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L1000CDS2: LINCS L1000 characteristic direction signatures
search engine
Qiaonan Duan1,2,5, St Patrick Reid3,5, Neil R Clark1,2, Zichen Wang1,2, Nicolas F Fernandez1,2, Andrew D Rouillard1,2, Ben Readhead2,
Sarah R Tritsch3, Rachel Hodos2, Marc Hafner4, Mario Niepel4, Peter K Sorger4, Joel T Dudley2, Sina Bavari3, Rekha G Panchal3 and
Avi Ma’ayan1,2

The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene
expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes,
we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise
compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served
through a state-of-the-art web-based search engine application called L1000CDS2. The L1000CDS2 search engine provides
prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an
input gene expression signature using two methods. The L1000CDS2 search engine also predicts drug targets for all the small
molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between
the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for
single-gene perturbations in mammalian cells. We applied L1000CDS2 to prioritize small molecules that are predicted to reverse
expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22
endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS2, we
collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with
L1000CDS2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent
efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS2 tool
can be applied in many biological and biomedical settings, while improving the extraction of knowledge from the LINCS L1000
resource.
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INTRODUCTION
Systematic collection and analysis of genome-wide gene
expression drug–response data from human cell lines can be
used to identify drug repurposing opportunities, discover novel
mechanisms of action for compounds, realize small-molecule
mimickers of endogenous ligands, and assist in predicting side
effects for pre-clinical compounds.1 Such an approach was initially
made possible by the Connectivity Map,2 which contains the data
on the transcriptional responses of four human cancer cells lines
6 h after exposure to one of ~ 1,300 drugs and other small
molecules. The Connectivity Map project has been extended
under the auspices of the NIH library of integrated network-based
cellular signatures (LINCS) program3 by using a cost-effective
genome-wide transcriptomics assay based on Luminex bead
technology called L1000. Upon the completion of Phase I of the
LINCS program, LINCS-L1000 data are available on the responses
of ~ 50 human cell lines to one of ~ 20,000 compounds across a
range of concentrations for a total of over one million experiments.
The process of computationally extracting signatures from

mesenger RNA expression data, such as the LINCS-L1000 data, can

be accomplished using a variety of statistical methods. Currently,
signatures from the LINCS-L1000 data are computed using the
moderated Z-score (MODZ) method. Recently, we developed a
multivariate method to compute signatures called the Character-
istic Direction (CD).4 The CD method gives less weight to
individual genes that display a large change in magnitude when
comparing two conditions, for example, comparing gene expres-
sion from drug-treated cells with control cells. Some genes that
change in magnitude substantially may be given a lower score, or
a P value, compared with other methods such as the fold-change
method. In fact, the fold-change method only considers the
change in magnitude; and it is known to perform poorly. The CD
method gives more weight to genes that move together in the
same direction across repeats. So, a gene that changes less but
‘moves‘ together with a large group of other genes may be scored
higher than a gene that changed more in overall magnitude. The
method first identifies the linear hyperplane that best separates
the control samples from the treatment samples using linear
discriminant analysis, and then uses the Normal to this hyperplane
to define the direction of change in expression space for each
gene. We have shown before that the CD method is more
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sensitive in identifying the ‘correct’ differentially expressed genes
than most popular alternative methods using several benchmark-
ing strategies applied to the real data. With these benchmarks the
CD method outperformed limma,5 DESeq,6 significant analysis of
microarrays7 and the t-test.
In this study, we applied the CD method to process the LINCS-

L1000 data. We demonstrate that with the CD method we can
significantly extract better signatures compared with the currently
available computed signatures. All of the benchmarks presented
in this current manuscript are different from the benchmarks
presented before. These new benchmarks are specific for the

L1000 data, and as such, they set the stage for other methods to
be developed by showing how internal and external data can be
used to evaluate computational pipelines for processing the L1000
data. To enable access and utility to the composite of the
reprocessed CD signatures, we developed a state-of-the-art
web-based application, which is a signature-search-engine called
L1000CDS2. L1000CDS2 computes the angle between an input
signature vector and the LINCS-L1000 data to prioritize small
molecules and drugs to either reverse or mimic observed changes
in gene expression. With the L1000CDS2 tool, we prioritized small
molecules that can potentially reverse gene expression in 670
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Figure 1. Intrinsic benchmarking. Expression signatures for each small molecule are computed with the Characteristic Direction (CD)
algorithm or downloaded from lincscloud.org. The signatures on lincscloud are computed using the Moderated Z-score (MODZ) method.
(a, b) Histograms of the significance scores for the 8,301 signatures from the LJP5 and LJP6 batches. (c) Correlation between the strength
metrics for signatures computed by the two methods. (d) Correlation between differential expression significance rank and dose rank using
the two methods of computing differential expression. (e) Correlation between differential expression significance rank and dose rank using
the two methods of computing differential expression without the influence of insignificant perturbations.
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disease signatures extracted from gene expression omnibus
(GEO), and predicted small molecules as potential mimickers of
endogenous ligands. Using an independent collection of gene
expression signatures of single-gene perturbations extracted from
GEO we also predicted the most likely targets for each small
molecule profiled by the L1000 assay. As a case study, we tested
one prediction experimentally. Gene expression profiles from
human dendritic cells soon after infection with Ebola virus (EBOV)
were submitted as input to L1000CDS2. The top candidate from
the L1000CDS2 signature search was kenpaullone, a non-specific
inhibitor of kinases including GS3Kβ and CDK2.8 Subsequent
experiments on EBOV-infected HeLa and human foreskin
fibroblast cells demonstrated dose-dependent inhibition by
kenpaullone. Gene-set enrichment analysis using the Kyoto
Encyclopedia of Genes and Genomes (KEGG)9 pathways, the gene
ontology10 biological process tree, the mouse genome informatics
(MGI) mammalian phenotype ontology, ChIP-x enrichment analy-
sis (ChEA),11 the Encyclopedia of DNA Elements (ENCODE),12

kinase enrichment analysis (KEA)13 and Expression2Kinases14

confirms the potential involvement of GSK3β and CDK2 in early
EBOV infection and suggest that kenpaullone induces innate
immune response genes to assist infected cells to detect the
virus. These results suggest new means to combat EBOV and
potentially other pathogen infections, and demonstrate the utility
of L1000CDS2.

RESULTS
Benchmarking the characteristic direction method
As we previously showed that the CD method significantly
improves the quality of extracted gene expression signatures from
published microarray and RNA-seq studies,4 we hypothesized
that this method would significantly improve the extraction of
signatures from the L1000 data set. To test this hypothesis, we
benchmarked L1000 signatures extracted with the CD method
with the only currently implemented method called moderated
Z-scores MODZ. First, we examined the overall distribution of CD
signature P values and MODZ signature strengths (distil_ss) for a
collection of 8,301 unique L1000 experiments from two batches
(LJP5 and LJP6; Figure 1a,b). These histograms show a much fatter
tail for the signatures extracted with the CD method, suggesting
that this method identifies more potentially significant signatures.
Indeed, there are 685 significant signatures that pass the
distil_ss46 cutoff, which is currently recommended to call
significant MODZ signatures, compared with 2,045 significant
signatures called by the CD method with a Po0.01. As there is a
one-to-one correspondence between the signatures computed by
the two methods, we computed the correlation between the two
scoring schemes. We observed mild but significant correlation
between the two signature-scoring methods (Figure 1c). This
suggests that there is some overlap between the methods but
also there are significant differences.
Out of the 8,301 experiments in LJP5 and LJP6, there are 1,415

unique perturbation conditions if dose is not considered. We
examined the overall correlation between dose and overall
change computed by the two methods. The results from this
analysis show that the CD method identifies higher correlation
between dose and overall change compared with the MODZ
method (P value = 3.88e− 08, t-test; Figure 1d). This correlation
improves, and the difference in performance between the two
methods widens, when filtering out all the non-significant
perturbations (P value = 1.1782e− 14, t-test; Figure 1e). For the
next benchmarking assessment we analyzed the data from the
LJP4 batch where four classes of endogenous ligands: growth
factors; cytokines; interferons and others, were systematically
applied to six breast cancer cell lines. We asked which signature
extraction method separates the signatures by perturbation type,

time point and cell line. Using two unsupervised clustering
methods: multidimensional scaling and hierarchical clustering,
we plotted the signatures while coloring each signature by its
known class membership: perturbation type, time point and cell
line (Supplementary Figures S1 and S2). These figures show that
the clustering results computed with the CD better reflect known
biological knowledge about the experimental conditions applied.
The above benchmarking methods rely only on the L1000 data
and some limited knowledge about the perturbation and this is
why we call this set of benchmarks intrinsic. Additional bench-
marking methods can be achieved with external data, termed
extrinsic benchmarks. For this, we next asked whether similar
signatures induced by different small molecules also share
chemical structural similarity.
Experiments selected for this benchmarking were performed on

nine core cell lines: HA1E, VCAP, HCC515, PC3, A375, HEPG2, HT29,
MCF7, A549, upon treatment with 10 μM and where gene
expression was measured at 6 or 24 h covering 20,412 small-
molecule compounds. For experiments of identical conditions,
only the strongest as measured by CD signature P value were kept.
To compute the similarity between gene expression signatures of
these experiments, the cosine distance was used to for both CD
and MODZ signatures. Euclidean distance was also used as
another measure of similarity between MODZ signatures. The
chemical structure of the 20,412 small molecules were encoded
into the 166-bit Molecular ACCess System (MACCS) fingerprint,
or the Extended-Connectivity Fingerprints (ECFP4). Tanimoto score
was used to quantify fingerprint similarity with Tanimoto
coefficient of larger than 0.9 as a cutoff. Although there is some
relationship between expression signatures computed with the
MODZ method and the similarity of the chemical structure of the
perturbagens, the CD method is able to recover more significant
correlations between structure and expression (Figure 2a). The
benchmarking strategy also highlights that the ECFP4 molecular
fingerprint method outperforms the MACCS method.
The next extrinsic benchmarking approach asks whether direct

protein–protein interactions (PPI) of known drug targets are also
differentially expressed after drug treatment. A recent study that
utilized the original Connectivity Map data set showed how the
protein interactions of known targets are commonly found in the
differentially expressed genes induced by a drug treatment.15 CD
signatures were compared with MODZ signatures for their ability
to prioritize differentially expressed genes that are also direct
protein interactors of the drug targets. The signatures of 756 small
molecules in the LINCS L1000 data that have at least one known
protein target were selected for this benchmarking strategy.
Differentially expressed genes computed by each method, CD or
MODZ, were sorted by their absolute differential expression value
and compared with direct PPI of the targets using a random walk
(Figure 2b). The aggregated walks for the CD signatures show a
much sharper peak compared with the signatures computed with
MODZ, suggesting that the CD detects more direct protein–
protein interactions of the known targets from the L1000 LINCS
data. In summary, the intrinsic and extrinsic benchmarking
analyses clearly demonstrate that the CD is potentially a better
alternative for computing signatures compared with the MODZ
method. However, this result is global. The CD method works
better than the MODZ method across many data sets in general,
but it is possible that the MODZ method consistently outperforms
the CD under some specific conditions. In addition, caution should
be placed when considering individual genes when using the CD
method, for example, when picking genes for RT-PCR validation.
This is because the CD method can score highly genes that will
display changes that would not be considered statistically
significant with univariate methods such as the student’s t-test.
Although it appears that the CD performs better in ranking the
differentially expressed genes and determining which signatures
should be considered significant, more benchmarks are needed.
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For the third extrinsic benchmark we examined which method
directly recovers the known drug targets using an independent
data set of gene expression signatures extracted from the GEO
database. We collected 2,206 signatures for 917 unique genes
from studies where a single gene was perturbed (knocked-down,
knocked out or over-expressed) in mammalian cells. Using the
cosine distance, we ranked the GEO signatures for their similarity
with the L1000 LINCS data processed by the MODZ or the CD
method and evaluated where the known targets, as listed in
DrugBank, are ranked. We see that the CD method ranks known
targets higher than the MODZ method (Figure 2c). Hence, this
benchmark also supports that the CD method performs better
than the MODZ. As knowing the potential targets of small
molecules is very useful for many drug discovery applications, the
predicted targets for all small-molecule signatures, using the CD
method, were added as predictions to the L1000CDS2 web-based
search engine software application.

The L1000CDS2 web-based search engine software application
The input page on the L1000CDS2 web application consists of five
sections: input textboxes; example signatures; configuration;
metadata and recent searches (Figure 3). The entry point into
L1000CDS2 is to paste up/down gene lists into the up/down gene
text boxes, or paste a signature into the up gene text box. A
signature is a list of genes and their differential expression values
separated by a comma. The search button will only become
enabled when both the up/down gene-set text boxes are filled, or
when the up gene-set text box is filled with a signature. Clicking
the Search button will return the top 50 signatures in a table on
the results page. The example signatures section includes pre-
computed signatures that users can submit as input. The EBOV
signatures are the gene expression signatures described in this
pager. The disease signatures comprise of 670 disease signatures
extracted manually from GEO by identifying the control and
disease sample GSM files. The ligand signatures are consensus
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Figure 2. Extrinsic benchmarking. (a) ROC curves showing the recovery of structurally similar small-molecule compounds compared with gene
expression signature similarities in A549 cells after 24 h treatment with 10 μM of all compounds computed using the two different methods:
the cosine distance between Characteristic Direction (CD) signatures in blue, and the Euclidean distance of the Modulated Z-score (MODZ)
signatures in orange, and cosine distance of MODZ signatures in green. Chemical fingerprints similarities used to benchmark the gene
expression signature similarity are MACCS and ECFP4, plotted in solid and dashed curves, respectively. (b) The deviation from the cumulative
distribution of a uniform for the rankings of drug targets and their direct interactors in gene expression signatures computed using CD (blue)
and MODZ (orange) under the same conditions. (c) Recovery of known drug targets by observing the ranks of gene expression signatures
extracted from GEO (n= 2206) where 917 genes were perturbed by either knocked-down, knocked out, or over-expressed in mammalian cells.
GEO signatures are ranked by cosine distance when queried with the L1000 LINCS data processed by the MODZ or the CD methods. The
deviation from the cumulative distribution of a uniform for the rankings of drug targets as determined by DrugBank where signatures are
computed using CD (blue) and MODZ (orange) under the same conditions. ECFP4, extended-connectivity fingerprints; MACCS, molecular
access system; ROC, reveiver operating curves.
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Figure 3. Screenshot from the input page of the L1000CDS2 software application. The input text boxes toggle between up and down sets, or
an input vector option. Canned analysis for 670 disease signatures is provided with few clicks. The Ebola, ligand and cancer cell line signatures
are provided as canned examples.

Figure 4. Screenshot from the single drug/small-molecule results page of the L1000CDS2 software application.
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ligand perturbations calculated from the LINCS L1000 LJP4 subset.
The cancer cell line encyclopedia (CCLE)16 signatures were
computed from the CCLE gene expression data by comparing
the gene expression profile of each cell line to the rest using the
CD method. The configuration section provides several options to
customize a search. The mimic/reverse slider chooses between
searching for small molecules that mimic the input signature or
reverse it. The default search mode is reverse. Small-molecule
pairwise combinations search is also supported. Users can share
their input signatures and metadata so others can query their
signatures. In the metadata section, any metadata associated with
the input signature can be entered. Most importantly users are
encouraged to enter at least one tag for future reference. The 20
most-recent searches are stored in the recent search section.
Clicking on an entry reloads recent search results.
On the result page, the search results are rendered as a

paginated table with 14 entries per page (Figure 4). Each entry
provides seven columns of information about the signature: rank;
score; perturbation; cell-line; dose; time point and overlap with the
input. For the gene-set search, the search score is the overlap
between the input DE genes and the signature DE genes divided
by the effective input. The effective input is the length of the
intersection between the input genes and the L1000 genes, as
some input lists contain genes that are not present in the L1000
data set. This includes all ~ 22,000 L1000 genes, not just the
measured ~ 1,000.
Clicking the overlap button will show the overlapping genes

(and their values) in two text boxes. If the user input-type is
up/down gene lists, then the first box will show the overlapping
genes between the input up genes and the signature up (down)
genes, and the second will show the overlap between the input
down and the signature down (up) in the mimic (reverse) mode. If
the input is a signature, then the first box will show genes with a
positive value from the input signature, and the second box the
negative value genes. The signature values and input values in
both boxes are expected to be mostly of the same sign in the
mimic mode, and mostly the opposite sign in reverse mode. The
Enrichr button under each text box will send the genes to Enrichr
for enrichment analysis. Clicking the download button will

download all the information about a signature as a JavaScript
Object Notation (JSON) file.
On top of the table are buttons and icons that provide various

useful services. The reanalyze button redirects the user back to the
input page with the submitted lists or signatures preloaded in the
input textboxes. Users can then reanalyze their input using
different configurations, or modify the associated metadata. This
function also has a bearing on sharing results with others. It
provides a way for users to reanalyze their input with different
settings and obtain a permanent URL for each analysis. The tag
button displays the tag and search mode. Clicking on the button
shows the input metadata. The cloud download icon downloads
the results table as a .csv file. The diamond icon performs
enrichment analysis on the substructures of the top ranked small
molecules. The results of the substructure enrichment analysis are
displayed as a table where each row is a significantly enriched
substructure. Each row provides three pieces of information:
substructure, P value and perturbation count. The substructure is
represented as a string in the SMARTS format. The P value is
computed using the Fisher’s exact test. The perturbation count
shows the number of perturbations that have the same
substructures. Clicking on the share icon produces a permanent
URL that can be used to share the substructure enrichment
analysis results through an e-mail, a publication or other
documentation. Clicking on the plus sign shows a visualization
of the substructure and a table of the top perturbations that
contain the substructure. The rank in the table is the same rank of
the perturbations in the top 50 results table.
If the user chooses to search for small-molecule combinations,

then a table of signature combinations will appear below the
single perturbation result table (Figure 5). This table is also a
paginated table with 14 entries per page. Each entry provides
three pieces of information about the identified combinations:
rank; synergy score and combinations. When searching for
combinations, L1000CDS2 compares every possible pair
among the top 50 matching signatures and computes the
potential synergy between each pair by examining the level of
orthogonality. With the gene-set search, the synergy score is
calculated as the combined overlap of the differentially expressed

Figure 5. Screenshot from the drug pair results page of the L1000CDS2 software application.
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genes of the two drug signatures with the input gene lists. In a
cosine distance search, the synergy is calculated as the
orthogonality between two CD signatures. The rational for this is
that if two perturbations are orthogonal, then they may impart
their overall effect through two independent pathways. The rank
is based on the orthogonality score. The number before each
chemical perturbation in the combinations column is the rank of
that perturbation in the single signature result table. Clicking on a
perturbation will highlight that perturbation in the single
signature results table so the user can learn more details about
that perturbation. Clicking on the cloud download button on the
upper right corner downloads the combination table as a .csv file.

L1000CDS2 predicts kenpaullone as a potential drug to inhibit
Ebola infection
To further utilize the functionality of L1000CDS2 we applied it to
predict drugs and small molecules that can potentially inhibit
Ebola infection. To accomplish this we first collected expression
signatures from human cells infected with Ebola. Dendritic cells
from four human donors were infected with Ebola, and then
genome-wide gene expression was measured prior to infection
and at 30, 60 and 120 min after infection. The differentially
expression genes at each time point were computed comparing
each time point to the control. This resulted in 1,031 significantly
differentially expressed genes at 30 min, 746 at 60 min and 248 at
120 min. These signatures offer an opportunity to further
investigate the early response to Ebola infection compared with
most few other available previously published genome-wide
expression data sets before and after Ebola infection in human
and non-human primate cells.17–21 We first analyzed the
differentially expressed gene lists using Enrichr,22 an online tool
to perform enrichment analysis. We found that the upregulated
differentially expressed genes are enriched in immune response
terms, and hypothesized that small molecules that mimic this
gene expression state may enhance the intrinsic immune
response to assist in attenuating Ebola infection. We queried
these signatures with the L1000CDS2 tool to prioritize drugs and
small molecules that can potentially mimic gene expression in
Ebola-infected cells. Cosine distances were calculated for each
L1000 direction with an Ebola signature direction from the three
time points. Perturbations were then sorted by cosine distance,
prioritizing similar signatures. Interestingly, kenpaullone was
found to be ranked first for all three time points even though
each time point had a unique set of differentially expressed gene
signatures (Tables 1 and 2). It should be noted that using the
existing signature search tool available on the new lincscloud
Connectivity Map website, kenpaullone was ranked in the top 50
for the 60 and 120 time point signatures with ranks of 39th and
23th, respectively. These are relatively high ranks, but likely not
high enough to prioritize kenpaullone as a top choice for
experimental validation.
We next sought to assess whether several of the top ranked

small molecules, including kenpaullone, can inhibit Ebola infection
in tissue culture. For an initial screen we pretreated HeLa cells with
20 μM of each top ranked small molecule and then infected the
cells with Ebola at a multiplicity of infection (MOI) of five for 48 h.
Ebola-infected cells were stained for viral antigen and analyzed on
an Opera, confocal high-content imaging platform. Under these
conditions kenapaullone was observed to inhibit Ebola infection
by ~ 52% (Figure 6a). The small-molecule SB218078, a Chk1
inhibitor, inhibited Ebola by 60%. However, follow-up studies
using this small molecule yielded inconclusive results owing to
issues of solubility (data not shown). The remaining small mole-
cules, AG-14361, Menadione and Methyl 2, 5-didroxycinnamate
had minimal inhibitory affect against the virus and under these
conditions whereas daunorubcin was observed to be cytotoxic.

Taken together, out of the five small molecules selected for the
initial screen, kenapaullone remained to be the most promising.
To determine whether kenpaullone can inhibit Ebola infection

in a dose-dependent manner, we conducted a series of
dose–response experiments. HeLa cells were pretreated with
kenpaullone with doses ranging from 0.3 to 75 μM and then
infected with Ebola at an MOI of five for 48 h. In these experiments
kenpaullone was observed to consistently inhibit Ebola infection
in a dose-dependent manner (Figure 6b,c). It is important to note
that while the compound potently inhibited viral infection,
it did not affect overall cell number and was therefore
non-cytotoxic. Since kenpaullone is a known GSK3B inhibitor,
we next experimentally tested other well-established GSK3
inhibitors for efficacy of inhibiting Ebola infection in HeLa cells.
These compounds were SB216763, SB415286, TCS2002 and
TC-G 24. The cells were pretreated with the drug for 2 h as
before, and then infected with Ebola at the same MOI of five. By
cell number, the compounds were non-toxic (only SB216763
showed minimal toxicity at 100 μM), but these compounds had
minimal effect on blocking or enhancing Ebola infection. These
results suggest that kenpaullone likely exerts its effects not only
by inhibiting GSK3B but also through CDK2 and likely other

Table 1. Top five predicted drugs at each time point

Drug name Cosine
distance

Batch Cell
line

Time
point
(h)

Concentration
(μM)

30 min
Kenpaullone 1.2584 CPC002 HA1E 6 10
0800-0289 1.1978 CPC014 A549 24 10
BRD-K37312348 1.1965 CPC016 HT29 6 10
SB 225002 1.1896 CPC001 HA1E 24 10
10006350 1.1856 CPC012 MCF7 24 10

60 min
Kenpaullone 1.2756 CPC002 HA1E 6 10
PD 166793 1.2619 CPC001 HA1E 24 10
BAPTA-AM 1.2564 CPC001 HA1E 24 10
BRD-U74615290 1.2396 CPC014 HT29 6 10
NCGC00229596-01 1.2303 CPC008 HT29 6 10

120 min
Kenpaullone 1.3489 CPC002 HA1E 6 10
NSC 23766 1.3478 CPC006 PC3 24 160
Rosiglitazone 1.3386 CPC006 HA1E 24 80
7-hydroxy-2, 3, 4,
5-tetrahydro-1H-[1]
benzofuro[2, 3–c]
azepin-1-one

1.3351 CPC007 A549 24 10

LY 364947 1.3183 CPC003 PC3 24 10

Table 2. Top 10 predicted drugs by their rank product, i.e., multiplying
the ranks across the three time points as determined by the cosine
distance

Broad molecule ID Drug Rank product

BRD-K37312348 Kenpaullone 1
BRD-K40919711 BAPTA-AM 252
BRD-A97437073 Rosiglitazone 1,755
BRD-A68009927 Daunorubicin hydrochloride 2,880
BRD-A06352508 SB 218078 3,136
BRD-K78126613 MENADIONE 3,328
BRD-K88741031 Methyl 2, 5-dihydroxycinnamate 4,284
BRD-K00615600 AG14361 5,566
BRD-K31342827 GF-109203X 8,385
BRD-A75409952 wortmannin 17,204
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mechanisms. We also experimentally tested several small mole-
cules that were consistently predicted to reverse expression across
all three time points. These compounds included: PAC-1, Honokiol
and NCGC00184902-01. Among these, NCGC00184902-01,
showed slight enhancement of Ebola infection while the others
two compounds had no effect (Figure 6d). Finally, we tested
whether the effect of kenpaullone is cell-type specific by testing
its efficacy to attenuate Ebola infection in another cell types.
Human foreskin fibroblasts, considered a primary human cell line,

were pretreated with kenpaullone and infected with Ebola exactly
in the same way as was done for HeLa cells. We observed a
dose-dependent inhibition of infection in human foreskin
fibroblasts as well (data not shown).
To identify potential molecular mechanisms induced by Ebola

infection and mitigated by kenpaullone, we performed gene-set
enrichment as well as Expression2Kinases (X2K) analyses. We used
as input the up and down differentially expressed genes at 30,
60 and 120 min by Ebola, and the matching L1000 signatures
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Figure 6. Experimental validation of small-molecule predictions. (a) Initial screen of the top five predicted small molecules to attenuate Ebola
infection. HeLa cells were treated with 20 μM of each small molecule and then infected with Ebola at a multiplicity of infection (MOI) of five for
48 h. Ebola-infected cells were stained for viral antigen and analyzed on a confocal high-content imaging platform. (b) Dose–response
experiments. HeLa cells were pretreated with a dose range of kenpaullone (0.3–75 μM) then infected with Ebola at an MOI of five for 48 h.
(c) Representative images of cells treated in b. (d) Pre-treatment of HeLa cells with NCGC00184902-01 at two doses infected with Ebola.
NCGC00184902-01 was predicted to reverse expression of the Ebola infection signatures at all three time points.
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with kenpaullone. These gene sets were submitted for
enrichment and network analysis with the tools Enrichr22 and
Expression2Kinases.14 The first set of enrichment analyses was
applied to the upregulated genes induced by Ebola using
the gene ontology biological process, KEGG pathways and the
knockout mice mammalian phenotype ontology from the
mouse genome informatics (MGI) gene-set libraries (Figure 7a,
Supplementary Table S1). We observed a common theme. The
upregulated genes across all three time points are associated with
terms and pathways involving immune responses and N-linked
glycosylation. For example, abnormal innate immunity is by far the
most enriched MGI mouse phenotype term for the upregulated

genes upon Ebola infection after 60 min (adjusted P value of
o0.0001, Fisher’s exact test); whereas the most enriched
KEGG pathway is the N-glycan biosynthesis (adjusted P-value
of o0.00001, Fisher’s exact test). Next, we performed KEA13 on
the downregulated genes after Ebola infection. KEA includes
kinase–substrate interactions extracted from publications and
consolidated from six kinase–substrate open online databases.
In this gene-set library each term is a kinase and its substrates are
the gene sets associated with each term. Interestingly, applying
KEA to the downregulated genes at all three time points shows
most enrichment for known GSK3B substrates, the known target
of kenpaullone (Figure 7b). At the 30-min time point, substrates of

CDK1, 2.8e-3GSK3B, 6.5e-3
GSK3B, 7.0e-4 GSK3B, 7.5e-5

30 min down 60 min down 120 min down

KEGG MGI GO Biological Processes

n glycan biosynthesis abnormal adaptive immunity

abnormal immune cell 
abnormal antigen presenting 

positive regulation of myeloid 
leukocyte cytokine production 
involved in immune response

positive regulation of macrophage cytokine production 
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m

in
 u

p
K

E
A

Figure 7. GO, KEGG, MGI, KEA and X2K enrichment analyses. (a) Gene Ontology, KEGG pathways and mammalian phenotype enrichment
analyses visualization on three representative canvases for the upregulated genes after Ebola infection at 30 min. Each tile in each canvas
represents a term/gene-set and where all terms are arranged based on their gene-set content similarity. The canvas is continuous so the sides
fold on each other. The tiles brightness represents high enrichment scores (or low P values) computed with the Fisher’s exact test. The most
top enriched terms are highlighted. Complete results can be seen in supporting Table 1. (b) Kinase enrichment analysis visualized on a canvas
where each tile represents a mammalian kinase and the gene sets for each kinase are its known substrates. The brightness of the tiles
represent the enrichment P value scores computed using the Fisher’s exact test. (c) Expression2Kinases analysis of the upregulated genes after
2 h. In this analysis, we first identify transcription factors that are enriched for targets within the differentially expressed genes based on prior
ChIP-seq experiments. Then, the top ten transcription factors are connected through known protein–protein interactions. Finally, the resultant
proteins within this subnetwork are subjected to kinase enrichment analysis with KEA. Node size reflects connectivity and color distinguishes
transcription factors in blue, intermediate proteins in gray and kinases in green. GO, gene ontology.
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CDK1 and CDK2 are also highly enriched together with GSK3B.
These observation are consistent with our prediction of
kenpaullone as the top mimicking drug. X2K analysis also confirms
the potential involvement of GSK3B, CDK1 and CDK2 through the
transcription factors beta-catenin, Smad3 and estrogen receptor 2
(Figure 7c). Smad3 activity was recently shown to be induced by
kenpaullone to promote iTreg differentiation.23 X2K analysis first
identifies the enriched transcription factors upstream of the
differentially expressed genes, then connects these transcription
factors using known PPI collected from 20 databases, and then
X2K applies KEA to the network of connected transcription factors.
Hence, X2K attempts to connect changes in expression to their
upstream regulatory mechanisms and cell signaling pathways
through transcription factors and protein interactions. The results
from the X2K analysis are consistent and robust to different
thresholds and enrichment tests. Finally, we asked about the
overlapping genes induced or repressed by both kenpaullone and
early Ebola infection (Supplementary Table S2). The most enriched
gene ontology terms, MGI phenotypes and KEGG pathways that
are upregulated by both Ebola infection and kenpaullone are
related to the innate immune response and include the following
genes: CIITA, LILRB1, RIPK1, CARD9, ALOX5AP, AHR, TLR4 and CTSC.
These genes were reported to be regulated by STAT3 before
based on two independent published ChIP-seq experiments from
ENCODE12 and ChEA.11 STAT3 is a known inducer of the innate
immune response24 and we predict that STAT3 activity is further
induced by kenpaullone. However, validation of such prediction
remains for future studies.

DISCUSSION
Overall, we obtained initial coherent mechanistic insights about
the potential intracellular pathways that may be required for early
Ebola infection, and identified a small molecule that can
potentially interfere with this process. Our finding that a GSK3B
inhibitor can potentially attenuate Ebola infection is supported by
some additional evidence in the literature. Inhibitors of GSK3B
were previously reported to decrease the acute inflammatory
response following sepsis, protect multiple organ injury and
reduce muscle protein degradation during sepsis.25,26 The
glycolytic pathway implicated from our enrichment analysis is
known to be linked to GSK3B activity and there is increasing
appreciation that the glycolytic pathway is critical to the Ebola life
cycle.27 The non-specificity of kenpaullone makes studying its
molecular mechanisms and direct targets difficult. However, here
we observe that kenpaullone induces the expression of immune
response genes and as such it is potentially a general anti-viral
candidate. A relatively old study showed evidence that treatment
with interferon can improve outcome and survival of non-human
primates infected with Ebola.28 However, interferons are known to
cause severe side effects and may not be feasible to produce and
deliver, that is why small molecules such as kenpaullone, which
can potentially mimic/induce interferon are desired. The increase
in the expression of innate immunity response genes by
kenpaullone is predicted to assist infected cells and cells nearby
infected cells to better sense the viral infection and respond
quicker. It is still an open question whether kenpaullone interfere
with the virus life cycle or just turns on the immune response. It is
also not clear whether the induction of the viral innate immune
response by kenpaullone is through the same pathway induced
by Ebola or through a different mechanism. More specific small-
molecule derivatives of kenpaullone have been developed,29

and could be tested in future studies for potency for inhibiting
Ebola, and other similar pathogens.
In summary, here we introduced an improved computational

method that potentially elevates the usefulness of a subset of the
newly generated publicly available LINCS-L1000 data set to rapidly
prioritize small molecules that could reverse or mimic expression

in disease and other biological settings. The large collection of
signatures computed by the CD method is delivered as a state-of-
the-art web-based application that is already widely used. Besides
prioritizing small molecules for reversing or mimicking an input
signature, or pre-computed signatures for 670 diseases and a
collection of endogenous ligands, the L1000CDS2 search engine
web-based tool also predicts pairwise small-molecule combina-
tions, performs substructure enrichment analysis and computes
predicted targets based on an external set of signatures. The top
predicted molecule to reverse expression in human cells infected
with Ebola, kenpaullone, was shown to attenuate infection in a
dose-dependent manner while not causing cellular toxicity in two
cell lines. We also predicted the affected target genes and cell
signaling pathways pointing to immune response genes driven by
the inhibition of the CDK1-2 and GSK3B pathways, and potentially
activating STAT signaling. However, kenpaullone should be tested
in more cellular contexts before moving to animal models of
Ebola. As kenpaullone is shown to induce an immune response
that assists human cells to potentially combat Ebola infection, it is
possible that this small molecule will have positive effects in
blocking the spread of other viruses. The kenpaullone example is
just the tip of the iceberg of what is possible with the LINCS L1000
data and the L1000CDS2 web-based tool as many other
applications are awaiting discovery.

MATERIALS AND METHODS
Computing LINCS L1000 characteristic direction signatures
LINCS L1000 level 3 normalized data, and level 5 moderated Z-scores
(MODZ) data were downloaded from lincscloud.org and GEO (GSE70138).
The normalized data set was processed with MATLAB (Natick, MA, USA)
using customized version of the CD method.4 A CD unit vector was
calculated for each experiment replicate in comparison with all the control
replicates on the same plate. A CD signature was computed for each
experimental condition by averaging the CDs across replicates. The mean
of the pairwise cosine distances between the CDs across replicates was
used as a test statistic to assess the significance of a CD signature.
Specifically, the mean was compared with a null distribution constructed
from random sampling of irrelevant CD replicates to compute a P value.
The differentially expressed genes were calculated using the random
product algorithm.30 The CD signatures and associated metadata are
stored in a MongoDB (New York, NY, USA) database and available for
download from the L1000CDS2 website.

Benchmarking characteristic direction signatures with moderated
z-score signatures
Dose-significance correlation. The distribution of CD P values and the
distribution of MODZ strengths (distil_ss) were plotted as histograms for a
collection of 8,301 unique L1000 experiments from the LINCS L1000 LJP5
and LJP6 subsets. The correlation between the P values and strengths was
computed and graphed in a scatter plot. Out of the 8,301 experiments,
1,415 unique conditions (if dose was not considered) were identified. The
correlations between dose and P value, and between dose and MODZ
strength, were calculated for each of these conditions.

Ligand classification. Two hundred sixty two of the most significant
signatures were selected from the collection of 1,374 signatures created
from cancer cell lines treated with ligands in the LINCS L1000 LJP4 batch.
Significant signatures were determined by the CD signature significance.
Pairwise cosine distances between CD signatures and pairwise
Euclidean distances between MODZ signatures of these same significant
signatures were computed and organized into two distance matrices.
Multidimensional scaling was applied to each matrix to visualize the
signatures in a scatter plot. On the plots each signature was colored by its
known ligand class membership, perturbation type, time point or cell-line.
Two sub-matrices including only the significant signatures using the MCF7
cell-line were extracted from the two distance matrices. Hierarchical
clustering with different distance measures was applied to these sub-
matrices to generate dendrograms. The leaves of the dendrograms were
labeled by ligand name and colored by their known class membership,
perturbation type or time point.
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Chemical–substructure/expression–signature correlations. Experiments con-
ducted on nine core cell lines (HA1E, VCAP, HCC515, PC3, A375, HEPG2,
HT29, MCF7, A549) upon small-molecule treatment at 10 μM for 6 or 24 h
were selected from the LINCS L1000 data. These experiments cover 20,412
small-molecule compounds. The experiments were further filtered by only
retaining the most significant unique signatures (cell line, time point, small
molecule and dosage) using the CD signature P value. To compute the
similarity between gene expression signatures of these filtered experiments,
the cosine distance was used for both CD and MODZ signatures. Euclidean
distance is also used as another measure of similarity between MODZ
signatures. The 2D chemical structures of the 20,412 small-molecule
compounds encoded in simplified molecular-input line-entry system
(SMILES) format were retrieved and converted to the 166-bit MACCS
fingerprint, or the ECFP4. Tanimoto similarity was used to quantify
fingerprint similarity with Tanimoto coefficient larger than 0.9 as a cutoff.
The similarity among substructures was compared with the similarity
between gene expression signatures using Pearson’s correlation analysis.

Differential expression of drug targets’ direct PPI. The chemical structure of
small-molecule compounds within the LINCS L1000 data encoded in the
SMILES format were compared with those in DrugBank v4.3.31 Nine
hundred twenty seven were identified as FDA-approved drugs where 765
of them had at least one known target. The direct known PPI for these
targets were collected from a literature-based mammalian PPI network
covering 50,478 PPIs between 9,384 proteins as described in ref. 32. The
MODZ and the CD signatures using the 765 drugs with known targets were
extracted from the LINCS L1000 data according the following criteria:
(1) The MODZ signature is strong, reproducible and self-connected as
indicated by the is_gold field in the MODZ metadata; and (2) The CD
signature of an experiment must be significant with P⩽ 0.05 computed as
indicated above. The genes in each CD or MODZ signature were sorted by
their absolute value of differential expression for each drug, and then these
ranks were compared to the known direct PPI for the drug’s targets using a
random walk. Aggregate average walks were plotted on line charts.

Predicting drug targets using an independent data set from GEO. To
benchmark the ability of the CD or MODZ methods to predict drug targets
using the LINCS L1000 gene expression data we examined 451 single-gene
perturbation gene expression signatures curated from GEO where the
perturbed gene is a known target for at least one drug profiled by the
L1000 assay. Signatures from the LINCS L1000 drug perturbation data were
first grouped by combining cell line, dose, and time point. The strongest
signature for a given drug was selected based on reproducibility (is_gold)
and signature strength (distil_ss). To rank the GEO signatures using the
signatures from the LINCS L1000 computed by CD or MODZ, we sorted the
GEO gene expression signatures in decreasing order of the absolute value
of cosine similarity between the LINCS L1000 signatures and GEO
signatures in the space of all shared genes for each LINCS L1000 signature.
The ranks of true drug targets from Drugbank v4.333 were recorded and
scaled to the total number of single drug target perturbations from GEO.
The cumulative distribution of the scaled ranks was plotted to assess
matches between targets from the gene perturbation profiles from GEO
and the drug induced signatures from LINCS L1000.

Developing the L1000CDS2 web-based search engine software
application
The significant CD signatures from the LINCS L1000 CPC, CPD and LJP5-9
batches as determined by their P values (Po0.1) were selected to
construct the back-end database for search. This collection includes a total
of 33,197 signatures. These signatures are stored in a MongoDB database
dedicated to the app. To deploy L1000CDS2 we implemented a search
function that is hosted on an R server using the R Rook package (Nashville,
TN, USA). The back-end of L1000CDS2 is implemented in Node.js. The
Node.js server fetches metadata from a MongoDB database and the server
communicates with the client through JSON strings. The front-end is
implemented using AngularJS (Mountain View, CA, USA) and Bootstrap
(San Francisco, CA, USA). After the front-end receives the JSON string,
it renders the results as paginated tables. To implement the substructure
enrichment analysis, a matrix was constructed where the rows are the 166
MACCS fingerprints and the columns are the small molecules. The
visualization of the 166 fingerprints were downloaded as PNG files from
SMARTSviewer.34 An R function was written to perform the enrichment
analysis. This R function takes the top small-molecule IDs as input and
performs the Fisher’s exact test to compute enrichment scores.

Identifying kenpaullone as a potential drug to inhibit Ebola
infection
The Ebola virus experiments were conducted in the Biosafety level 4 (BSL4)
facility at the United States Army Medical Research Institute of Infectious
Diseases (USAMRIID). Dendritic cells from four human donors were
infected with Ebola Zaire species, strain Mayinga and then genome-wide
gene expression analysis with the Affymetrix Human Genome U133 Plus
2.0 Array (Santa Clara, CA, USA) was performed prior to infection and at 30,
60, and 120 min after infection. This gene expression microarray data is
available for download from the help section of the L1000CDS2 tool. The
differentially expressed genes at each time point were computed
comparing each time point with the control. The three signatures of the
differentially expressed genes were then queried with the L1000CDS2 tool
to prioritize drugs and small molecules that can potentially mimic or
reverse the gene expression state of the Ebola-infected cells. Top ranked
drugs were selected for experimental validation. To test each drug HeLa
cells were pretreated with each top ranked small molecule and then
infected with Ebola at a MOI of five for 48 h. Ebola-infected cells were then
stained for viral antigen and analyzed on an Opera, confocal high-content
imaging platform. Image analysis was performed using the acapella
software. Using this system we were able to account for cell viability by
nuclear (Hoechst) and cytoplasmic (CellMask) stains (Waltham, MA, USA).
To determine whether kenpaullone and other small molecules can inhibit
Ebola infection in a dose-dependent manner, HeLa cells were pretreated
with each drug in a dose range and then infected with Ebola at an MOI of
five for 48 h. The same experimental setup was applied to evaluate human
foreskin fibroblast cells.
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