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Abstract: Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial
materials for seamless and biocompatible integration with the human body. However, existing
hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously,
as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic
research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive
Ti3C2Tx-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct
ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing
with Ti3C2Tx nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary
free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive,
and conductive Ti3C2Tx-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable
stretchability (~622%), high electrical conductivity (5.13 S m−1), and good adhesion strength on
varying substrates. We further demonstrate the capability of facilely printing such hydrogels into
complex geometries like mesh and rhombus patterns with high resolution and robust integration.

Keywords: MXene; conductive hydrogel; 3D printing; pre-crosslinking; adhesion

1. Introduction

Bioelectronic interfacing with the human body has become a bridge to record/stimulate
physiological information in our daily lives. Currently, most bioelectronic devices are fab-
ricated from inorganic materials with proper electrical conductivity, such as metals and
silicon [1–3]. However, these bioelectronic devices based on inorganic materials are limited
by mechanical mismatches with biological tissues, leading to unstable and uncomfortable
signal collection/stimulation [4–6]. Compared to traditional inorganic materials, tissue-like
soft materials can replace traditional rigid electronics to improve compliance and improve
performance to suffice for practical applications [3,6–9].

Hydrogels have been extensively explored in bioelectronics because of their tissue-like
mechanical properties and tunable functionalities. Most recently, an increasing number
of functional hydrogels have been employed for the fabrication/integration of bioelec-
tronic devices [6,7,10]. Among them, stretchable, adhesive, and conductive hydrogels
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have been regarded as ideal candidates in human-machine interfaces [11]. However, the
development of such hydrogels is still a considerable challenge due to the trade-offs among
varying properties.

One of the effective strategies to realize stretchable, adhesive, and conductive hydro-
gels is rational compositing of highly conductive nanofillers within the hydrogel matrix.
MXene is an emerging family of 2D materials with a general formula of Mn+1XnTx, which
are obtained by selective etching A-group (generally group IIIA and IVA elements) layers
from the MAX phases [12–14]. Typically, the “M” is a transition metal, “X” is carbon and/or
nitrogen, and “T” represents the surface functional groups (=O, -OH, and -F). Particu-
larly, Ti3C2Tx, as a representative MXene material, possesses high electrical conductivity
(10,000 S cm−1), superior hydrophilicity [15,16], as well as good mechanical performance
due to the presence of M-N or M-C bonds. Functional groups (=O, -OH, and -F) on the
MXene surface [17] enables MXenes with excellent dispersibility, which can be processed
by multiple manufacturing techniques [18–20], involving screen-printing [21,22], stamp-
ing [23], and spraying [24]. However, these processing techniques are usually limited by
multiple factors, such as low-resolution, two-dimensional, and low aspect ratio [25]. Direct
ink writing 3D printing is an advanced additive manufacturing technology that offers
the capability to fabricate geometrically freeform 3D structures [26,27]. Although some
interesting efforts have been devoted to develop Mxene-based printable inks [28–30], 3D
printing of Mxene-based hydrogels simultaneously with good mechanical, electrical, and
adhesive properties have been rarely investigated.

In this work, we prepare a stretchable, conductive, and adhesive Ti3C2Tx-polyacrylic
acid (PAA) hydrogel by using a simple pre-crosslinking method followed by direct ink
writing 3D printing. Our strategy is to employ Ti3C2Tx nanosheet aqueous suspension
to initiate the pre-polymerization of acrylic acid monomers. Ti3C2Tx-PAA hydrogels
can be further achieved by secondary radical polymerization of 3D printed ink patterns.
The resultant Ti3C2Tx-PAA hydrogel exhibits high stretchability (~622%), high electrical
conductivity (5.13 S m−1), and strong adhesion on varying substrates. The flexibility of 3D
printing technology enables facile patterning of complex geometries like mesh and rhombus
patterns with high resolution and robust integration. Based on these merits, Ti3C2Tx-PAA
hydrogels are potential material candidates for biomedical applications [30–32].

2. Materials and Methods
2.1. Materials

Acrylic acid (AA, 99%; Shanghai Vita, Shanghai, China), ammonium persulfate (APS,
≥98%; Aladdin, Shanghai, China), lithium fluoride (LiF, 97%; J&K Scientific, Beijing, China),
hydrochloric acid (HCl, 35–38%; Shanghai Vita, Shanghai, China), phosphate buffer saline
(PBS, pH = 7.4; Howei Pharm, Guangzhou, China)), and Ti3AlC2 were purchased from 11
Technolog Co, Jilin, China.

Preparation of Ti3C2Tx MXene nanosheets. MXene was prepared by a selective etching
method with LiF/HCl as the etching solution. Notably, the etching solution was composed
of LiF (1 g) and HCl (20 mL, 9 M). After the etching solution was stirred for 5 min at room
temperature, Ti3AlC2 powder (1 g) was slowly added to the etching solution and stirred
at 35 ◦C for 24 h. When the reaction was completed, the acid suspension was repeatedly
washed with deionized water 6 times and centrifuged at 6000 rpm for 2 min. Deionized
water was added to the collected sediment, followed by the suspension being sonicated for
1 h and centrifuged at 2000 rpm for 30 min. Subsequently, a dark green MXene colloidal
dispersion was collected [33]. Redispersible MXene powder can be obtained by drying
MXene colloidal dispersion at 60 ◦C for 6 h. Such powder (0.1 g) was added to deionized
water (1.33 g) and sonicated for 30 min to obtain aqueous MXene nanosheet suspension.

Preparation of 3D printable Ti3C2Tx-PAA inks. MXene suspension and AA monomers
were mixed and filtered with a syringe filter (40 µm) to obtain viscous 3D printable Ti3C2Tx-
PAA inks via pre-crosslinking at the optimal time (Figure S1). The detailed composition of
different Ti3C2Tx-PAA inks is listed in Table S1.
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3D printing of Ti3C2Tx-PAA inks. Direct ink writing 3D printing of Ti3C2Tx-PAA inks
was conducted based on a 3D printer (DB 100, Shanghai Mifang Electronic Technology,
Shanghai, China) with a 160-µm nozzle. The printing pressure and speed were 30 kPa
and 40 mm s−1, respectively. Printing pattern paths were generated by AI drawings and
converted into SVG. The detailed printing paths are shown in Figure S2. After printing, 3D-
printed Ti3C2Tx-PAA patterns were put into APS solution for 10 min to yield Ti3C2Tx-PAA
hydrogels via secondary radical polymerization of AA oligomer.

2.2. Characterization

Mechanical characterization. Mechanical properties of Ti3C2Tx-PAA hydrogels were
performed by using a universal testing machine (Zhiqu-990L, ZHIQU Precision Instrument,
Guangzhou, China) equipped with a U-stretch 5 N load cell at 100 mm min−1 rate.

Electrical conductivity measurement. Electrical conductivity of Ti3C2Tx-PAA hydrogels
was measured by using a standard four-point probe (Keithley 2700 digital multimeter,
Keithley, Beaverton, OG, USA). Ti3C2Tx-PAA hydrogels were cut into rectangle shapes
(12 mm in length and 5 mm in width). Copper electrodes were adhered onto the surface of
hydrogels by applying silver paste.

Electrochemical properties. Charge injection capacity (CIC) and electrochemical impedance
spectroscopy (EIS) measurements of Ti3C2Tx-PAA hydrogels were carried out by using a
Gamry instrument (Interface 1010, Gamry instruments, Warminster, PA, USA). The samples
were attached onto platinum substrate. All measurements were obtained using a three-
electrode configuration, e.g., Ti3C2Tx-PAA hydrogel as the working electrode, platinum
wires as the counter electrode, and Ag/AgCl electrode as the reference electrode with PBS
as the electrolyte.

Adhesive properties. The adhesion properties of Ti3C2Tx-PAA hydrogels were evaluated
through lap shear tests based on the ASTM F2255-05 standard by using a universal testing
machine (ZQ-990LB, ZHIQU Precision Instrument, Dongguan, China) at the testing speed
of 10 mm min−1. The adhesion strength was determined by dividing the maximum
separation force by the contact area.

3. Results and Discussion
3.1. Design and Preparation of Ti3C2Tx-PAA Hydrogels

To prepare a stretchable, adhesive, and conductive hydrogel, we present a pre-crosslinking
strategy to pre-polymerize AA monomer within Ti3C2Tx nanosheets (Figure 1a), leading to
the viscosity increase and the formation of viscous 3D printable inks (Figure 1b). With
increasing concentration of Ti3C2Tx nanosheet suspension, AA can polymerize gradually,
resulting in the transition of mixed solution into viscous 3D printable pastes (Figure S1).
This is mainly due to the catalytic effect of Ti3C2Tx and also hydrogen bonding between
hydroxyl groups in Ti3C2Tx and carboxylic groups of AA or PAA chains [34].

After 3D printing, prepolymerized hydrogel patterns are further oxidized by putting
them into APS solution for 10 min to obtain fully crosslinked Ti3C2Tx-PAA hydrogels
(Figure 1c). During the soaking process, a redox reaction between the reductive (Ti3C2Tx
nanosheets) and the initiator (APS) results in plenty of sulfate radical (SO−

4 ·) generated from
APS. Subsequently, SO−

4 · hydrolyzes a large amount of hydroxyl radicals (· OH), which
accelerates the polymerization of AA monomers or oligomers to form PAA chains [10,35].
Meanwhile, the redox reaction releases enormous heat, also facilitating the generation of
free radicals for faster cross-linking [35,36].
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Figure 1. Schematic illustration for preparing Ti3C2Tx-PAA hydrogels via 3D printing. (a) Chemical
structures of Ti3C2Tx nanosheets, AA, APS, and PAA. (b) Pre-polymerization of AA with Ti3C2Tx

nanosheets. (c) 3D printing and secondary-crosslinking of Ti3C2Tx-PAA hydrogels with APS.

3.2. Mechanical Performance of Ti3C2Tx-PAA Hydrogels

Since we prepare the hydrogel by directly adding AA monomers into the Ti3C2Tx
dispersion, the water content of the resultant Ti3C2Tx-PAA hydrogels is controlled by the
Ti3C2Tx concentration, showing rising water content from 11.71% (1 wt.% Ti3C2Tx) to
66.54% (15 wt.% Ti3C2Tx) with increasing Ti3C2Tx concentration (Table S1). To quantify the
mechanical properties of Ti3C2Tx-PAA hydrogels, we systematically characterize the stress-
strain curves of varying Ti3C2Tx-PAA hydrogels by tensile tests. As shown in Figure 2,
Ti3C2Tx-PAA hydrogels display excellent mechanical characteristics with various Ti3C2Tx
contents. Apparently, the incorporation of Ti3C2Tx dispersion dramatically decreases
the ultimate strain from 622% to 101% and reduces the tensile strength from 893 kPa to
111 kPa (Figure 2a,b). This phenomenon can be ascribed to the introduction of rigid Ti3C2Tx
nanosheets as well as the water content changes in Ti3C2Tx-PAA hydrogels. The Young’s
modulus of the Ti3C2Tx-PAA hydrogels also declines from 795.8 kPa to 78 kPa (Figure 2c)
with increasing Ti3C2Tx concentration, owing to the rising water content.

Most hydrogels require robust mechanical performance to resist various mechanical
deformations. Therefore, we further evaluate the energy dissipation capacity of 1 wt.%
Ti3C2Tx-PAA hydrogel (Figure 2d). For consecutive tensile loading/unloading tests, the
tensile stress decreases when increasing the cyclic time and maintains its elasticity (~88.55%
of the original) after eight cycles. Evidently, the loading/unloading curve area gradually
stabilizes from the second to the eighth lap, implying stable energy dissipation and fur-
ther revealing the superior mechanical performance of Ti3C2Tx-PAA hydrogels. Taking
advantage of these merits, the resultant Ti3C2Tx-PAA hydrogels exhibit favorable overall
mechanical properties and can be easily tuned by varying the material composition.
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  Figure 2. Mechanical properties of Ti3C2Tx-PAA hydrogels. (a) Stress-strain curves, (b) tensile
strength and elongation at the break, and (c) Young’s modulus with varying Ti3C2Tx contents.
(d) Loading/unloading stress-strain curves at the strain of 200% for 1 wt.% Ti3C2Tx-PAA hydrogel.

3.3. Electrical and Electrochemical Properties of Ti3C2Tx-PAA Hydrogels

To assess the electrical conductivity of Ti3C2Tx-PAA hydrogels, we vary the Ti3C2Tx
concentration in the Ti3C2Tx-PAA solution and keep the same soaking condition for 10 min
in PBS solution. Evidently, when increasing the concentration of Ti3C2Tx, the electrical
conductivity of Ti3C2Tx-PAA hydrogels is improved up to 5.13 S m−1 in PBS, displaying
a positive linear relationship versus Ti3C2Tx concentration (Figure 3a) [37]. A significant
increase in electrical conductivity is attributable to favorably connected Ti3C2Tx nanosheets
for an extraordinary electron transport ability [37,38]. Notably, compared to other con-
ductive hydrogels reported previously [39], our Ti3C2Tx-PAA hydrogel exhibits superior
conductivity to most hydrogels so far (see detailed comparison in Table S2 [36,40–43]).
Highly conductive Ti3C2Tx-PAA hydrogel may also be utilized for potential applications in
flexible and wearable electronic devices [3,44].

To further investigate the electrochemical performance of Ti3C2Tx-PAA hydrogels,
we performed the current density of the 15 wt.% Ti3C2Tx-PAA hydrogels. Under a bipha-
sic voltage transient pulse test (±1 V voltage amplitude, 0.1 s duration), the 15 wt.%
Ti3C2Tx-PAA hydrogel displays the highest charge density of ~11.82 mA cm−2 (Figure 3b).
The charge injection capacity (CIC) of Ti3C2Tx-PAA hydrogel is measured to be about
742.6 ± 5 µC cm−2. Moreover, the CIC loss is less than 0.9% even after 50,000 cycles of
bipolar voltage stimulation (Figure 3c), implying an excellent electrochemical stability of
such hydrogels. The electrochemical impedance spectroscopy (EIS) analysis shows that the
impedance of 15 wt.% Ti3C2Tx-PAA hydrogel is significantly lower than a bare Pt electrode
in the frequency range of 1 Hz (Figure 3d), suggesting enhanced ion transportability in the
15 wt.% Ti3C2Tx-PAA physical hydrogel. Moreover, over a frequency range of 103~105 Hz
(the high-frequency range), impedance plot of the hydrogel exhibits the phase angle (nearly
0◦) as well as the value of solution resistance (Rs) that varies from 34.85 to 32.53 Ω. In light
of the frequency range of 0.1~102 Hz (the low-frequency line), the 15 wt.% Ti3C2Tx-PAA
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hydrogel represents the electric double layer capacitance (CPEdl), membrane resistance
(Rm), and charge transfer resistance (Re) (Figure 3d,e). A reasonable equivalent circuit
model of the 15 wt.% Ti3C2Tx-PAA hydrogel in PBS solution (pH = 7.4) is also well fitted
(Figure 3f).
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Figure 3. Electrical conductivity and electrochemical performances of Ti3C2Tx-PAA hydrogels.
(a) Electrical conductivity of Ti3C2Tx-PAA hydrogels. (b) Cyclic current pulse injection curves of
the 15 wt.% Ti3C2Tx-PAA hydrogel on Pt electrode under between −1 V and 1 V (versus Ag/AgCl).
(c) Charge injection capacity of the 15 wt.% Ti3C2Tx-PAA hydrogel. From the EIS characterization
(versus frequency of 0.1~105 Hz), (d) plots of impedance, (e) phase angle, and (f) Nyquist plot of the
15 wt.% Ti3C2Tx-PAA hydrogel on Pt substrate are obtained. The corresponding equivalent circuit
fitted values of the 15 wt.% Ti3C2Tx-PAA hydrogel are Rs = 32.47 Ω, Rm = 3678 Ω, Re = 0.6955 Ω, and
CPEdl (Qp = 1.479 × 10−4 S·sn, np = 0.8315) [4,25].
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3.4. Adhesion Performance of Ti3C2Tx-PAA Hydrogels

To demonstrate the extensive adhesion of hydrogels (Figure 4a), we adhere hydrogels
on different substrates, including glass, metal, PTFE, rubber, plastic, wood, and pig skin.
Interestingly, the Ti3C2Tx-PAA hydrogel can withstand 200 g loading cell when adhering
on the substrate. To evaluate the adhesion performance of Ti3C2Tx-PAA hydrogels, we
adopt standard mechanical tests to measure the adhesion strength on a range of typical
substrates (Figure S3). It is found that Ti3C2Tx-PAA hydrogels generally exhibit good
adhesion strengths on varying substrates (2.13 kPa for glass, 0.44 kPa for metal, 0.42 kPa
for PTFE, 0.74 kPa for pigskin, 0.49 kPa for weight, 2.04 kPa for plastic, 0.38 kPa for rubber,
and 0.52 kPa for wood).

1 
 

 

Figure 4. Adhesion property and self-healing property of Ti3C2Tx-PAA hydrogels. (a) Photographs
illustrate the adhesion ability of hydrogels on different substrates (glass, metal, PTFE, weight, rubber,
plastic, wood and pigskin). (b) Shear adhesion strength of Ti3C2Tx-PAA hydrogels on PET substrates.
(c) Adhesion strength on aluminum substrate. (d) Self-healing property of the hydrogel.

Additionally, we measure the adhesion strength on aluminum substrate via 90◦ peeling
and adhesion of hydrogels on PET by the lap shear test. In general, the electrostatic force
between carboxyl groups on PAA chains and various substrates is the main reason for the
adhesion of hydrogels [36]. In our work, the shear strength (5.84 kPa to 11.32 kPa) and
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adhesion strength (1.14 kPa to 2.20 kPa) of hydrogels show an increasing trend (Figure 4b,c).
Due to the increase of the concentration of AA monomers, the electrostatic force between
hydrogels and substrates is obviously enhanced, leading to good adhesion of Ti3C2Tx-PAA
hydrogels against varying substrates.

3.5. Self-Healing Properties of Ti3C2Tx-PAA Hydrogels

Ti3C2Tx-PAA hydrogels are able to self-heal immediately after cutting (Figure 4d).
When we cut the hydrogels into two pieces and put them in touch with each other under
external force, they heal automatically within several seconds. The self-healed hydrogel
could be stretched without obvious decrease in ultimate strain.

3.6. Patterning Ti3C2Tx-PAA Hydrogels by 3D Printing

Complex patterning/manufacturing techniques have greatly hampered the develop-
ment of stretchable, adhesive, and conductive hydrogels in various practical applications.
Enlightened by the 3D printability of recent MXene materials and conducting polymer ink
via controlling the viscosity [4], we developed the 3D printing techniques of Ti3C2Tx-PAA
hydrogels. The viscosity of Ti3C2Tx-PAA inks increased rapidly with increasing Ti3C2Tx
contents (Figure S2), rendering good 3D printability of such inks [45,46]. Notably, an
excessively high Ti3C2Tx concentration will lead to significant aggregation of hydrogels
and nozzle clogging.

To demonstrate the capability of 3D printing such hydrogels, we printed mesh
(Figure 5a) and rhombus (Figure 5c) structures with 15 wt.% Ti3C2Tx-PAA ink through a
160-µm diameter nozzle onto PET film. The 3D-printed Ti3C2Tx-PAA hydrogel pattern
displays superior flexibility, good stretchability, and excellent adhesion against the PET
substrate (Figure 5e,f), offering a promising platform to fabricate multifunctional materials
towards various applications like tissue engineering and neural science [47,48].
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Figure 5. 3D printing of Ti3C2Tx-PAA hydrogels. (a) 3D-printing of a mesh structure and (b) its
microstructure. (c) 3D-printing of a rhombus structure and (d) its microstructure. (e) Bending of the
3D-printed Ti3C2Tx-PAA mesh structure without defect. (f) Stretching of the 3D-printed Ti3C2Tx-PAA
rectangle structure without failure.
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4. Conclusions

We successfully developed a pre-crosslinking and secondary-crosslinking strategy
for the 3D printing of stretchable, adhesive, and conductive Ti3C2Tx-PAA hydrogels. The
pre-polymerization between Ti3C2Tx nanosheets and AA monomers yields viscous 3D
printable inks. Secondary polymerization of 3D-printed patterns by 3D printing realizes
a multifunctional Ti3C2Tx-PAA hydrogel. The resultant hydrogels are demonstrated to
display high stretchability (~622%), high electrical conductivity (5.13 S m−1), excellent
adhesion (11.32 kPa), and outstanding electrochemical activity and stability. Moreover, the
3D printable Ti3C2Tx-PAA inks can be readily printed into various complex patterns like
mesh and rhombs with high resolution, which benefits robust integration of wearable and
implantable devices. This work not only provides a simple strategy to achieve stretchable,
conductive, and self-healable multifunctional hydrogels, but also sets up a 3D printing
technique for facile fabrication and integration of diverse bioelectronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14101992/s1, Figure S1: Digital images of varying Ti3C2Tx-
PAA inks after 1 day (a), 2 days (b), and 3 days (c), showing the viscosity increase with time, Figure
S2: Rhombus and square patterns for 3D printing of Ti3C2Tx-PAA hydrogels. Designing and printing
paths for (a) rhombus pattern, (b) square pattern (size: 2 mm × 2 mm), and (c) square pattern
(size: 3 mm × 3 mm), Figure S3: Adhesion strength of 1 wt.% Ti3C2Tx-PAA hydrogel with varying
substrates.; Table S1: Compositions of Ti3C2Tx-PAA hydrogels, Table S2: Electrical conductivity
comparison of our Ti3C2Tx-PAA hydrogels with previously reported conductive hydrogels. Refer-
ences [36,40–43] are cited in Supplementary Materials.
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