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Abstract: Individuals living with human immunodeficiency virus type 1 (HIV-1) are often plagued
by debilitating neurocognitive impairments and affective alterations;the pathophysiology underlying
these deficits likely includes dopaminergic system dysfunction. The present review utilized four
interrelated aims to critically examine the evidence for dopaminergic alterations following HIV-1
viral protein exposure. First, basal dopamine (DA) values are dependent upon both brain region
andexperimental approach (i.e., high-performance liquid chromatography, microdialysis or fast-scan
cyclic voltammetry). Second, neurochemical measurements overwhelmingly support decreased
DA concentrations following chronic HIV-1 viral protein exposure. Neurocognitive impairments,
including alterations in pre-attentive processes and attention, as well as apathetic behaviors, provide
an additional line of evidence for dopaminergic deficits in HIV-1. Third, to date, there is no compelling
evidence that combination antiretroviral therapy (cART), the primary treatment regimen for HIV-1
seropositive individuals, has any direct pharmacological action on the dopaminergic system. Fourth,
the infection of microglia by HIV-1 viral proteins may mechanistically underlie the dopamine deficit
observed following chronic HIV-1 viral protein exposure. An inclusive and critical evaluation of the
literature, therefore, supports the fundamental conclusion that long-term HIV-1 viral protein exposure
leads to a decreased dopaminergic state, which continues to persist despite the advent of cART. Thus,
effective treatment of HIV-1-associated apathy/depression and neurocognitive impairments must
focus on strategies for rectifying decreases in dopamine function.

Keywords: dopamine; HIV-1; combination antiretroviral therapy; pre-pulse inhibition; attention;
apathy; microglia; dendritic spines

1. Introduction

Since the beginning of the acquired immunodeficiency syndrome (AIDS) epidemic,
neurocognitive impairments (NCI) and affective alterations have been associated with the
disease [1,2]. Early in the AIDS epidemic, underlying focal processes and opportunistic
infections accounted for approximately 30% of the neurological complications in individu-
als with AIDS; a progressive dementia, however, was more commonly reported [3]. The
identification of human immunodeficiency virus type 1 (HIV-1) as the retroviral etiology
of AIDS [4,5] led to the hypothesis that NCI and affective alterations may result from
the direct effect of the virus on the brain. Indeed, HIV-1 penetrates the central nervous
system (CNS) early in the course of infection [6], evidenced by the presence of HIV-1 in
postmortem brain tissue [7–9], findings which led to the characterization of this progressive
dementia, which became known as AIDS dementia complex (ADC, also recognized as
HIV-associated dementia (HAD)).

ADC, which afflicted approximately 66% of autopsy-verified AIDS patients early in
the epidemic, was a neurological syndrome primarily occurring during the later phases of
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systemic AIDS [3]. Early clinical characteristics of ADC included NCI (e.g., forgetfulness,
loss of concentration), affective alterations (e.g., apathy) and motor system deficits [3,10,11].
Across time, most patients with ADC exhibited a steady decline in neurocognitive function,
leading to severe dementia, ataxia and motor weakness [10].

Pathologically, distinct abnormalities in the white matter and subcortical structures,
including the basal ganglia, were observed in the brains of individuals with ADC [12],
observations which led researchers to hypothesize dopaminergic system dysfunction as
a potential mechanism underlying the disease [13]. Cerebrospinal fluid (CSF) levels of
dopamine (DA [14,15]) and homovanillic acid (HVA [15–17]), the primary DA metabolite,
were significantly reduced in HIV-1/AIDS patients relative to seronegative controls. In
HIV-1-infected brains, significant reductions in tyrosine hydroxylase (TH), the rate-limiting
enzyme of DA synthesis, were also observed [18]. Most critically, the relationship between
CSF HVA levels and neuropsychological function in HIV-1-infected patients provided
compelling evidence for the role of dopaminergic system dysfunction in the pathogenesis
of ADC [17].

With the discovery and introduction of antiretroviral therapies, however, AIDS/HIV-1
became a chronic, manageable disease, albeit NCI and affective alterations persist. The
development of zidovudine (azidothymidine [19]), the first generation of antiretroviral
therapy, provided early evidence that effective inhibition of HIV-1 may have some effects
on cognitive function in AIDS patients [20–22]. Zidovudine monotherapy did not, however,
mitigate affective alterations [20]. The subsequent utilization of multiple antiretroviral
compounds to treat HIV-1 (i.e., combination antiretroviral therapy (cART)) led to a dra-
matic decrease in the severity of NCI and affective alterations associated with HIV-1 [23].
Specifically, in the post-cART era, ADC is rare, afflicting only 2–8% of cART-treated HIV-1
seropositive individuals [23]. However, milder forms of NCI and affective alterations
persist, afflicting between 30% and 70% of HIV-1 seropositive individuals [24–27].

Although the pathophysiology of HAND and affective alterations in the post-cART era
is likely multidimensional, dopaminergic system dysfunction persists [28–30]. Using four
interrelated aims, the present review will examine evidence for alterations in dopaminergic
levels in HIV-1 in the post-cART era. Given that approximately 73% of HIV-1 seropositive
individuals are currently accessing antiretroviral treatment [31], the present review focuses
on studies using biological systems (i.e., HIV-1 seropositive individuals, primates, rats,
mice) with viral suppression. First, we will report basal/tonic values of DA in the CNS,
including a discussion of the experimental approaches (e.g., high-performance liquid
chromatography (HPLC), microdialysis, fast-scan cyclic voltammetry (FSCV)) used to
measure DA. Second, the present review will examine the prominent evidence, including
both anatomical and clinical symptomology, for the persistent decreased dopamine in
HIV-1 seropositive individuals. Third, the potential effects of cART on the dopaminergic
system will be assessed. Finally, we will address the mechanistic implications for dopamine
decreases in HAND.

2. Basal Dopamine Concentrations in the Central Nervous System

The physiological significance of DA [32], and its presence in the brain [33–35], was
first established in the 1950s. Subsequent methodological advances, including the develop-
ment of microdialysis, HPLC and FSCV, afforded a critical opportunity to detect changes
in basal (or tonic) DA [36]. However, DAs precise influence on cognition and behavior
remains unclear, in large part due to inconsistencies in measured DA levels. Thus, one
of the primary goals was to illustrate the inconsistencies in values via examination of the
standard error of the mean and relative standard error.

DA concentration was estimated using the reported means, which were converted
into ng/g of tissue (Table 1). Reported estimates are collapsed across species and biological
sex under the assumption that the variability between brain regions and methodological
approach are greater than the variability between species and sex [37]. Each manuscript,
therefore, provided a single observation for each brain region that was reported. All
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estimates, as well as information regarding species and biological sex, are reported in
Supplementary Table S1.

Critical evaluation of the literature revealed that basal DA values are dependent upon
not only brain region, but also methodological technique (between-subjects ANOVA with
log estimated DA concentration in ng/g of tissue as the dependent variable: brain region
by method interaction, F(5,104) = 7.05, p ≤ 0.001, ηp

2 = 0.253; Table 1; Figure 1). For
example, utilization of HPLC to measure DA in the nucleus accumbens (NAc) results in an
average estimated DA concentration over 40,000 times greater than the average estimated
DA concentration measured using microdialysis. This outcome might be anticipated due to
tissue homogenization prior to HPLC measurement; HPLC, therefore, measures total tissue
DA content, whereas microdialysis measures extracellular DA levels [38]. Additionally,
substantial variability in reported basal DA values within a single methodological approach
was observed. For example, the relative standard error for the NAc was 33.9%, 17.1% and
27.8% for HPLC, microdialysis and FSCV respectively, values which are even higher in
other brain regions (e.g., amygdala: 84.1% (HPLC) and 50% (microdialysis)). Given the
substantial variability within and between methodological techniques, a brief discussion
of some of the critical experimental considerations underlying these discrepancies is war-
ranted. In addition, the potential utility of the latest technology (i.e., G protein-coupled
receptor (GPCR) biosensors) for monitoring DA release is briefly reviewed.

Table 1. Estimated basal dopamine (DA) values. Abbreviations: High Performance Liquid Chromatogrphy (HPLC); Fast
Scan Cyclic Voltammetry (FSCV).

Brain Region Methodology

Estimated DA
Concentration in ng/g

of Tissue
(X ± SEM)

Relative Standard
Error References

Amygdala
HPLC 3683.85 ± 3097 84.1% [39–43]

Microdialysis 0.06 ± 0.03 50% [44–47]

Caudate
HPLC 16,365.9 ± 12,341.04 75.4% [28,39,41,48–54]

Microdialysis 0.88 ± 0.66 75% [44,55,56]

Frontal Cortex
HPLC 200.73 ± 84.41 42.1% [28,39,42,52,54,57–62]

Microdialysis 0.23 ± 0.10 43.5% [44,63–65]

Nucleus Accumbens

HPLC 35,772.90 ± 12,020.28 33.6% [41–43,51,52,57,59,60,62,66–68]

Microdialysis 0.76 ± 0.13 17.1% [44,45,47,55,63–65,67–99]

FSCV 6.95 ± 1.93 27.8% [100–104]

Striatum
HPLC 67,460.52 ± 29,013.28 43% [59,61,62,66,67,105–111]

Microdialysis 1.42 ± 0.40 28.2% [64,73,74,76,79,82,85,112–114]

Ventral Tegmental Area
HPLC 9200 [66]

Microdialysis 0.25 ± 0.07 28% [75,83]

2.1. High-Performance Liquid Chromatography (HPLC)

Broadly, chromatography is a well-established separative and analytical technique
introduced by James and Martin [115]; the emergence of HPLC, however, is attributed to
Huber and Hulsman [116]. To conduct HPLC, a pressurized liquid solvent (i.e., mobile
phase) containing the sample is passed through a column filled with a solid adsorbent
material, and each compound elutes at a unique rate, resulting in the separation of compo-
nents as they flow through the column [117]. The isolated compounds are subsequently
identified and quantified using a detector (e.g., UV/Vis spectrometry). HPLC can be
further subdivided into multiple types dependent upon the type of column (e.g., liquid–
liquid, ion-exchange, size exclusion) and “mobile phase” (e.g., non-polar, polar), factors
which influence sensitivity, resolution and the method of brain tissue extraction. Critically,
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differences in extraction methodology (e.g., time of initial extraction, aqueous pH value,
extraction solvents) result in drastic differences in percent recovery, an indirect measure of
basal DA concentration [118].
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Given HPLC’s wide use, sources of random and systematic error in HPLC have
been studied extensively [119]. The brief discussion in the present review will focus on
sources of error reported to affect the electrochemical detection of DA. First, the mobile
phase column composition (e.g., ion pairing agent type, organic modifier, pH) has a
pronounced effect on the capacity factor (k’), retention time, peak height units of DA and
peak symmetry [120–124]. Second, the flow gradient rate, similarly, has a prominent effect
on the resolution of the eluting compounds, k’ and background current [125]. Finally,
chromatographic instrumentation, including the column temperature, alters the retention
time of DA, whereby an increase in column temperature is associated with a decrease in
retention time [123]. Additionally, column age may influence the resolution between DA
and its metabolite (i.e., 3,4-Dihydroxyphenylacetic acid), whereby decreased resolution has
been observed after approximately 500 injections of the biological material directly onto
the column top [121].

2.2. Microdialysis

The utilization of microdialysis to quantify neurotransmitters in the brain was first
reported in the 1970s and 1980s [126–128], research which contributed significantly to
the widespread implementation of microdialysis methods. Microdialysis relies on the
principle of diffusion, whereby molecules move from an area of high concentration to
an area of low concentration. Methodologically, a microdialysis probe composed of a
semipermeable dialysis membrane is surgically implanted into the brain, and a perfusion
medium is infused slowly and continuously [129]. During perfusion, molecules in the
extracellular space diffuse through the semipermeable membrane, are transported into
outflow tubing and are collected for analyte quantification (e.g., HPLC [129]; Figure 2A).
Although microdialysis detects neurotransmitters at low- to sub-nanomolar levels (for
DA, see [113]), the technique has relatively low spatiotemporal resolution and is unable to
evaluate real-time changes in the neurochemical environment.

Despite being considered the “gold standard” for obtaining basal neurotransmitter
levels, methodological limitations may impede precise and/or consistent measurements.
The diameter of a typical microdialysis probe is approximately 300 µm, a size which is
substantially larger than neurons and glial cells (5–100 µm), as well as blood capillaries
(8–10 µm) and vessels (~1 mm) in the brain [130]. Implantation of microdialysis probes,
therefore, damages brain tissue, as evidenced by signs of ischemia [131,132] and a com-
promised blood–brain barrier [131,133]. Additionally, tissue damage resulting from the
microdialysis probe disrupts synapses and neurons [134]. Critically, dopaminergic activity
is disrupted by the implantation of microdialysis probes, as evidenced by both decreased
DA release over post-probe implantation time [135] and alterations in the amplitude of
evoked responses [136,137]. Recently developed novel approaches, including pharmaco-
logical agents [138,139] and a microfabricated probe [140], have the potential to mitigate
some of the concerns regarding tissue disruption.

Consistent measurement of basal DA levels is further dependent upon multiple
methodological details. Although HPLC is often used as a method to quantify the output
from microdialysis, the methodological details discussed within the present section are
conducted prior to the quantification of analytes. First, inappropriate concentrations of
specific ions (e.g., Ca2+, NA+, K+) in the perfusate medium disrupt the homeostatic balance
of the extracellular environment, altering the basal DA concentration. For example, in-
creases in basal DA concentration are observed when the perfusate medium contains higher
(e.g., 3.4 mM) levels of Ca2+ [63,141] or K+ [128]. In sharp contrast, utilization of a perfusion
solution with too little Ca2+ [128,142] or too little K+ [142] results in decreased extracellular
DA levels. It is vital, therefore, that the composition of perfusion solutions mimic the brain
extracellular fluid; additional parameters, including pH and temperature, are also critical
considerations [143]. Second, substantial increases in the concentrations of extracellular
DA occur immediately following death [144–146]. Basal DA levels subsequently decrease
as the postmortem interval increases [144–146]; albeit, basal DA concentration remains
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elevated, relative to pre-death levels, for at least an hour postmortem [144,145]. Third, in
neutral and basic aqueous solutions, DA degrades rapidly [147], including in many com-
mon (e.g., aCSF, brain dialysate) perfusion solutions [148]. Several approaches, including
temporal proximity (i.e., minimization of the time between sample collection and analy-
sis [149]), addition of stabilizing agents to either the collection bins [65] or microdialysis
media [150] and a microdialysis/LCMS system [148], have been implemented to mitigate
the DA instability problem. Despite the validity of these approaches, inter-laboratory
differences may preclude determining an estimate of the “true” basal DA concentration.
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Figure 2. Technical illustration of three of the prominent methods utilized to detect dopamine (DA) levels in the CNS.
Given that high-performance liquid chromatography (HPLC) is more classically used for analyte quantification on brain
tissue homogenates or following microdialysis, the method is not illustrated. (A) During microdialysis, a probe composed
of a semipermeable dialysis membrane is surgically implanted into the brain, and a perfusion medium (white arrows) is
infused slowly and continuously. During perfusion, molecules in the extracellular space diffuse through the semipermeable
membrane, and are transported into outflow tubing and collected for analyte quantification (e.g., HPLC). (B) In fast-scan
cyclic voltammetry, a small carbon-fiber microelectrode is surgically implanted into the brain. The voltage potential at the
carbon-fiber microelectrode is rapidly increased and decreased, resulting in the oxidation and reduction of DA. During
the oxidation and reduction processes, the transfer of electrons is measured in current at the surface of the carbon-fiber
microelectrode, and the amount of current can be subsequently converted into the concentration of DA. Additionally, the
voltammogram is used for analyte identification, whereby DA exhibits one oxidation and one reduction peak. (C) More
recently, G-protein coupled receptor (GPCR) biosensors for DA have been developed, affording an opportunity to track the
release dynamics of DA. DA biosensors have a circularly permuted fluorescent protein (e.g., Green: cpGFP, Red: cpmApple)
inserted into the third intracellular loop of the DA receptor. When DA binds to the endogenous ligand, the GPCR exhibits
a conformational change, resulting in an increased fluorescent intensity. Our laboratory has recently transfected cells
with GRAB-DA2m, a DA receptor 2 subtype biosensor, in vitro. Upon stimulation with 100 nm DA, an increase in the
fluorescence intensity of cpGFP is observed.

2.3. Fast-Scan Cyclic Voltammetry (FSCV)

FSCV, an electroanalytical technique developed in the early 1980s [151,152], affords
a method to detect rapid neurotransmitter dynamics in the brain [153]. From a theoreti-
cal perspective, FSCV relies upon chemical sensing of neurotransmitters at carbon-fiber
microelectrodes. Specifically, the voltage potential at the carbon-fiber microelectrode is
rapidly increased and decreased, resulting in the oxidation and reduction of electroactive
substances [154]. Examination of the cyclic voltammogram, which presents data as time
(x-axis) by voltage (y-axis), allows for compound identification [155,156]. The strengths of
FSCV include its high spatial (micrometer) acuity, high temporal (sub-second) resolution
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and high chemical (nanomolar range) sensitivity. However, FSCV is limited by the need
for digital background subtraction [157], which restricts measurements to relative neuro-
transmitter changes, a factor which precludes the measurement of basal concentrations of
electroactive species [154]. Therefore, FSCV has typically been utilized to measure phasic,
rather than tonic, DA release. Recent novel modifications have afforded an opportunity
to investigate tonic DA concentrations using FSCV [103,104,158,159]. While an in-depth
discussion of these modifications is beyond the scope of this review, it is an emerging
area of research that has the potential to transform our ability to accurately measure basal
DA levels.

2.4. G Protein-Coupled Receptor (GPCR) Biosensors

GPCR biosensors for DA (or DA biosensors), the most recent method developed for
monitoring DA dynamics, were first reported in 2018 [160,161], and contemporary versions
have expanded upon these initial reports [162,163]. Theoretically, fluorescent DA biosensors
rely upon the interaction between DA and D1- and D2-like GPCRs. DA biosensors were
developed by inserting a genetically encoded, circularly permuted fluorescent protein
(e.g., Green: cpGFP, Red: cpmApple) into the third intracellular loop of the naturally
occurring human DA receptor. When DA is released, it binds to the endogenous ligand,
causing a rapid conformational change in the GPCR, a conformational change that induces a
profound increase in fluorescence intensity (i.e., 90–900%, for a review, see [164]; Figure 2C).
DA biosensors exhibit high selectivity, molecular specificity, affinity (sub-micromolar) and
resolution (sub-second [160–163,165]), making them ideally suited for tracking DA release.
However, DA biosensors may be limited by low basal fluorescence levels, which precludes
the detection of basal DA levels. A more comprehensive discussion of GPCR biosensors
for DA is provided by Labouesse et al. [164].

2.5. General Experimental Considerations

Ideally, an estimate of basal DA values would be highly replicable when measurements
are obtained in the same brain region, using the same methodological technique and
in nearly genetically identical animals. However, basal DA concentrations are altered
by natural biological variation within and between subjects. Independent of species,
there is natural biological variation in basal DA concentrations resulting from within and
between subject’s factors. For example, basal extracellular DA levels change across the
functional lifespan, with significantly decreased DA observed in aged, relative to young,
animals [166]. Furthermore, basal DA levels in the NAc [167,168], striatum [149,169]
and medial prefrontal cortex (mPFC [170]) fluctuate in a circadian rhythm. Additionally,
hormones have a profound impact on basal DA levels, as evidenced by changes across the
estrous cycle [171,172] and resulting from gonadectomy [173].

To date, the substantial variability between studies, even within a single methodologi-
cal approach, has obfuscated our ability to experimentally determine the “true” basal DA
concentration. When appropriate experimental controls are implemented, the impact of
a treatment (e.g., HIV-1, substance use) on basal DA concentration can be reliably deter-
mined; comparing between studies, however, remains challenging. Stringent and detailed
reporting of methodological procedures may aid in determining which studies can be most
accurately compared. From a practical perspective, however, the information compiled
in Table 1 (expanded in Supplementary Table S1) provides a summary of the techniques
currently in use.

In sum, HPLC of tissue homogenates may reveal total DA tissue content, while
microdialysis enables sampling of the extracellular basal DA levels, but lacks temporal
resolution (minutes) and spatial resolution. FSCV is currently used for relative changes in
DA signals, and not for assessing basal DA levels. Although GPCR biosensors for DA may
not clarify basal DA levels in the brain, their ability to rapidly detect DA function has the
potential to transform our understanding of neural circuits. Critically, each neurochemical
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method for assessing DA levels has benefits and limitations that must be weighed when
designing an experiment.

3. Chronic HIV-1 Results in Decreased Dopamine

Inconsistencies in the estimated basal DA values does not preclude the utilization or
importance of these methodological techniques for evaluating group differences. As demon-
strated in Table 2, HPLC, microdialysis and FSCV have been fundamental in elucidating
how HIV-1 viral protein exposure alters basal DA concentration relative to seronegative
individuals or controls. Results (Table 2) overwhelmingly support decreased DA concentra-
tions following chronic HIV-1 viral protein exposure in either HIV-1 seropositive humans
or biological systems utilized to model HIV-1.

Despite the overwhelming support for a hypodopaminergic state in HIV-1 (i.e., low
levels of DA), there are a few outliers. Three studies [174–176] have reported transitory
increases in DA concentration in the CSF, caudate putamen and prefrontal cortex (PFC),
respectively. The subjects (i.e., humans, mice) evaluated in these studies share a key
commonality: early or acute HIV-1. Specifically, the clinical sample included individuals
in clinical stage 1 [174], which is characterized by asymptomatic infection and persistent
generalized lymphadenopathy [177]. Preclinical measurements were conducted either
one [176] or three [175] days after the completion of Tat protein induction by a doxycycline
regimen. Critically, these increases in DA either failed to persist for longer intervals
after Tat protein induction (i.e., 10 Days: [178], 40 Days: [175]) or were brain region-
specific [176]. Moreover, there is no evidence for a hyperdopaminergic state during chronic
HIV-1 infection in humans, suggesting little clinical relevance for assessing acute increases
in dopamine.

Another notable inference that can be drawn from Table 2 regards the influence of
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996.
Critically, the strong support for decreased dopaminergic function spans across studies in
both the pre- and post-cART era. A more comprehensive discussion for the potential role
of cART in dopaminergic system dysfunction is presented in Section 5.

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits,
independent of treatment with cART. It is possible that there is an initial transient increase
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-1
seropositive individuals [179,180], however, the acute phase fails to accurately reflect the
current clinical syndrome.

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to controls. Asterisks (*) indicate

manuscripts that measured DA metabolites (e.g., homovanillic acid). Symbols: DA concentration is decreased (

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

) or

increased (

Cells 2021, 10, x FOR PEER REVIEW 10 of 29 
 

 

Kumar et al., 2011 
[29] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Kesby et al., 2016 
[175] 

 Acute Tat 
Protein 

 

Caudate Puta-
men Mouse HPLC 

 NAc 

 
Tat Protein 

Caudate Puta-
men 

Mouse HPLC 
 NAc 

 

Kesby et al., 2016 
[178] 

 

Acute Tat 
Protein 

 

Caudate Puta-
men 

Mouse HPLC 
 Hippocampus 

 
 

PFC 

 
 

OFC 

Horn et al., 2017 
[186] 

 HIV CSF Human HPLC 

Javadi-Paydar et al., 
2017 [187] 

 HIV-1 Pro-
teins 

NAc Rat 
Ex vivo slice volt-

ammetry 
Denton et al., 2019 

[30] 
 HIV-1 Pro-

teins 
NAc Rat FSCV 

Saloner et al., 2020 
[188] 

 
HIV CSF Human HPLC 

Strauss et al., 2020 
[176] 

 
 Acute Tat 

Protein 

PFC 
Mouse HPLC 

 Striatum 

Denton et al., 2021 
[189] 

 HIV-1 Pro-
teins 

NAc Rat FSCV 

4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State 
In 2007, the nosology for neurological complications in HIV-1 seropositive individu-

als was updated to reflect the milder phenotype of NCI and affective alterations, collec-
tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorders (MND) or HAD) based on neurocognitive performance 
and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 

The present review will focus on evaluating the role of DA in the regulation of pre-
attentive processes, attention and apathy, as a discussion of all neurocognitive and/or af-
fective alterations, neural circuits and/or cellular mechanisms is beyond the scope. How-

) relative to controls. The equal sign (

Cells 2021, 10, x FOR PEER REVIEW 10 of 29 
 

 

Kumar et al., 2011 
[29] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Kesby et al., 2016 
[175] 

 Acute Tat 
Protein 

 

Caudate Puta-
men Mouse HPLC 

 NAc 

 
Tat Protein 

Caudate Puta-
men 

Mouse HPLC 
 NAc 

 

Kesby et al., 2016 
[178] 

 

Acute Tat 
Protein 

 

Caudate Puta-
men 

Mouse HPLC 
 Hippocampus 

 
 

PFC 

 
 

OFC 

Horn et al., 2017 
[186] 

 HIV CSF Human HPLC 

Javadi-Paydar et al., 
2017 [187] 

 HIV-1 Pro-
teins 

NAc Rat 
Ex vivo slice volt-

ammetry 
Denton et al., 2019 

[30] 
 HIV-1 Pro-

teins 
NAc Rat FSCV 

Saloner et al., 2020 
[188] 

 
HIV CSF Human HPLC 

Strauss et al., 2020 
[176] 

 
 Acute Tat 

Protein 

PFC 
Mouse HPLC 

 Striatum 

Denton et al., 2021 
[189] 

 HIV-1 Pro-
teins 

NAc Rat FSCV 

4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State 
In 2007, the nosology for neurological complications in HIV-1 seropositive individu-

als was updated to reflect the milder phenotype of NCI and affective alterations, collec-
tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorders (MND) or HAD) based on neurocognitive performance 
and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 

The present review will focus on evaluating the role of DA in the regulation of pre-
attentive processes, attention and apathy, as a discussion of all neurocognitive and/or af-
fective alterations, neural circuits and/or cellular mechanisms is beyond the scope. How-

) indicates no statistically significant differences in DA concentration
between HIV and controls.

References
DA Concentration

Relative to
Controls

Virus Brain Region Species Method

Larsson et al., 1991 [16]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

HIV CSF Human HPLC *

Berger et al., 1994 [14]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

HIV CSF Human HPLC

Sardar et al., 1996 [15]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

HIV Caudate Nucleus Human HPLC



Cells 2021, 10, 2158 9 of 30

Table 2. Cont.

References
DA Concentration

Relative to
Controls

Virus Brain Region Species Method

Di Rocco, 2000 [17]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

HIV CSF Human HPLC *

Czub et al., 2001 [181]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

SIV

Hippocampus

Primate HPLC

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

PFC

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

Putamen

Koutsilieri, 2002 [182]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

HIV Striatum Primate HPLC

Jenuwein et al., 2004 [183]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

SIV NAc Primate HPLC

Scheller et al., 2005 [184]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

SIV Putamen Primate HPLC

Kumar et al., 2009 [28]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

HIV

Caudate Nucleus

Human HPLC

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

Globus Pallidus

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

Putamen

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

Substantia Nigra

Ferris et al., 2009 [185]

Cells 2021, 10, x FOR PEER REVIEW 9 of 29 
 

 

1 infection in humans, suggesting little clinical relevance for assessing acute increases in 
dopamine. 

Another notable inference that can be drawn from Table 2 regards the influence of 
cART on DA function in HIV-1 seropositive individuals. While monotherapy, including 
zidovudine (azidothymidine), was first implemented in 1985 [19], cART began in 1996. 
Critically, the strong support for decreased dopaminergic function spans across studies in 
both the pre- and post-cART era. A more comprehensive discussion for the potential role 
of cART in dopaminergic system dysfunction is presented in Section 5. 

Undoubtedly, long-term HIV-1 viral protein exposure leads to persistent DA deficits, 
independent of treatment with cART. It is possible that there is an initial transient increase 
in DA immediately following HIV-1 infection, given the increased life expectancy for HIV-
1 seropositive individuals [179,180], however, the acute phase fails to accurately reflect 
the current clinical syndrome. 

Table 2. Influence of HIV-1 viral protein exposure on dopamine (DA) concentration relative to con-
trols. Asterisks (*) indicate manuscripts that measured DA metabolites (e.g., homovanillic acid).  

Symbols: DA concentration is decreased (    ) or increased (    ) relative to controls. The equal sign 
(     ) indicates no statistically significant differences in DA concentration between HIV and con-
trols. 

References 
DA Concentration 
Relative to Con-

trols 
Virus Brain Region Species Method 

Larsson et al., 1991 
[16] 

 
 

HIV CSF Human HPLC* 

Berger et al., 1994 
[14] 

 
HIV CSF Human HPLC 

Sardar et al., 1996 
[15] 

 
HIV 

Caudate Nu-
cleus 

Human HPLC 

Di Rocco, 2000 [17] 
 
 

HIV CSF Human HPLC* 

Czub et al., 2001 
[181] 

 
 

SIV 

Hippocampus 

Primate HPLC 
 
 

PFC 

 Putamen 
Koutsilieri, 2002 

[182] 
 

HIV Striatum Primate HPLC 

Jenuwein et al., 2004
[183] 

 
SIV NAc Primate HPLC 

Scheller et al., 2005 
[184] 

 
SIV Putamen Primate HPLC 

Kumar et al., 2009 
[28] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Ferris et al., 2009 
[185] 

 
Tat Protein Striatum Rat Microdialysis 

Scheller et al., 2010 
[174] 

 
Early HIV CSF Human HPLC 

Tat Protein Striatum Rat Microdialysis

Scheller et al., 2010 [174]

Cells 2021, 10, x FOR PEER REVIEW 10 of 29 
 

 

Kumar et al., 2011 
[29] 

 

HIV 

Caudate Nu-
cleus 

Human HPLC 

 Globus Palli-
dus 

 
 

Putamen 

 Substantia 
Nigra 

Kesby et al., 2016 
[175] 

 Acute Tat 
Protein 

 

Caudate Puta-
men Mouse HPLC 

 NAc 

 
Tat Protein 

Caudate Puta-
men 

Mouse HPLC 
 NAc 

 

Kesby et al., 2016 
[178] 

 

Acute Tat 
Protein 

 

Caudate Puta-
men 

Mouse HPLC 
 Hippocampus 

 
 

PFC 

 
 

OFC 

Horn et al., 2017 
[186] 

 HIV CSF Human HPLC 

Javadi-Paydar et al., 
2017 [187] 

 HIV-1 Pro-
teins 

NAc Rat 
Ex vivo slice volt-

ammetry 
Denton et al., 2019 

[30] 
 HIV-1 Pro-

teins 
NAc Rat FSCV 

Saloner et al., 2020 
[188] 

 
HIV CSF Human HPLC 

Strauss et al., 2020 
[176] 

 
 Acute Tat 

Protein 

PFC 
Mouse HPLC 

 Striatum 

Denton et al., 2021 
[189] 

 HIV-1 Pro-
teins 

NAc Rat FSCV 

4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State 
In 2007, the nosology for neurological complications in HIV-1 seropositive individu-

als was updated to reflect the milder phenotype of NCI and affective alterations, collec-
tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
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cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorders (MND) or HAD) based on neurocognitive performance 
and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 

The present review will focus on evaluating the role of DA in the regulation of pre-
attentive processes, attention and apathy, as a discussion of all neurocognitive and/or af-
fective alterations, neural circuits and/or cellular mechanisms is beyond the scope. How-
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cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
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In 2007, the nosology for neurological complications in HIV-1 seropositive individu-
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tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
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and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 

The present review will focus on evaluating the role of DA in the regulation of pre-
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In 2007, the nosology for neurological complications in HIV-1 seropositive individu-
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tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorders (MND) or HAD) based on neurocognitive performance 
and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 

The present review will focus on evaluating the role of DA in the regulation of pre-
attentive processes, attention and apathy, as a discussion of all neurocognitive and/or af-
fective alterations, neural circuits and/or cellular mechanisms is beyond the scope. How-
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4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State 
In 2007, the nosology for neurological complications in HIV-1 seropositive individu-

als was updated to reflect the milder phenotype of NCI and affective alterations, collec-
tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorders (MND) or HAD) based on neurocognitive performance 
and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 
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fective alterations, neural circuits and/or cellular mechanisms is beyond the scope. How-
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4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State 
In 2007, the nosology for neurological complications in HIV-1 seropositive individu-

als was updated to reflect the milder phenotype of NCI and affective alterations, collec-
tively termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-
cART era [190]. Using the established criteria, HIV-1 seropositive individuals are classi-
fied into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorders (MND) or HAD) based on neurocognitive performance 
and alterations in daily functioning [190]. HAND, a progressive disease [191–195], is char-
acterized by prominent neurocognitive deficits in speed of information processing, atten-
tion, working memory and executive function [26,196,197]. Affective alterations com-
monly observed in HAND include apathy [27,198] and depression [199,200]. These clinical 
symptoms reflect persistent DA deficits in HIV-1 seropositive individuals. 

The present review will focus on evaluating the role of DA in the regulation of pre-
attentive processes, attention and apathy, as a discussion of all neurocognitive and/or af-
fective alterations, neural circuits and/or cellular mechanisms is beyond the scope. How-
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4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State

In 2007, the nosology for neurological complications in HIV-1 seropositive individuals
was updated to reflect the milder phenotype of NCI and affective alterations, collectively
termed HIV-1-associated neurocognitive disorders (HAND), observed in the post-cART
era [190]. Using the established criteria, HIV-1 seropositive individuals are classified
into one of three categories (i.e., asymptomatic neurocognitive impairment (ANI), mild
neurocognitive disorders (MND) or HAD) based on neurocognitive performance and alter-
ations in daily functioning [190]. HAND, a progressive disease [191–195], is characterized
by prominent neurocognitive deficits in speed of information processing, attention, work-
ing memory and executive function [26,196,197]. Affective alterations commonly observed
in HAND include apathy [27,198] and depression [199,200]. These clinical symptoms reflect
persistent DA deficits in HIV-1 seropositive individuals.

The present review will focus on evaluating the role of DA in the regulation of pre-
attentive processes, attention and apathy, as a discussion of all neurocognitive and/or
affective alterations, neural circuits and/or cellular mechanisms is beyond the scope.
However, it is notable that the effect of decreased DA availability in HIV-1 seropositive
individuals extends more broadly, as it is significantly associated with neuropsychological
performance [29] and depression [188]. Furthermore, Figure 3 illustrates the profound dif-
ference in the clinical symptoms of hyperdopaminergic versus hypodopaminergic systems.
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There is no clinical evidence supportive of high dopamine levels following chronic HIV-1
infection in humans, suggesting that models/therapeutics must focus on rectifying low
dopamine levels.
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4.1. Pre-Attentive Processes

Pre-attentive processing (or sensorimotor gating) is defined as the screening of extra-
neous information to facilitate the uninterrupted processing of relevant information. Pre-
pulse inhibition (PPI) of the auditory startle response (ASR), popularized by Hoffman and
Ison [201,202], affords a translational experimental paradigm to measure pre-attentive pro-
cesses. The presentation of a discrete pre-stimulus prior to a startling stimulus attenuates
an individual’s startle response during a brief temporal window (i.e., 30–500 msec [203]).
Prominent impairments in PPI have been observed in multiple neuropsychological disor-
ders, including schizophrenia [204], obsessive-compulsive disorder [205,206], Huntington’s
disease [207] and HIV-1 [208,209]. In HIV-1, deficits in PPI are characterized by a reduction
in percent PPI [208,210] and a relative insensitivity to the manipulation of interstimulus
interval (ISI, i.e., time between the discrete pre-stimulus and startling stimulus [209,211]).
Most critically, impairments in PPI resulting from chronic HIV-1 viral protein exposure are
associated with alterations in higher-order cognitive processing [208], progress across the
functional lifespan [212,213] and may serve as a diagnostic and/or prognostic biomarker
for HAND [214].

PPI is regulated, at least in part, by brain regions integral to the fronto-striatal circuit
(i.e., ventral tegmental area (VTA), NAc and PFC) and the dopaminergic system. Specifi-
cally, within the neural circuit mediating PPI, the NAc is innervated by dopaminergic pro-
jections from the VTA and glutamatergic afferents from the mPFC. Gamma aminobutyric
acid (GABA) projections are subsequently relayed from the NAc to the pedunculopontine
tegmental nucleus (PPTg). Information is then sent from the PPTg to the caudal pontine
reticular nucleus, a component of the acoustic startle circuit [215], resulting in the elicitation
of a startle response. The auditory startle pathway and entire neural circuitry underlying
PPI is more comprehensively reviewed by Koch [216] and Fendt et al. [217].

Profound reductions in PPI are observed when pharmacological manipulations and
lesioning approaches are utilized to induce a hypodopaminergic state. Apomorphine, a
direct dopamine agonist, acts in a biphasic dose-dependent manner [218,219], whereby low
doses act on presynaptic receptors, resulting in decreased dopaminergic tone; high doses
of apomorphine, in sharp contrast, act on both pre- and post-synaptic receptors, resulting
in a hyperdopaminergic state. Administration of low doses of apomorphine, independent
of sensory modality (i.e., auditory, visual [220]) or ISI [221], leads to prominent reductions
in PPI [220–222]. Selective D1 receptor antagonists, including SCH23390 [223,224] and
SCH39166 [225], also reduce PPI when injected into either the PFC [223,225] or dorsal
striatum [224]. Furthermore, inducing a hypodopaminergic tone via 6-hydroxydopamine
(6-OHDA) injections, which destroys dopaminergic and noradrenergic neurons [226,227],
reduces PPI [228,229]. Collectively, pre-attentive processes, as indexed by PPI, are dramati-
cally reduced under conditions that mimic a hypodopaminergic state, reductions which
are similar to those observed in HIV-1 in the post-cART era.
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4.2. Attention

Attention is a biologically complex cognitive function dependent upon reciprocal
excitatory and inhibitory processes [230]. By definition, attention is selective, requiring
the brain to process the most relevant information, while excluding, or inhibiting, irrel-
evant information [230]. According to a hierarchical model proposed by Sohlberg and
Mateer [231,232], attention can be divided into multiple subcomponents (i.e., arousal,
focused attention, sustained attention, selective attention, alternating attention and di-
vided attention). With regards to HIV-1, chronic HIV-1 viral protein exposure induces
prominent deficits across the subcomponents of attention, including sustained attention or
vigilance [233], selective attention [234,235] and divided attention [236].

Although the precise neural circuitry underlying attentional processes has not yet
been fully elucidated, there is strong evidence for the fundamental role of the PFC in higher-
order cognition. The PFC is divided into six layers, superficial to deep, and is comprised
of three major subdivisions, including the lateral PFC (lPFC), mPFC and orbital PFC
(oPFC [230]). Midbrain DA neurons project to the PFC via the mesocortical DA pathway, a
pathway which can be divided into two parallel systems [237]. Specifically, DA afferents
from the VTA innervate the mPFC, whereas the lPFC is innervated by DA projections from
the substantia nigra [237]. Most critically, however, DA modulates cognitive processes,
including attention, in the PFC.

Induction of a hypodopaminergic state via pharmacological manipulations or lesion-
ing approaches disrupts attentional behavior. First, local administration of the selective
D1 antagonist SCH23390 to either the PFC [238,239] or NAc [240] impairs attention. In-
fusion of the D2 receptor antagonist sulpiride into the NAc [240], but not the PFC [238],
also decreased attentional accuracy. Second, neonatal treatment with 6-OHDA produces
persistent marked impairments in selective, spatial and/or sustained attention at a juvenile
stage [241,242], during adolescence [243] and in adulthood [244]. 6-OHDA lesions of the
PFC during adulthood also reduced selective attention, as evidenced by an increased
susceptibility to task-irrelevant distractors [245]; attentional set shift, however, is rela-
tively spared [245,246], consistent with observations following chronic HIV-1 viral protein
exposure [233]. Furthermore, chronic administration of the selective dopaminergic neuro-
toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced attentional deficits,
characterized by impairments in sustained spatial attention and focused attention [247].
Taken together, induction of a hypodopaminergic state produces marked impairments in
attentional processes similar to those observed in HIV-1 in the post-cART era.

4.3. Apathy

Traditionally, apathy has been defined as a lack of motivation [248] that is evidenced
by the quantitative reduction in voluntary and goal-directed behaviors [249]. Goal-directed
behaviors require the use of action to translate an internal state into the attainment of a
goal. In clinical studies, apathy is most commonly [250] assessed using either the Apathy
Evaluation Scale [251] or the Neuropsychiatric Inventory [252], scales which exhibit both
strong reliability and validity [250]. Furthermore, preclinical studies have utilized operant
and Pavlovian conditioning as a method to evaluate how willing an animal is to “work”
for reinforcement [198,253,254]. Understanding apathy from both a clinical and preclinical
perspective is vital, given its prevalence in many neurological disorders (e.g., Alzheimer’s
disease [255], Parkinson’s disease [256], HIV-1 [27,257]). Indeed, chronic HIV-1 viral
protein exposure induces prominent alterations in goal-directed behaviors [198,254]. The
clinical significance of apathy in HIV-1 seropositive individuals cannot be understated, as
increased apathy is significantly associated with greater impairments in activities of daily
living [27,258], decreased medication adherence [259] and decreased quality of life [260].

Apathy is regulated, at least in part, by the anterior cingulate circuit, one of the behav-
iorally relevant fronto-striatal circuits [261]. Within this circuit, projections from the anterior
cingulate cortex innervate the ventral striatum, including the NAc [262]. Subsequently,
neurons in the ventral striatum project to the globus pallidus interna, ventral pallidum and



Cells 2021, 10, 2158 13 of 30

rostrodorsal substantia nigra [263]. Both the ventral striatum and anterior cingulate cortex
receive dopaminergic innervation from the VTA, supporting the fundamental role of DA
in apathetic behaviors.

Indeed, the reduction of dopaminergic signaling via lesioning and chemogenetic
approaches have demonstrated the importance of the neurotransmitter in goal-directed
behavior. Induction of hypodopaminergic tone via either 6-OHDA lesions of the substantia
nigra pars compacta [264–266] or MPTP [267] impaired motivated behaviors. More recently,
the chemogenetic inhibition of DA neurons in the VTA dose-dependently reduced effort-
based motivation [268]. Collectively, strong evidence supports apathetic behaviors under
hypodopaminergic states.

5. Role of cART in Dopaminergic System Dysfunction

Currently, approximately 30 antiviral drugs are approved for the treatment of HIV-
1 [269]. The approach to HIV-1 treatment evolved from the use of monotherapy with the
nucleoside reverse transcriptase inhibitor (NRTI) zivodudine, to various combinations of
two to four compounds composed of a NRTI, integrase strand inhibitor (INSTI), protease
inhibitor (PI), or non-nucleoside reverse transcriptase inhibitors (NNRTI). Given that a
hypodopaminergic tone is observed following chronic HIV-1 viral protein exposure, it is
vital to examine the potential role of cART in dopaminergic dysregulation.

Some cART drugs, particularly those with greater CNS penetrance [270], are associated
with adverse psychoactive effects in HIV-1 seropositive individuals [271–274]. Specifically,
NRTIs, including efavirenz, are most commonly associated with adverse neuropsychiatric
outcomes [275]. Patients commonly report hallucinations, delusion, paranoia and mania,
as well as depression, anxiety, nervousness, dizziness, sleep disturbances and abnormal
dreams [271–274].

Efavirenz exhibits a complex neuropharmacological profile, whereby it interacts with
serotonin (5-HT) and GABAA receptors, and multiple monoamine transporters (i.e., sero-
tonin transporter (SERT), dopamine transporter (DAT), vesicular monoamine transporter
2 (VMAT2) [276–278]). Further evidence for these interactions is provided by increased
basal levels of 5-HT, DA, and norepinephrine, albeit in a region-specific manner, following
intraperitoneal injections of 5 mg/kg of efavirenz every other day for two weeks [279].
Under differing experimental conditions, acute, oral administration of efavirenz (0, 25,
50 mg/kg) dose-dependently increased striatal DA levels; however, no significant alter-
ations in basal DA levels were observed after sub-chronic (i.e., two-week) exposure [280].
Highly translational behavioral procedures examining a drug’s pharmacodynamic activity
(e.g., drug discrimination, sensitization/habituation) and DA-related behaviors (e.g., drug
reinforcement, conditioned reward behaviors) support the observed neuropharmacological
profile and will be discussed in turn below.

5.1. Drug Discrimination

Drug discrimination is a free-operant procedure that allows the animal to learn that
a subjective drug effect (i.e., discriminative stimulus) sets the occasion for reinforcement
of a particular response [281]. Specifically, following injection of a psychoactive drug,
responses on one levers are reinforced. Whereas, following a saline, however, responses
on the alternative lever are reinforced [282]. After the discrimination is learned, a novel
drug can be injected to determine whether the training and test drug share discriminative
stimulus properties. If the novel test drug produces a discriminative stimulus similar to
the training drug, then animals will respond on the lever associated with the training drug;
however, the rat will respond on the saline-associated lever if the novel drug discriminative
stimulus is different than that of the training drug.

Using the drug discrimination procedure, Gatch et al. [276] examined whether efavirenz
produced a discriminative stimulus similar to different drugs of abuse. First, a group of rats
were trained to discriminate the subjective drug effect of lysergic acid diethylamine (LSD),
a serotonin receptor agonist, from that produced by saline injection. When tested with
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various doses of efavirenz, rats responded as if LSD was onboard, an effect that is primarily
mediated by the 5-HT2A receptor. Results were confirmed by training a separate group of
rats to discriminate an efavirenz-induced drug state from saline. Under testing conditions
with LSD, animals responded on the lever associated with the training drug (i.e., efavirenz)
rather than the saline-associated lever. Second, a separate group of rats were trained to
discriminate the subjective drug effect of cocaine, a DA reuptake inhibitor, from saline.
When rats were tested with various doses of efavirenz, they primarily responded on the
saline-associated lever. Collectively, the pharmacodynamic activity of efavirenz resembles
that of the 5-HT receptor agonist LSD.

5.2. Sensitization

Repeated exposure to psychoactive stimulants produces prominent behavioral changes
(e.g., amphetamine [283], cocaine [284]). Specifically, following acute treatment with psy-
chostimulants, laboratory animals exhibit hyperactivity. Repeated drug exposure, how-
ever, induces a progressive and persistent increase in hyperactive behavior, commonly
termed “behavioral sensitization”. Critically, the later stages of behavioral sensitization
are accompanied by significant elevations in DA in response to a drug [285,286]. Mea-
surement of locomotion following a drug challenge is the classic approach to evaluating
behavioral sensitization.

With regards to efavirenz, there is no compelling evidence for behavioral sensitization.
Rather, locomotor activity was suppressed in a dose-dependent (3, 10, 30 mg/kg, IP) man-
ner following repeated administration. Critically, the time-course of the efavirenz-induced
suppression for the highest dose (30 mg/kg) was nearly identical to that produced by LSD
(3 mg/kg [276]). Furthermore, efavirenz increased head-twitching, a behavioral measure
commonly utilized to profile serotonergic-like compounds; an increase that was abolished
in 5-HT2A receptor knockout mice [276]. More recently, oral efavirenz (0, 25, 50 mg/kg)
failed to produce sensitization or suppression of line-crossings in an open-field test [280].
Similarly, Möller et al. [279] observed no statistically significant effect of efavirenz (5 mg/kg
of efavirenz every other day for two weeks) on locomotor activity. Thus, the profile of
efavirenz is again consistent with a serotonergic pharmacodynamic.

5.3. Drug Self-Administration

Preclinical drug self-administration procedures, which evaluate DA-related behav-
iors, became popularized in the 1960s with the advent of reliable, automated methods
for intravenous (IV) drug self-administration [287,288]. The utility of preclinical drug
self-administration procedures derives from both their face (i.e., animals self-administer
addictive substances commonly abused by humans [198,289,290]) and predictive (i.e., suc-
cessful identification of substance with high abuse liability; for review, see [291]) validity.
Various routes of administration (e.g., oral [290], IV [198]) can be utilized in drug self-
administration experimental paradigms to accurately model drug self-administration in
humans. For IV drug self-administration, rats are implanted with chronic indwelling
jugular catheters and are trained to self-administer drugs by pressing a lever within oper-
ant conditioning chambers [287,292]. Similar to other reinforcers, dependence-producing
drugs readily maintain behavior on various schedules of reinforcement.

To assess the reinforcing properties of efavirenz, animals were trained to self-administer
the DA reuptake inhibitor, cocaine. Following stable self-administration behavior, IV co-
caine was replaced with incrementally increasing doses of IV efavirenz (1.0, 0.32, 3.2, or
10.0 mg/kg per infusion). However, independent of dose, lever pressing dramatically
decreased during tests in which IV efavirenz was the available reinforcer [276]. Thus,
efavirenz fails to maintain operant (goal-directed) behavior [276], indicating that it lacks
reinforcing properties associated with drugs that release DA throughout the fronto-striatal
system [293].
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5.4. Conditioned Place Preference

Conditioned place preference (CPP) is a Pavlovian learning procedure that evaluates
the rewarding effect of a drug [294]. The CPP procedure repeatedly conditions an animal to
two stimuli: a conditional stimulus (CS) and an unconditional stimulus (US). Specifically,
one CS (e.g., dark environmental context) is paired with drug treatment (i.e., US). A
second CS (e.g., bright environmental context) is paired with no drug treatment. Following
conditioning, animals are tested, whereby the rodent can freely move between the drug-
paired and non-drug-paired contexts. During testing, a CPP is learned if the animal spends
relatively more time in the drug-paired context. Likewise, a conditioned place aversion
(CPA) is learned if an animal spends an increased amount of time in the non-drug-paired
context. Drugs that produce DA release and maintain self-administration also produce CPP
(e.g., cocaine [295]); however, not all drugs that produce CPP are considered dopaminergic
drugs [296]. Overall, the CPP experimental paradigm models a Pavlovian conditioning
aspect of drug-taking behavior related to incentive salience conditioned to drug-associated
stimuli [297].

Mixed findings fail to provide strong support for efavirenz-mediated conditioned
reward learning [276,279]. Specifically, under one experimental condition, no dose of
efavirenz tested (5–20 mg/kg, IP) produced CPP in rats [276]. On the other hand, dose-
dependent changes in behavior, ranging from CPP (5 mg/kg of efavirenz) to CPA (20 mg/kg
of efavirenz), were observed [279]. The CPP procedure is not considered an exclusive
screen for dopaminergic drugs, as there are serotonin agonists (e.g., LSD, buspirone) that
function as an US to produce CPP [294,296,298]. Thus, it is conceivable that the CPP ob-
served by Moller et al. [279] was mediated by efavirenz’s US effects on the serotonergic
system [296,298].

5.5. Conclusions

Collectively, there is no compelling evidence that efavirenz binds to DA receptors
(D1, D4 human; D2, D3 rat) or alters DA reuptake. Efavirenz does inhibit DA reuptake in
human cloned DAT [276] and acutely increases basal DA levels [279,280]. However, highly
translational behavioral procedures fail to support DA behaviors. Specifically, rats experi-
ence different interoceptive cue states when treated with systemic cocaine and efavirenz,
as evidenced within a drug discrimination experimental paradigm. Furthermore, efavirenz
fails to induce sensitization [276,279,280] and is not self-administered by rats [276]. The
hypodopaminergic tone observed following chronic HIV-1 viral protein exposure in both
the pre- and post-cART eras (Table 2 above) adds additional credence to these observations.
Efavirenz, however, resembles an LSD-like drug consistent with putative effects on the
serotonergic system, effects which may produce adverse psychiatric alterations in HIV-1
seropositive individuals [276]. Thus, if cART contributes negatively to HAND, it is unlikely
that it results from direct protein interactions to alter dopamine transmission via VMAT2,
DAT, or DA receptors.

Whether efavirenz, or other cART-approved drugs, functionally alter DA release
throughout fronto-striatal systems is a fundamental question. However, to date, few
experiments have directly examined if and/or how cART drugs alter DA function. In
addition to the reviewed studies examining efavirenz, the PIs ritonavir and saquinavir
failed to alter DA release in rodent hypothalamic tissue [299]. Although the currently
available data fail to support the impact of cART on DA, there remains a critical need for
additional studies of individual and combinations of cART drugs.

6. Mechanistic Implications for Low Dopamine Levels
6.1. Homeostatic Conditions

Microglia, which represent 5–20% of adult brain cells [300], belong to the myeloid
phagocytic/monocytic lineage [301,302] and serve as resident innate immune cells in
the CNS. Morphologically, microglia are characterized by a small soma and slender,
highly branched processes [303,304]. In the healthy brain, “resting” microglia utilize
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their branched processes to continuously survey the environment [303,304]; environmental
surveillance which is uniquely targeted to synaptic structures [305,306]. Critically, strong
evidence also supports a fundamental relationship between microglia and the dopaminer-
gic system. Based on the available scientific evidence, which is reviewed in detail below, we
propose a (potentially) cyclic model highlighting the interrelationships between microglia,
the DA system and synaptic function (Figure 4).

Cells 2021, 10, x FOR PEER REVIEW 17 of 29 
 

 

[328]. Collectively, evidence supports a strong relationship between microglia, dopamin-
ergic system function and synaptic function. To date, however, it is unknown whether the 
relationships between microglia and synaptic function or microglia and DA system func-
tion are bidirectional. 

 

 

Figure 4. Proposed (potentially) cyclical model of the interrelationship between microglia, and synaptic and dopaminergic 
system function. (A) Under homeostatic conditions, microglia influence both the dopamine (DA) system and synaptic 
maintenance. Furthermore, synaptic and dopaminergic system functions exhibit a bidirectional relationship. To date, it is 
unknown whether the relationships between microglia and synaptic function or microglia and DA system function are 
bidirectional, as indicated via the dashed lines. (B) Chronic exposure to HIV-1 viral proteins induces activation, dysfunc-
tion and/or senescence of microglia, and microglial alterations which may underlie the prominent low DA levels and/or 
synaptic dysfunction observed in the post-cART era. DA: dopamine; DAT: dopamine transporter; DA1 Receptor: dopa-
mine 1 receptor; VMAT2: vesicular monoamine transporter 2. 

6.2. Disturbances of Brain Homeostasis: HIV-1 
Early in the course of infection, HIV-1-infected monocytes migrate across the blood–

brain barrier, infiltrating the brain and infecting microglia [331,332]. During HIV-1 infec-
tion, increased expression of microglial markers (e.g., CD68, MHC II) in the brain has often 
been interpreted as microglial activation [333], and more recent evidence supports mor-
phological changes associated with microglial activation (i.e., amoeboid [334]). Addition-
ally, HIV-1 infection likely leads to microglial dysfunction, as evidenced by cellular senes-
cence [335]. Given the strong interrelationships between microglia, the DA system and 
synaptic function, microglial dysfunction may underlie the hypodopaminergic state (re-
viewed in Section 3) and synaptic dysfunction [195,336,337] commonly observed follow-
ing chronic HIV-1 viral protein exposure (Figure 4B). 

First, alterations in the relationship between microglia and DA system function have 
been observed following induction of the HIV-1 viral protein, Tat [338]. Specifically, Tat 
simultaneously decreased the number of microglia (i.e., Iba1 immunoreactive cells) and 
the number of dopamine neurons (i.e., tyrosine hydroxylase positive neurons) in the sub-
stantia nigra pars compacta, while an impact of HIV-1 Tat induction was not observed in 
the VTA [338]. Second, microglial activation and/or dysfunction may underlie HIV-1-as-
sociated synaptic dysfunction. HIV-1 viral proteins disrupt microglial proteins and recep-
tors (e.g., Cx3cr1 [339], CR3 [340]) that underlie microglia-mediated neurite and pre- and 

Figure 4. Proposed (potentially) cyclical model of the interrelationship between microglia, and synaptic and dopaminergic
system function. (A) Under homeostatic conditions, microglia influence both the dopamine (DA) system and synaptic
maintenance. Furthermore, synaptic and dopaminergic system functions exhibit a bidirectional relationship. To date, it is
unknown whether the relationships between microglia and synaptic function or microglia and DA system function are
bidirectional, as indicated via the dashed lines. (B) Chronic exposure to HIV-1 viral proteins induces activation, dysfunction
and/or senescence of microglia, and microglial alterations which may underlie the prominent low DA levels and/or
synaptic dysfunction observed in the post-cART era. DA: dopamine; DAT: dopamine transporter; DA1 Receptor: dopamine
1 receptor; VMAT2: vesicular monoamine transporter 2.

First, microglia and the DA system are highly interrelated, whereby microglia are
highly prevalent in the basal ganglia nuclei (i.e., NAc, VTA, SN [307,308]) and express
functional D1- and D2-like receptors [309–311], as well as DAT [312]. Functionally, promi-
nent alterations in microglial morphology [312], enhanced microglial migration [309] and
enhanced assembly of vimentin filaments [312] have been observed in “resting” microglia
following DA treatment. Microglia are also involved in the wiring of the embryonic
forebrain circuit, including dopaminergic axon outgrowth and positioning of neocorti-
cal interneurons, a process which is altered in cases of microglial dysfunction (i.e., via
cell-depletion or genetic mutants [313]).

Second, microglia’s environmental surveillance is uniquely targeted to synaptic struc-
tures, whereby “resting” microglial processes localize with both pre- and post-synaptic
structures, including dendritic spines [305,306]. During early brain development, mi-
croglia are involved in either the phagocytic [314,315] or trogocytotic [316] elimination
of synapses, playing a critical role in synaptic pruning, a regressive event that is vital
for neural circuit refinement and maturation. However, absence of either the fractalkine
receptor (Cx3cr1 [314,317]) or complement receptor 3 (CR3 [315]) precludes synaptic prun-
ing and results in immature synaptic connectivity. Microglia’s role in synaptic pruning
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continues through adolescence, whereby microglia transiently engulf dendritic spines in
the PFC [318], and into adulthood [319].

In addition to synaptic pruning, microglia play a critical role in synaptic forma-
tion during development [316,317,320,321] and adult neurogenesis [322–324]. Specifically,
microglia–dendrite interactions promote filopodia-like (i.e., immature postsynaptic protru-
sions that may develop into mature dendritic spines) formation [316,321]. Alterations in
the gene expression of Cx3cr1, which lead to a depletion of microglia, however, precluded
spine formation [317]. Furthermore, microglia regulate adult neurogenesis via multiple
mechanisms, including phagocytosis [322] and the phagocytosis secretome [324], as well
as via a nucleotide-mediated mechanism (i.e., ADP receptors P2Y12 and P2Y13 [323,324])
and the TAM family tyrosine kinases [324].

Notably, the dopaminergic system and synaptic structures may also interact with
one another in a bidirectional manner. Dopaminergic afferents predominantly establish
synaptic contact on the dendritic spine neck [325], and postsynaptic D1 and D2 receptors
are localized in perisynaptic sites, supporting the anatomical interrelationship between
the DA system and dendritic spines [326]. DA depletion results in prominent structural
alterations in medium spiny neurons (MSNs) of the NAc, including decreased dendritic
spine density [327,328] and decreased density of asymmetric synaptic contacts [329,330].
Additionally, a preferential loss of ‘thin’ spines, and a corresponding relative increase in
‘stubby’ spines, has also been reported in MSNs of the NAc following DA denervation [328].
Collectively, evidence supports a strong relationship between microglia, dopaminergic
system function and synaptic function. To date, however, it is unknown whether the
relationships between microglia and synaptic function or microglia and DA system function
are bidirectional.

6.2. Disturbances of Brain Homeostasis: HIV-1

Early in the course of infection, HIV-1-infected monocytes migrate across the blood–
brain barrier, infiltrating the brain and infecting microglia [331,332]. During HIV-1 infection,
increased expression of microglial markers (e.g., CD68, MHC II) in the brain has often
been interpreted as microglial activation [333], and more recent evidence supports morpho-
logical changes associated with microglial activation (i.e., amoeboid [334]). Additionally,
HIV-1 infection likely leads to microglial dysfunction, as evidenced by cellular senes-
cence [335]. Given the strong interrelationships between microglia, the DA system and
synaptic function, microglial dysfunction may underlie the hypodopaminergic state (re-
viewed in Section 3) and synaptic dysfunction [195,336,337] commonly observed following
chronic HIV-1 viral protein exposure (Figure 4B).

First, alterations in the relationship between microglia and DA system function have
been observed following induction of the HIV-1 viral protein, Tat [338]. Specifically, Tat
simultaneously decreased the number of microglia (i.e., Iba1 immunoreactive cells) and
the number of dopamine neurons (i.e., tyrosine hydroxylase positive neurons) in the
substantia nigra pars compacta, while an impact of HIV-1 Tat induction was not observed
in the VTA [338]. Second, microglial activation and/or dysfunction may underlie HIV-
1-associated synaptic dysfunction. HIV-1 viral proteins disrupt microglial proteins and
receptors (e.g., Cx3cr1 [339], CR3 [340]) that underlie microglia-mediated neurite and pre-
and post-synaptic engulfment [314,315,317]. Finally, chronic HIV-1 viral proteins may alter
the bidirectional relationship between the dopaminergic system and synaptic structures.
Specifically, in MSNs of the NAc, DA denervation induces a preferential loss of ‘thin’ spines,
and a corresponding relative increase in ‘stubby’ spines [328], morphological changes
which are consistent with the prominent shift towards ‘stubby’ spines reported following
chronic HIV-1 viral protein exposure [337,341]. Thus, we posit that the activation and/or
dysfunction of microglia underlies the prominent synaptic and dopaminergic system
dysfunction observed in HIV in the post-cART era. Future studies directly investigating
how these interrelationships are altered following chronic HIV-1 viral protein exposure
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have the potential to enhance our understanding of the neural mechanisms underlying
HAND and identify novel targets for therapeutic development.

7. Conclusions

1. Dopamine values are dependent upon not only brain region, but also experimental ap-
proach (i.e., HPLC, microdialysis, or FSCV). Substantial variability in basal dopamine
values may reflect differences in experimental parameters, and innovative genetic
fluorescent probes may be a future direction for assessing dopamine signaling.

2. Results overwhelmingly support decreased dopamine concentrations following chronic
HIV-1 viral protein exposure in either HIV-1 seropositive humans or biological sys-
tems utilized to model HIV-1. Therefore, future therapeutic approaches and models
for the neurological complications of HIV-1 need to focus on rectifying decreased
dopamine levels.

3. The clinical symptoms, including cognitive impairments and apathetic behaviors,
reflect persistent dopamine deficits in HIV-1 seropositive individuals. There is no
clinical evidence supporting increased dopamine following chronic HIV-1 infections.

4. To date, there is no compelling evidence that cART has any direct pharmacological
action on the dopaminergic system—dopamine deficits persist in the current era of
HIV-1 therapeutics.

5. HIV-1 infection likely leads to microglial dysfunction, which may have mechanistic
implications for a chronic bidirectional interaction between low dopamine levels and
synaptic dysfunction, implicated as neural mechanisms of HAND.
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