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Abstract: Macrophages are an integral part of the mononuclear phagocyte system that is critical
for maintaining immune homeostasis. They play a key role for initiation and modulation of
immunological responses in inflammation and infection. Moreover, macrophages exhibit a wide
spectrum of tissue-specific phenotypes in steady-state and pathophysiological conditions. Recent
clinical and experimental evidence indicates that the ubiquitous compound heme is a crucial regulator
of these cells, e.g., in the differentiation of monocytes to tissue-resident macrophages and/ or in
activation by inflammatory stimuli. Notably, heme, an iron containing tetrapyrrole, is essential
as a prosthetic group of hemoproteins (e.g., hemoglobin and cytochromes), whereas non-protein
bound free or labile heme can be harmful via pro-oxidant, pro-inflammatory, and cytotoxic effects.
In this review, it will be discussed how the complex interplay of heme with macrophages regulates
homeostasis and inflammation via modulating macrophage inflammatory characteristics and/ or
hematopoiesis. A particular focus will be the distinct roles of intra- and extracellular labile heme
and the regulation of its availability by heme-binding proteins. Finally, it will be addressed how
heme modulates macrophage functions via specific transcriptional factors, in particular the nuclear
repressor BTB and CNC homologue (BACH)1 and Spi-C.
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1. Introduction

Macrophages, white blood cells named after their ability to phagocytose, belong to the mononuclear
phagocyte system and play a vital role in maintaining immune homeostasis by ingesting and
killing pathogens, as well as clearing up dead cells and debris [1]. In addition to their role in
immune surveillance, macrophages exhibit heterogeneous organ-specific physiological functions,
which are induced and maintained by tissue-specific environmental factors [2]. For example,
retinoic acid-mediated signaling in peritoneal macrophages regulates the local response of B1-cells, a
subpopulation of B-cells involved in gut humoral immunity [3], receptor activator of NF-κB ligand
(RANK-L) modulates signaling in osteoclasts to regulate osteoblast function [4], and granulocyte
macrophage colony-stimulating factor (GM-CSF) mediates differentiation of alveolar macrophages in
the lung [5]. Notably, the tetrapyrrole heme has been recognized as a micro-environmental factor for
the differentiation and maintenance of red-pulp macrophages (RPMs) in the spleen [6]. In addition,
heme has also been shown to affect the inflammatory phenotypes of macrophages in a seemingly
contradictory manner.
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Heme, a central iron-containing tetrapyrrole, is critical for sustaining life in aerobic organisms. It is
the prosthetic group of numerous hemoproteins and is essential for various biological functions such
as oxygen storage and transport, drug metabolism, or electron transfer in the respiratory chain [7]. In
contrast, ‘free’ heme can catalyze the Fenton reaction due to its reactive iron, which makes this molecule
potentially toxic [8]. Hence, it is crucial that heme levels are tightly regulated. For example, the
majority of heme synthesis occurs in immature red blood cells (RBCs) and only limited heme synthesis
occurs in non-erythroid cells [9]. Additionally, heme induces its own synthesis in erythroid cells, but
inhibits its synthesis in non-erythroid cells. Moreover, cells have heme-degrading enzymes available
such as heme oxygenase (HO) to control intracellular heme levels. Two isoforms of HO are known: a
constitutive isoform termed HO-2, and an inducible isoform termed HO-1 [10,11]. In physiological
and pathophysiological conditions expression of HO-1 is highest in macrophages [12–16]. A major
function of the heme-HO-1 system in the myeloid-mononuclear system appears to be the control of
erythropoiesis [17]. Moreover, in pathophysiological conditions, this complex system is critical for
regulating the inflammatory phenotype of these cells [18].

2. The Intra- and Extracellular Pool of Labile Heme

The major fraction of total heme is covalently or non-covalently bound as a prosthetic group in
hemoproteins (e.g., myoglobin, cytochromes, and hemoglobin (Hb)) [7,19]. In the current review we
mainly focus on the so-called ‘labile’ heme pool, also termed regulatory or bioavailable heme pool,
which represents a minor fraction of total cellular heme [20–23] and appears to be of major significance
for governing multiple regulatory pathways. Labile heme has been proposed to be available in a
‘loosely bound’ state that makes it readily exchangeable between proteins and can be further categorized
into intra- and extracellular heme fractions.

Intracellular labile heme concentrations in steady-state conditions have been suggested to be in the
range of 20 to 340 nM [24]. Independent studies have indicated the presence of labile heme in different
cellular compartments such as the nucleus, mitochondria, cytosol, Golgi complex, and endoplasmic
reticulum [23,25], leading to the notion that this heme fraction might have intracellular signaling
functions. Accordingly, we have shown that the regulatory pattern of labile heme levels correlated
with that of HO-1 in macrophages [26]. Specifically, in mouse macrophages, stimulation with the TLR4
ligand lipopolysaccharide up-regulated intracellular labile heme levels and HO-1, whereas in human
macrophages, the same stimulus led to an opposing regulatory pattern [26]. Thus, we hypothesize
that labile heme is an up-stream signal required for HO-1 regulation and may function via interaction
with the heme-sensitive transcriptional factor (TF) BTB and CNC homologue (BACH1), which will
be discussed in detail below. The intracellular labile heme pool might also be used for incorporation
into high turnover proteins such as cyclooxygenase-2, NADPH oxidase-2, and inducible nitric oxide
synthase (iNOS), all of which are up-regulated by pro-inflammatory stimuli in immune cells such as
macrophages to mount an efficient inflammatory response. It is conceivable, that the labile heme pool
is controlled via the enzymatic synthesis of heme in cellular steady-state because its inhibition either
by succinylacetone or N-methyl protoporphyrin IX down-regulates intracellular heme levels [20,21,26].
Notably, labile heme does not seem to be degraded by up-regulation of the heme-degrading enzyme
HO-1, which might be explained by the Km of HO-1 for heme (<1 µM) [27,28]. Although our
understanding on the functional role of the intracellular labile heme pool in non-erythroid cells is
limited and details are only emerging, various recently developed methods [23,25,29] for determining
labile heme might help to further characterize and substantiate the role of heme as an intracellular
signaling molecule. It will also be interesting to explore potential cell-type specific differences of labile
heme levels, which might determine their functional phenotype.

The term labile heme has also been used in the context of extracellular heme which can occur in
clinical conditions such as hemolysis and/or tissue injury [30–33]. In such pathophysiological settings
the source of labile heme appears to be mainly damaged erythrocytes, myoglobin or heme released
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from hemoproteins. In contrast to intracellular labile heme, extracellular labile heme has been proposed
to be a damage/danger-associated molecular pattern (DAMP) [30–33].

3. Role of Extra- and Intra-Cellular Heme-Binding Proteins (HBPs) in the Regulation of Labile
Heme Homeostasis

HBPs are non-hemoproteins that can reversibly bind heme and thereby modulate heme properties.
Two important functions of HBPs appear to be the protection against heme toxicity via neutralizing its
pro-oxidant properties and/ or via controlling heme bioavailability.

3.1. Extracellular HBPs Neutralize Labile Heme

HBPs are abundant in blood vessels as serum proteins and ensure that labile heme released via
oxidation of extracellular Hb during hemolysis [34,35] is neutralized in a time-dependent manner.
Heme bound by HBPs may affect the pro-oxidant capacity depending on the binding affinity of the
respective protein [36,37]. Moreover, the binding of heme by HBPs may block the unspecific uptake of
heme into cells such as endothelial cells, thereby limiting their leakage into the extravascular space [35]
(Table 1). Two well-known serum HBPs are hemopexin (Hx) [38] and albumin [39]. Hx binds heme with
the highest binding affinity of all known proteins and transports heme to the liver for degradation [40],
whereas albumin, due to its abundance, might act as a transient HBP and transfer heme to Hx in a
step-wise process. Other serum HBPs are α1-microglobulin [41] and α1-antitrypsin [42], but their
respective physiological roles as HBPs are not well characterized (Table 1).

Table 1. Extracellular heme binding proteins in mammalians.

Heme Binding Protein Heme Affinity (Kd) (M) Serum Concentration Ref.

Hemopexin 1 × 10−14 0.6–1.2 g/L [38,43]

Albumin 1.2 × 10−8 35–53 g/L [39,44]

α1-Microglobulin 1 × 10−6 0.03 g/L [41]

α1-Antitrypsin 2 × 10−8 1.3–2.5 g/L [42]

3.2. Intracellular HBPs Regulate Bioavailability of Labile Heme

Several intracellular HBPs have been identified [24,45] as heme transporters in different subcellular
compartments (Table 2). For example, the HBP heme responsive gene (HRG)-1 protein has been shown
to transport heme from the phagolysosomal compartment to the cytosol after erythrophagocytosis in
macrophages [46]. Similarly, upon CD163-mediated endocytosis, heme carrier protein (HCP)-1
was found to co-localize with Hb/haptoglobin (Hp) complexes in early endosomes of human
macrophages [47], suggesting that HCP-1, similar to HRG-1, may be a functional heme transporter from
lysosomes to the cytosol. These proteins might also play a role in heme transport from lysosomes after
degradation of intracellular hemoproteins. On the other hand, the HBP Feline leukemia virus subgroup
C receptor 1a (FLVCR 1a) is a cell surface heme exporter and might play a role in macrophages based on
the observation that mice with genetic deficiency for FLVCR1 are impaired in iron reutilization [48,49].
The need for cells to import heme from the extracellular space has been controversially discussed given
that the cells have their own heme synthesis and degradation machinery [27]. However, it is likely that
these transporters play a critical regulatory role for heme homeostasis in macrophages due to their
known role in heme acquisition.
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Table 2. Intracellular heme binding proteins in mammalians.

Heme binding protein Function Ref

Putative heme transporters

Feline leukemia virus subgroup C
receptor 1a (FLVCR1a)

export of heme to
extracellular space [48,50]

Feline leukemia virus subgroup C
receptor 1a (FLVCR1b)

export of heme from the
mitochondria to cytosol [51]

Feline leukemia virus subgroup C
receptor 2 (FLVCR2)

import of heme from
extracellular space [52]

Heme responsive gene-1 (HRG-1) export of heme from
phagolysosome to cytosol [46]

Heme carrier protein-1 (HCP-1) export of heme from lysosome to
cytosol (?) [47]

Putative heme chaperones

Biliverdin reductase (BVR) heme trafficking to nucleus (?) [53]

Fatty acid binding protein (FABP) heme trafficking in cytosol (?) [54]

Glceraldehyde phosphate
dehydrogenase (GAPDH) heme trafficking in cytosol [22], [55]

GSH-S-transferase heme trafficking in cytosol (?) [56]

Heme binding protein 22 (HBP22) heme trafficking in cytosol (?) [57]

Heme binding protein 23 (HBP23) heme trafficking in cytosol (?) [58]

SOUL heme trafficking in cytosol (?) [59]

Notably, several proteins have been identified as putative heme chaperones that may mediate
the intracellular trafficking of labile heme and/or provide a buffering environment to ensure that
heme does not cause cytotoxicity [24,60]. Interestingly, some of the known heme chaperones are
proteins that are recognized to exhibit various other biological functions. For example, the well-known
glycolytic enzyme glyceraldehyde phosphate dehydrogenase (GAPDH) facilitates the incorporation
of heme into hemoproteins such as iNOS and Hap1 as a heme chaperone [22,25,55]. More recently,
the progesterone receptor membrane component 2 (PGRMC2) has been shown to be important for
delivering labile heme to the nucleus in adipocytes [61]. Other examples of heme chaperones are
peroxiredoxin-1 synonymous with heme-binding protein 23 (HBP23) [58,62], biliverdin reductase
(BVR) [53], glutathione-S-transferases [63], fatty acid binding protein [54], all of which have been shown
to bind heme. However, a conclusive role for these proteins in intracellular heme trafficking is yet to be
demonstrated [24]. In conclusion, it appears that the bioavailability of intracellular heme is determined
by a complex network of regulatory mechanisms involving several intracellular heme transporters and
heme chaperones. Whether these various transporters and chaperones work in coordination to control
the intracellular heme dynamics is only incompletely understood and currently under investigation.

3.3. Intracellular Labile Heme Controls Cellular Functions via Heme-Sensor Proteins

Apart from heme transporters and chaperones, there are intracellular HBPs classified as heme
sensor proteins which are regulated upon the binding of heme, and in turn modulate central cellular
functions. One such classical heme sensor protein is the TF BACH1 [64]. The interaction of BACH1
with heme via its heme-binding site results in proteasome-dependent degradation of this protein [65],
and the subsequent activation of genes which are repressed by BACH1. Although, BACH1 has
initially been identified as a transcriptional regulator of HO-1 [66], recent studies have indicated that it
controls various aspects of cellular function such as bioenergetics [67], cell cycle [68], and macrophage
differentiation [69]. Specifically, in monocytes BACH1 was also shown to be involved in the subtype
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specification of lymphocyte antigen 6C (Ly6C)+ (inflammatory) and Ly6C- (patrolling) monocytes, the
underlying mechanisms of which are yet to be characterized [70]. Similarly, the binding of heme to the
nuclear orphan receptors rev-erb-α/β represses the expression of their target genes implicating heme to
be a signaling molecule for the regulation of the circadian rhythm [71,72]. Furthermore, heme has also
been shown to bind and degrade the tumor suppressor p53 [73], which is critical for a variety of cellular
pathways, such as regulation of the cell cycle, cell death, DNA-damage repair, and metabolism [74,75].
The various biological functions that can be influenced by heme interactions with heme sensor proteins
are summarized in Figure 1. Collectively, these findings suggest that labile heme plays a key role
in intracellular signaling and interacts with specific HBPs, the functionality of which is beyond its
classical role as a prosthetic group in hemoproteins.

Figure 1. Heme-mediated control of cellular functions via heme sensor proteins. Intracellular labile
heme may control various aspects of macrophage functions via binding and modulation of the indicated
proteins through their heme regulatory motifs (CP/CXXH/PC). Iron regulatory protein 2 (IRP2);5’-Amino
levulinate synthase-1 (ALAS1); Heme regulated eIF2-a kinase (HRI); DiGeorge syndrome critical region
8 (DGCR8); Big potassium (BK).

4. How Heme and Macrophages Control Erythropoiesis in Steady State and during Inflammation?

In mammals, heme and macrophages have formed complex mutual regulatory interactions. Heme
is involved in the differentiation of tissue-specific macrophages that are involved in RBC degradation
and recycling of this compound. Moreover, the interplay of heme with macrophages has intriguing
regulatory effects in inflammatory activation.

Heme Sustains Erythropoiesis through Differentiation of Erythrophagocytosing Macrophages

Specialized macrophage functions appear to play a pivotal role in controlling erythropoiesis.
Senescent RBCs are removed from the circulation via RPMs in the spleen, and to a lesser extent by
Kupffer cells in the liver [17]. These cells are characterized by high constitutive HO-1 expression, which
may facilitate their tolerance against high levels of intracellular heme. Heme degradation by HO-1, in
turn recycles the iron which is exported out of the cell via ferroportin and eventually is used for de
novo erythropoiesis [76,77]. Moreover, it has been demonstrated that the heme-dependent induction
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of the TF Spi-C is responsible for the differentiation of these erythrophagocytosing macrophages [6].
The crucial role of heme in the differentiation of erythrophagocytosing macrophages is further
underscored by the findings that heme-mediated Spi-C induction via BACH1 degradation in bone
marrow monocytes renders them with a pre-erythrophagocytosing phenotype [6], and bone-marrow
transplantation in HO-1-/- mice replenishes the erythrophagocytosing macrophage population in the
liver [77]. Similarly, a recent study showed that central macrophages in erythroblastic islands of the
bone marrow involved in nourishing and supporting erythroid maturation are also characterized by a
high expression of Spi-C and iron recycling genes such as HO-1 [78] which suggests a possible role for
heme in the differentiation of these macrophages. It is important to note that Spi-C has no established
heme-binding motifs and heme-dependent induction of Spi-C at least in monocytes is mediated via
the de-repression due to degradation of BACH1 [6]. In pathophysiological situations such as chronic
inflammatory disorders the erythrophagocytosing properties of macrophages may also contribute to
the anemia of inflammation (AI). AI may be considered as a host defense strategy during infectious
diseases ensuring that pathogens have limited access to iron. During inflammation or infection,
erythrophagocytosis-mediated heme acquisition by macrophages leads to the expression of ferritin,
which safeguards iron inside the cell. Additionally, macrophage or hepatocyte secreted hepcidin binds
to ferroportin and promotes its internalization and degradation to prevent further iron export [79].
In this way, down-regulation of iron export contributes to a decrease in erythropoiesis. Notably, in vitro
LPS and interferon γ-mediated (pro-inflammatory) polarization of human macrophages leads to an
iron-retention phenotype characterized by the low expression of ferroportin and high expression of
ferritin. By contrast, IL-4-mediated (anti-inflammatory) polarization leads to an iron-release phenotype
characterized by high expression of ferroportin and low expression of ferritin indicating that the
inflammatory status of the cell also influences its iron-regulatory nature [80]. Whether the differential
expression patterns of iron-regulatory genes are affected by intracellular labile heme levels remains to
be evaluated. On the other hand, erythrophagocytosis by spleen macrophages has been implicated in
the induction of stress-erythropoiesis in this organ. Heme-driven Spi-C induction in these macrophages
leads to the expression of bone morphogenic protein 4 and growth and differentiation factor 15, which
in turn leads to the expansion of stress erythroid progenitors in the spleen to sustain erythropoiesis to
account for the loss of steady-state erythropoiesis [81]. Collectively, the existing literature supports the
notion that heme controls its own demand for erythropoiesis partially through macrophages during
homeostasis and inflammation.

Interestingly, heme also appears to control up-stream hematopoiesis. It has recently been shown
that the heme-regulated TFs BACH1 and 2 are critical for controlling homeostasis of erythro- and
myelopoiesis via modulation of lineage commitment in hematopoietic stem and progenitor cells
(HSPCs). In particular, these TFs are critically controlling erythropoiesis under steady-state and stress
conditions as demonstrated in a BACH1 and 2 double knockout mouse model [82]. Specifically, it has
been shown that BACH1 and 2 are down-regulated in HSPCs in inflammatory conditions and, in turn,
promote myeloid differentiation at the expense of erythropoiesis. An important role in this regulatory
pathway has been ascribed to the mutual interaction of BACH1 and 2 with the pro-inflammatory TF
C/EBPbeta at the activating protein-1 (AP-1) binding site within the BACH recognition element [82].
Notably, BACH1 and 2-dependent modulation of hematopoiesis at the erythro-myeloid bifurcation may
not only be important in the pathogenesis of AI, but also in that of the myelodysplastic syndrome [83,84].
The detailed role of heme in these complex regulatory pathways of HSPCs remains to be established.

5. Role of Heme in Inflammatory Activation of Macrophages

A more controversial role of heme has emerged with respect to its potential in regulating
inflammatory responses in macrophages. Heme has been shown to polarize macrophages either to
induce a pro-inflammatory response (also known as M1) or to induce an anti-inflammatory response
(also known as M2). The pro-inflammatory response facilitates the neutralization and elimination
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of pathogens, whereas the anti-inflammatory response of macrophages is involved in tissue repair
after inflammation.

5.1. Heme as an Anti-Inflammatory Signal in Macrophages

CD163 is a cell-type specific surface receptor of macrophages which mediates the up-take of
Hb/Hp complexes and is also a well-established marker for anti-inflammatory (M2) macrophages. It
has been demonstrated that the uptake of Hb-heme via CD163 induces HO-1 and ferritin expression in
macrophages to confer an anti-inflammatory protective phenotype [85]. Similarly, this mechanism may
also elicit the secretion of the anti-inflammatory cytokine IL-10 [86]. The protective role of Hb uptake
in macrophages was further observed in vivo in post-hemorrhage settings [87,88]. Importantly, heme
may induce an anti-inflammatory response in macrophages via HO-1-dependent heme catabolism.
The catalytic breakdown of heme by HO-1 generates the products iron, carbon monoxide (CO)
and biliverdin, the latter of which is converted to bilirubin. Both CO and bilirubin have potent
anti-inflammatory and antioxidant properties, respectively, the mechanistic details of which are
reviewed in detail previously [89,90]. Heme-mediated anti-inflammatory macrophage reprogramming
has also been demonstrated in an animal model of pancreatitis. Administration of heme and subsequent
induction of HO-1 in peritoneal macrophages alleviated inflammation in a choline-deficient diet mouse
model of pancreatitis [91]. Similarly, peritoneal administration of heme was found to protect against
experimental colitis via up-regulation of Spi-C in macrophages [92]. The anti-inflammatory effects of
Spi-C are mediated by its association with the interferon regulatory factor (IRF)5, thereby blocking the
interaction of IRF5 with the NF-kB subunit p65, which is required for the transcriptional regulation of
pro-inflammatory genes such as IL-6 and IL-1α. Similar to RPMs, intestinal macrophages also exhibit
high basal levels of Spi-C suggesting that heme might also be a functional demand signal required for
the intestinal macrophage phenotype in physiological conditions [92]. This might further contribute to
the non-inflammatory status of these cells which may allow their co-existence with the gut microbiome.
The potential role of BACH1 for heme-mediated Spi-C induction in intestinal macrophages was not
evaluated in this study. Independently, heme encapsulated in liposomes has been shown to target
macrophages at the site of injury after myocardial infarction and to reprogram their inflammatory
nature to an anti-inflammatory phenotype [93]. In summary, the administration of heme in vivo has
been shown to cause anti-inflammatory polarization of macrophages which might be mediated via
BACH-1 degradation and subsequent induction of HO-1 and Spi-C.

5.2. Heme as a Pro-Inflammatory Signal in Macrophages

In contrast to the above described findings, several in vitro studies have demonstrated that heme
may cause pro-inflammatory activation of macrophages. Heme appears to act as a pro-inflammatory
second hit in macrophages and aggravates LPS-induced TLR4 signaling, leading to the increased
secretion of pro-inflammatory cytokines such as TNF-α and IL-6, and also acts as a second signal
for inflammasome activation [94–96]. Furthermore, the pro-inflammatory effects of heme were not
observed in the absence of serum indicating additional unknown serum factors to be involved in
this phenomenon. Intriguingly, it has been reported that heme is not, per se, an inducer of TLR4
signaling and the presence of serum or heme prepared with albumin blocks the pro-inflammatory
effects associated with heme [97]. The lack of heme-induced pro-inflammatory effects was not due
to blockage of heme up-take because heme-albumin complexes readily induced HO-1 expression
and Spi-C in these macrophages [97]. The discrepancy between these in vitro findings raises various
questions such as: (1) the clinically relevant pathophysiological heme concentration to be used in
in vitro settings; (2) the physiological relevance of in vitro used heme preparations without albumin;
(3) how do macrophages take up heme in these different settings? Additionally, it needs to be considered
that, due to its hydrophobicity, heme might readily intercalate within the lipid bilayer and induce
lipid peroxidation, which can further cause a non-specific stress activation in these cells. Hence,
in vitro studies with heme preparations in macrophages should be scrutinized and categorized in
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more detail to better understand when extracellular heme may become pro-inflammatory. It appears
to be unlikely that, in the intravascular space, heme might exist in a non-albumin bound form due
to the abundance of albumin. By contrast, it is conceivable that heme, which may be present in the
extravascular space due to tissue injury or cell damage might be present in a non-albumin-bound
form and could act as a DAMP (second hit) to aggravate an inflammatory response. Accordingly,
studies from Nath and colleagues have shown a detrimental role of heme released from hemoproteins
in kidney injury [98–100]. Furthermore, in an experimental model of renal ischemia-reperfusion injury
(IRI), we recently detected high levels of local labile heme in kidneys, which was dependent on the
IRI-time and correlated with the IRI-mediated inflammation [101]. The source of heme in this setting
is currently not clear but indicates that extracellular labile heme might aggravate an inflammatory
response [101]. Alternatively, labile heme levels in the intravascular space might mediate inflammatory
effects on macrophages via secondary factors such as complement activation [102,103]. Accordingly,
a recent report indicated that stimulation of whole blood with heme activates cytokine secretion in
leukocytes via complement activation [104]. The mechanisms of how labile heme might be involved in
the pathogenesis of inflammatory disorders are not well understood. Studies in HO-1 knock out mouse
models do not seem to be well-suited to investigate a specific regulatory role of heme, because HO-1 is
a cytoprotective gene and it is conceivable that loss of HO-1 makes these models highly sensitive to
general stress stimuli. Moreover, the injection of heme and/ or reduction of serum levels of HBPs have
been used as an experimental approach to study the role of heme in inflammatory conditions. These
strategies, however, only provide indirect evidence and do not distinguish the functionality, source
and localization of labile heme.

The contrasting role of labile heme in pathophysiological conditions is also depicted in sepsis.
Larsen et al. demonstrated that extracellular labile heme may act as a DAMP [105]. In contrast, others
have proposed hemophagoctosis and subsequent HO-1 expression as a protective mechanism in sepsis
patients [16]. Intriguingly, in a recent report using a systems biology approach, it was observed that
the surviving sepsis patients had elevated expressions of heme synthesis genes and iron-recycling
genes in the white blood cells, suggesting a protective role for the heme-HO-1 pathway [106]. These
observations further substantiate the need to further investigate the effects of heme in a context- and
cell type-specific manner to understand its contradictory roles.

6. Conclusions and Outlook

The interplay between heme and macrophages plays a critical role in homeostasis and inflammation.
Emerging evidence indicates that intracellular labile heme is a key signaling molecule for a number of
regulatory pathways. The functions of labile heme are determined by its availability via interactions
with intra- and extracellular HBPs. In macrophages the heme-responsive TFs BACH1 and Spi-C
appear to be of major functional significance. Moreover, the role of extracellular heme in macrophage
polarization and inflammatory activation appears to be ambiguous. Further characterization on the
underlying mechanisms of heme acquisition by macrophages in pathological conditions will help to
better understand the heme-bestowed inflammatory status of macrophages, and to ultimately afford
novel therapeutic strategies.
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