Sridharan et al., 2008), the former can be
addressed to the notion that pain-related cortical responses

reflect the processing of saliency of painful stimulations that
is related to a salience-specific multimodal neural activity
rather than pain-specific unimodal neural response (Valentini
et al., 2011). However, studies investigating this latter issue in
the pre-stimulus interval are still missing, and further effort
is needed to explore the link between these two cognitive
processes and the underlying electro-cortical signatures of pain
processing.

Contrarily, the later stage of pain detection and the post-
stimulus theta synchronization over middle-frontal and parieto-
occipital brain regions, has been less discussed by the authors.
It is worth mentioning that the pre-stimulus theta activation
over the bi-lateral insular cortices shifts over fronto-central
scalp location during the post-stimulus processing. Interestingly,
such an increase over mid-frontal electrodes might be linked
to the neurophysiological coding of: (i) individual psychological
traits during processing of painful stimuli (Schulz et al., 2012),
and (ii) negative outcome monitoring related to a recruitment
of top-down cognitive processes to ultimately adapt future
behavior. This latter hypothesis needs to be tested as it
could represent a valid integration of the saliency-processing
theory (Iannetti and Mouraux, 2010) and the performance-
monitoring model. In this view, painful stimulation might
be processed by the brain in the same way as negative
feedback/outcome (Shackman et al., 2011), and its detection
and encoding may be reflected in a coupling between
post-stimulus theta-gamma oscillations, where theta might
be considered an high-level/ cognitive cortical marker of
mismatch detection, and the gamma a low-level/perceptual
neural signature of the saliency and the intensity of pain
processing, respectively.

Concluding, Taesler and Rose provided optimal evidences to
deepen the functional significance of theta oscillations evoked
before and after painful stimulation. Based on our arguments
we also believe that future investigations should focus on an
integrative neuro-cognitive model of pain perception that should
take into account also negative/unpleasant outcome monitoring,
performance monitoring models, and their underlying electro-
cortical signatures.
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