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Abstract: Periodontal disease is an inflammatory disease caused by pathogenic oral microorganisms
that leads to the destruction of alveolar bone and connective tissues around the teeth. Although
many studies have shown that periodontal disease is a risk factor for systemic diseases, such as
type 2 diabetes and cardiovascular diseases, the relationship between nonalcoholic fatty liver dis-
ease (NAFLD) and periodontal disease has not yet been clarified. Thus, the purpose of this review
was to reveal the relationship between NAFLD and periodontal disease based on epidemiological
studies, basic research, and immunology. Many cross-sectional and prospective epidemiological
studies have indicated that periodontal disease is a risk factor for NAFLD. An in vivo animal model
revealed that infection with periodontopathic bacteria accelerates the progression of NAFLD accom-
panied by enhanced steatosis. Moreover, the detection of periodontopathic bacteria in the liver may
demonstrate that the bacteria have a direct impact on NAFLD. Furthermore, Porphyromonas gingivalis
lipopolysaccharide induces inflammation and accumulation of intracellular lipids in hepatocytes.
Th17 may be a key molecule for explaining the relationship between periodontal disease and NAFLD.
In this review, we attempted to establish that oral health is essential for systemic health, especially in
patients with NAFLD.

Keywords: periodontal disease; NAFLD; microbiome; inflammation; immunological response

1. Introduction

Periodontal disease, especially chronic periodontitis, is an infectious disease induced
by oral bacteria that can lead to the destruction of soft tissues surrounding the teeth, bones,
and ligaments [1]. Bacteria in plaques are closely involved with the onset of periodontal
disease, and the mucosal epithelium is inflamed by exotoxins produced by the bacteria [2].
Periodontal disease results in not only tooth loss but also the aggravation of numerous types
of systemic diseases, including type 2 diabetes [3,4], cardiovascular diseases [5,6], preterm
low birth weight [7], and nonalcoholic fatty liver disease (NAFLD) [8–10]. Thus, monitoring
and management of periodontitis is important because it is present in almost half the
adult population [11]. There are three hypotheses for how periodontitis affects systemic
diseases. Firstly, local periodontal infection leads to an increase in systemic inflammatory
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mediators [12,13]. In fact, some studies have shown that increased inflammatory mediator
levels were decreased after successful periodontal treatment [14]. Secondly, in patients
with periodontitis, bacteremia may originate from periodontal pockets, as patients with
generalized chronic periodontitis showed ulcers in inflamed periodontal pockets, and
the total area of the ulcers was estimated to be as large as the size of the palm [15].
Thirdly, alterations in the oral microbiome due to periodontal disease may affect the
gut microbiome. Salivary levels of Aggregatibacter actinomycetemcomitans, Porphyromonas
gingivalis, and Prevotella intermedia were determined by bacterial culture and related to
clinical periodontal status in subjects with varying degrees of periodontitis [16]. The
gastrointestinal tract begins with the mouth and proceeds to the intestines; ingested bacteria
travel through the tract; thus, affect gut microbiota composition [17]. Dysbiosis of the
gut microbiota can lead to several diseases, including diabetes, rheumatoid arthritis, and
inflammatory bowel disease [18].

The purpose of this review was to assess the relationship between periodontal disease
and NAFLD through evaluating epidemiological and interventional studies in humans,
studies of periodontitis model animals, and in vitro studies. We aimed to provide informa-
tion that could contribute to the future development of basic and clinical research regarding
the relationship between NAFLD and periodontal disease.

2. NAFLD
2.1. NAFLD and Nonalcoholic Steatohepatitis (NASH)

NAFLD is a clinical entity characterized by the presence of hepatic steatosis affecting
at least 5% of hepatocytes in individuals who consume little or no alcohol and who do
not have a secondary cause of hepatic steatosis [19]. NAFLD includes heterogeneous
spectra ranging from simple steatosis to NASH and liver cirrhosis [20]. Liver fibrosis
is an independent risk factor affecting the prognosis of patients with NASH [21], and a
systematic review and meta-analysis concluded that liver fibrosis was the most important
liver histological finding for all-cause and liver disease-related mortality in NAFLD [22].
A meta-analysis of the global epidemiology of NAFLD reported that its prevalence has
increased in the last 10 years, affecting 26.8% of the global population [23]. Therefore, it
is important to identify patients with NAFLD and advanced NASH in daily practice and
to prompt lifestyle interventions. To prevent the progression of NASH and liver fibrosis,
more than 300 trials for new drugs were ongoing in 2018 [24], but effective pharmacological
therapy is currently lacking.

The main causes of NAFLD are the exacerbation of insulin resistance concomitant
with obesity, type 2 diabetes, dyslipidemia, and hypertension. In particular, type 2 diabetes
is strongly associated with the development and progression of NAFLD [25,26]. The
two-hit theory has been advocated as the etiological pathogenesis of NAFLD/NASH;
obesity, overnutrition, and insulin resistance were considered the first hits and cause
hepatic steatosis, and the second hits, including dyshomeostasis of oxidative stress, gut-
derived endotoxins, and free fatty acids, develop liver steatosis to NASH [27]. However,
the “multiple parallel hits hypothesis” was advocated later [28]. Various factors involved in
the development of inflammation and fibrosis may act in parallel with the liver and finally
develop into NASH. The interaction between the liver and other organs, such as the adipose
tissue and intestines, leads to the progression of NAFLD/NASH; specifically, increased
oxidative stress due to increased lipid influx to hepatocytes, promotion of insulin resistance,
abnormal secretion of adipocytokines from adipose tissue, and endotoxin influx from the
intestinal tract may be associated with the simultaneous development and progression of
NAFLD/NASH [28]. Furthermore, diseases of the oral environment, such as periodontal
disease, are considered factors affecting NAFLD.

The direct effects of periodontal disease on the clinical pathogenesis of NAFLD and
NASH are not fully understood. However, multiple cross-sectional studies have shown the
association between infection by periodontitis-associated bacteria and the hepatic pheno-
types of human NAFLD. That said, the significance of periodontitis in the clinical outcomes
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of NAFLD and NASH, including mortality, liver cancer, liver failure, and cardiovascu-
lar disease events, remains unclear. A longitudinal randomized controlled study should
be conducted for evaluating the effect of periodontitis treatment on NAFLD and NASH
in humans.

2.2. From NAFLD to Metabolic Associated Fatty Liver Disease (MAFLD)

NAFLD was initially named by Schaffner in 1986 [29], but according to the inter-
national consensus panel of the American Gastroenterological Association (AGA), a
consensus-driven proposed nomenclature for “metabolic associated fatty liver disease
(MAFLD)” was issued in 2020.

The heterogeneity in the clinical presentation and course of fatty liver disease is influ-
enced by a multitude of factors, including age, sex, ethnicity, alcohol intake, dietary habits,
hormonal status, genetic predisposition, epigenetic factors, microbiota, and metabolic
status. It is likely that there is a differential impact on the contribution of the various factors
in any individual over time and among individuals that then shapes the disease phenotype
and course [30].

Eslam et al. suggested that MAFLD is a more appropriate overarching term and
provides new terminology that more accurately reflects pathogenesis and can help in
patient stratification for management. MAFLD can be diagnosed if either obesity or
type 2 diabetes is diagnosed concomitantly with fatty liver disease. MAFLD can also be
diagnosed in lean or non-obese patients with fatty liver if they have at least two metabolic
abnormalities, including dyslipidemia, hypertension, insulin resistance, and prediabetes.
Moreover, other chronic liver diseases, such as viral hepatitis, autoimmune diseases, or
alcoholic liver injury, are not an exclusion criteria for MAFLD diagnosis [30]. To the best
of our knowledge, the association between MAFLD and periodontal disease has not been
reported previously. Considering the broader spectrum of MAFLD, which focuses on
metabolic abnormalities and can occur in patients with any other chronic liver disease,
the association between periodontal disease and MAFLD may be significant and more
complicated than that with NAFLD. Type 2 diabetes and metabolic syndrome are the
sole risk factors for periodontal disease [31], and the pathogenesis of viral hepatitis and
alcoholic liver injury have also been linked to periodontal disease [32]. Further studies
are necessary to identify the clinical significance of periodontal disease in patients with
MAFLD. While this proposed update to the MAFLD nomenclature is expected to accelerate
the development of new biomarkers and drugs, Younossi et al. recommended that it
is important not to rush into a name change and experts should be cautious to prevent
confusion because the definition of the term remains ambiguous [33]. On the other hand,
regardless of the definition of the “fatty liver,” either NAFLD or MAFLD, it is important to
understand the underlying mechanism that aggravates the fatty liver to inflammation and
fibrosis in association with concomitant diseases and pathogenesis, considering fatty liver
is the manifestation of systemic disease association.

3. Human Epidemiologic Studies
3.1. Cross-Sectional Studies Regarding the Relationship between NAFLD and Periodontal Disease

Since 2010, epidemiological studies regarding the relationship between NAFLD and
periodontal disease have attracted the interest of many research groups worldwide. Many
investigations have been performed in East Asia. The first study regarding the relationship
between liver disease and periodontal disease was conducted in Japan by Furuta et al.,
reporting that having periodontitis was significantly associated with elevated serum alanine
aminotransferase (ALT) levels in 2225 non-smoking male university students (OR = 2.3,
95% CI = 1.0–5.2) [34]. Several research groups in Japan have revealed further associations.
A similar study was conducted by assessing the health examinations of 5683 adults. A
positive correlation between deep periodontal pockets and the combination of increased
serum ALT and symptoms of metabolic syndrome was observed in male subjects with
low alcohol consumption, but not in female [35]. Furthermore, an association between
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the elevation of γ-glutamyltranspeptidase and deep periodontal pockets (OR = 1.48, 95%
CI = 1.16–1.9) was reported in 1510 adults [36]. After adjusting for confounding factors, the
odds ratio of having PD ≥ 4 mm for NAFLD was still significant in 1226 adults (OR = 1.881,
95% CI = 1.184–2.987). In all participants and in female participants, the prevalence of
NAFLD increased with the increase in periodontal disease severity [37]. In Korea, two
studies demonstrated associations between the fatty liver index (FLI) and periodontal
disease in all subjects and only in women by analyzing data from a national health survey
of more than 4000 people [38,39]. A stronger association was observed between FLI and
periodontitis prevalence in the diabetes subgroup. In addition, patients with diabetes
showed more severe periodontitis [38]. The severity of periodontal disease was positively
associated with FLI in female participants [39]. A large-scale investigation was conducted
in China. More than 24,000 individuals were screened for NAFLD by ultrasonography
(USON), and there was a significant correlation between the number of missing teeth and
NAFLD in men [40].

For other regions, two studies reported results from the National Health and Nutri-
tion Examination Survey in the USA. USON, fibrosis score (FS), FLI, the United States
fatty liver index (US-FLI), and the correlation between periodontitis and tooth loss were
examined in 5421 adults. In adjusted models, adults with moderate-severe periodontitis
were more likely to have NAFLD (USON: OR = 1.54, 95% CI = 1.06–2.24; FS: OR = 3.10,
95% CI = 2.31–4.17; FLI: OR = 1.61, 95% CI = 1.13–2.28; US-FLI: OR = 2.21, 95% CI = 1.64–
2.98). People with <20 teeth were also more likely to have NAFLD compared with those
with ≥20 teeth (USON: OR = 1.50, 95% CI = 1.11–2.02; FS: OR = 4.36, 95% CI = 3.47–5.49;
FLI: OR = 1.99, 95% CI = 1.52–2.59; US-FLI: OR = 2.32, 95% CI = 1.79–3.01) [41]. In another
study, an association between periodontitis and hepatic steatosis diagnosed by hepatic ul-
trasound data from 8172 people was examined. The odds ratio for steatosis was statistically
significant for bleeding on probing (BOP), probing depth (PD) ≥ 4 mm, mean PD, clinical
attachment level (CAL) ≥ 3 mm, and mean CAL (%). After adjusting for sociodemographic
factors, only BOP and mean PD showed a significant association with steatosis (BOP:
OR = 1.07, 95% CI = 1.00–1.14, mean PD: OR = 1.08, 95% CI = 1.00–1.17). Associations
between NAFLD and serum antibacterial antibody titers against oral bacteria in 3236 adults
who had USON-proven hepatic steatosis and antibody titers against Selenomonas noxia
and Streptococcus oralis were found to be significant. There was also a weak association
between hepatic steatosis and cluster score from antibody titers against bacterial complexes
(Tannerella forsythia, Treponema denticola, A. actinomycetemcomitans mix), which is related
to severe periodontitis, and four bacteria (Eikenella corrodens, S. noxia, Veillonella parvula,
and Campylobacter rectus) which contribute to the early stage of plaque accumulation [42].
Furthermore, a study focused on a high-risk group for NAFLD was conducted, targeting
11,914 Hispanics and Latinos, in the USA. Periodontitis was associated with serum ALT
and aspartate aminotransferase (AST) levels (≥30% of sites with PD ≥ 4 mm: OR = 1.39,
95% CI = 1.02–1.90); however, the significance was lost after adjustment for age and sex [43].
Additionally, the same research group examined 2481 Germans to analyze the relation-
ships between serum CRP levels, periodontitis, and NAFLD. The relationships among
the weighted genetic CRP score, which combines serum CRP levels and single-nucleotide
polymorphisms previously identified through genome-wide association studies as robustly
associated with serum CRP [44,45], periodontitis, and NAFLD, were investigated. A signif-
icant correlation between periodontitis and NAFLD was found among those with <1 mg/L
serum CRP levels and/or with lower than the median weighted genetic CRP score. Inter-
estingly, serum CRP levels modified the interaction between periodontitis and NAFLD.
Subjects with extensive periodontitis (≥30% sites with PD ≥ 4 mm) had higher odds ratios
for NAFLD than patients with moderate periodontitis (<30% sites with PD ≥ 4 mm) among
participants with a serum CRP level <1 mg/L [46].

Many epidemiological studies have supported the relationship between NAFLD
and periodontal disease. In addition, compared to moderate periodontal disease, severe
periodontal disease is more strongly associated with NAFLD. However, both diseases are
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strongly related to metabolic disorders, and this relationship should be carefully considered.
The contents of this section are summarized in Table 1.

Table 1. Cross-sectional studies regarding the relationship between nonalcoholic fatty liver disease (NAFLD) and periodontal
disease.

Ref.
No.

Study
Country

Year
Sample Size

Parameters Evaluated for
the Diagnosis of NAFLD

Parameters Evaluated for
the Diagnosis of

Periodontitis
Major Findings

[34]

Furuta et al.
Japan
2010

n = 2225

Serum ALT level PD, BOP
An association between periodontitis and

serum ALT in male without smoking (OR = 2.3,
95% CI = 1.0–5.2)

[35]

Ahmad et al.
Japan
2017

n = 5683

Serum ALT level PD, CAL

An association among deep periodontal
pockets and combination of increased serum

ALT and symptoms of metabolic syndrome in
male with low alcohol consumption

[36]

Morita et al.
Japan
2014

n = 1510

Serum GGT, ALT, AST
level CPI

An association between elevation of
alglutamyltranspeptidase and having deep

periodontal pockets (OR = 1.48,
95% CI = 1.16–1.90)

[37]

Iwasaki et al.
Japan
2018

n = 1226

Ultrasonography PD, BOP An association between periodontitis and
NAFLD (OR = 1.881, 95% CI = 1.184–2.987)

[38]

Kim et al.
Korea
2020

n = 4272

FLI CPI An association between periodontal disease
and FLI (OR = 1.63; 95% CI = 1.23–2.16)

[39]

Shin et al.
Korea
2019

n = 4061

FLI, HSI CPI
An association between periodontal disease
and FLI, HSI in women (OR = 1.77, 95% CI =

1.05–2.98)

[40]

Qiao et al.
China
2018

n = 24,470

Ultrasonography The number of missing
teeth

An association between the missing teeth and
NAFLD in men (among those who with more

than 6 missing teeth, OR = 1.40, 95% CI =
1.09–1.81)

[41]

Weintraub et al.
USA
2019

n = 5421

Ultrasonography, Fibrosis
Score, FLI, US-FLI

PD, BOP, CAL
the number of missing

teeth

An association between periodontitis, tooth
loss and all of the parameters for NAFLD

[42]

Alazawi et al.
USA
2017

n = 8172

Ultrasonography
PD, CAL

Serum antibody titers
against 19 oral bacteria

Significant associations among steatosis and
bleeding on probing, PD ≥ 4 mm (%), mean

PD, CAL ≥ 3 mm, and mean CAL (%)
After adjusting for sociodemographic factors,
only BOP and mean PD showed a significant

association with steatosis (BOP: OR = 1.07, 95%
CI = 1.00–1.14, mean PD: OR = 1.08, 95% CI =

1.00–1.17)

[43]

Akinkugbe et al.
USA
2017

n = 11,914

Ultrasonography, serum
ALT level PD, CAL

Periodontitis was associated with serum ALT
and AST levels (≥ 30% of sites with

PD ≥ 4 mm: OR = 1.39, 95% CI = 1.02–1.90),
however, the significance was not observed

after adjustment of age and sex

[46]

Akinkugbe et al.
Germany

2017
n = 2481

Ultrasonography PD, CAL

A significant correlation between periodontitis
and NAFLD among subjects with less than 1
mg/L serum CRP levels and/or with lower

than the median weighted genetic CRP score
Serum CRP modified the interaction between

periodontitis and NAFLD

NAFLD: nonalcoholic fatty liver disease, ALT: alanine aminotransferase, FLI: Fatty Liver Index, HSI: Hepatic Steatosis Index, CPI:
Community Periodontal Index, PD: pocket depth, CAL: clinical attachment level, BOP: bleeding on probing, CRP: C-reactive protein.
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3.2. Prospective Cohort Studies Regarding the Relationship between NAFLD and
Periodontal Disease

Prospective cohort studies regarding the relationship between periodontitis and
NAFLD were conducted by three research groups. Kuroe et al. monitored the incidence of
NAFL in 4812 study participants over five years and analyzed its association with periodon-
titis. In total, 341 individuals were diagnosed with NAFL during the observational period.
CAL, which indicates the extent of distracted periodontal tissue, and liver fibrosis were
significantly associated in obese patients with NAFL (OR = 2.87, 95% CI = 1.23–6.69) [47].
In a German population, 2623 individuals were followed up for a median of 7.7 years to
assess the relationship between periodontitis and NAFLD onset. NAFLD incidence was
elevated in participants with >30% of ≥3 mm CAL (multivariable-adjusted incidence rate
ratio: 1.60, 95% CI = 1.05–2.43). However, NAFLD and periodontitis were not associated in
participants with <30% affected sites. Surprisingly, the incidence rate ratio of the change in
CAL in five years significantly increased upon combination with NAFLD in participants
with >30% of ≥3 mm CAL, whereas the significance was not observed after adjustment
for confounding factors. NAFLD may contribute to the aggravation of periodontitis [48].
The longest follow-up study was conducted over 13 years in Finland. A total of 1801
patients with NAFLD were followed up to assess the relationship between periodontitis
and the incidence of severe liver disease. The incidence of severe liver disease was defined
as follows: first hospitalization due to liver disease or liver-related death, a diagnosis of
(primary) liver cancer, whichever came first. The hazard ratio for the incidence of severe
liver disease increased with the severity of periodontitis. Interestingly, the hazard ratio
of the incidence of severe liver disease was elevated to 6.94 for patients with advanced
periodontitis and NAFLD (95% CI = 1.43–33.6). These results suggest that periodontitis
contributes to the aggravation of NAFLD [49]. The contents of this section are summarized
in Table 2.

Table 2. Prospective cohort studies regarding the relationship between NAFLD and periodontal disease.

Ref. No.

Study
Country

Year
Sample Size

Evaluation Criteria for
Liver

Parameters
Evaluated for the

Diagnosis of
Periodontitis

Observation Period Major Findings

[47]

Kuroe et al.
Japan
2020

n = 341

NAFL (ultrasonography,
NAFLD fibrosis score) PD, CAL 5 years

CAL and liver fibrosis were
significantly associated in

obese NAFL patients
(OR = 2.87, 95% CI =

1.23–6.69)

[48]

Akinkugbe et al.
Germany

2017
n = 2623

NAFLD
(ultrasonography) PD, CAL median 7.7 years

NAFLD incidence was
elevated in participants with

>30% of ≥3 mm CAL
(multivariable-adjusted

incidence rate ratio: 1.60, 95%
CI = 1.05–2.43)

[49]

Helenius-Hietala
et al.

Finland
2017

n = 1801

The incidence of severe
liver disease (a first

hospitalization owing to
liver disease or

liver-related death, a
diagnosis of (primary)

liver cancer)

PD 13 years

The incidence of severe liver
disease was increased for the

patients with advanced
periodontitis and NAFLD

(hazard ratio = 6.94, 95% CI =
1.43–33.6)

NAFLD: nonalcoholic fatty liver disease, PD: Procket depth, CAL: clinical attachment level.

3.3. Meta-Analysis Regarding the Relationship between NAFLD and Periodontal Disease

Recently, two systematic reviews and meta-analysis regarding the relationship be-
tween periodontal disease and NAFLD have been published. Chen et al. reported that
periodontitis was associated with NAFLD and cirrhosis by reviewing 12 studies. Among
patients with periodontal disease, the odds ratio for NAFLD was 1.19 (95% CI = 1.06–1.33)
and that for cirrhosis was 2.28 (95% CI = 1.50–3.48). In addition, tooth loss was associated
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with NAFLD (OR = 1.33, 95% CI = 1.12–1.56). [50]. Wijarnpreecha et al. analyzed over
five studies (27,703 subjects) and found that periodontitis was associated with NAFLD
(OR = 1.48, 95% CI = 1.15–1.89). However, no significant correlation between periodontitis
and NAFLD was observed after the adjusted results were applied in the meta-analysis from
the primary studies. The confounding factors, including various metabolic parameters,
were adjusted [51]. The contents of this section are summarized in Table 3.

Table 3. Meta-analysis regarding the relationship between NAFLD and periodontal disease.

Ref. No. Study The Number of
Primary Studies

Study Designs of
Primary Studies Statistical Analysis Results

[50]
Chen et al.

2020
n = 118,408

12
Cross-sectional (4),

case-control (1),
cohort (7)

Generalized
least-squares
regressions

An association between
periodontitis and NAFLD

(OR = 1.19, 95% CI =1.06–1.33),
and an association periodontitis

and cirrhosis (OR = 2.28, 95% CI =
1.50–3.48) was reported.

[51]
Wijarnpreecha et al.

2020
n = 27,703

5 Cross-sectional (4),
cohort (1)

PRISMA, The
random-effect model

NAFLD was associated with
periodontitis (OR = 1.48, 95% CI =

1.13–1.89), however, significant
correlation was lost after the

adjusted results of the primary
studies were applied.

NAFLD: nonalcoholic fatty liver disease, PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analysis.

3.4. Reports Regarding Periodontal Disease in Patients with NAFLD

The effects of periodontitis on NAFLD severity were assessed in five cross-sectional
NAFLD patient-based studies. The relationships among periodontitis, diabetes, and sever-
ity of NAFLD were investigated in 69 patients with NAFLD. Periodontitis is significantly
associated with the severity of NAFLD (NASH vs. NAFL, p = 0.0085) and the presence of
diabetes [42]. Microbiological analyses have been conducted as a parameter of periodontitis
in several studies. Yoneda et al. examined the relationship between NAFLD and the pres-
ence of P. gingivalis, one of the major periodontopathic bacteria, and found that the detection
of P. gingivalis was significantly higher in patients with NAFLD than in non-NAFLD control
subjects. Half of the detected P. gingivalis from patients with NAFLD was categorized as
fim A type 2 [8]. Fim A type 2 P. gingivalis feature strong adhesion and invasion to host cells
and are associated with severe periodontitis [52,53]. Serum anti-P. gingivalis antibody titers
and liver biopsy findings were investigated in 200 patients with NAFLD. A significant
monotonic trend was observed between the fibrosis severity and antibody titers against
P. gingivalis fim A type 1 and 4. In addition, antibody titers against P. gingivalis fim A type
4 were associated with advanced fibrosis in multivariate analysis (OR = 2.081, 95% CI =
1.098–3.943) [54]. P. gingivalis was detected by immunohistochemistry in hepatocytes from
liver biopsy specimens of 40 patients with NAFLD. P. gingivalis-positive patients showed
progression of hepatic fibrosis compared to patients without P. gingivalis [55]. Furthermore,
we conducted clinical research based on the concept that periodontopathic bacteria may
aggravate NAFLD by affecting lipid and glucose metabolism. Komazaki et al. focused on
metabolic parameters in NAFLD patients to assess the effect of periodontopathic bacteria.
Serum antibody titers against three major periodontopathic bacteria (A. actinomycetemcomi-
tans, Fusobacterium nucleatum, and P. gingivalis) were examined, and their correlations with
metabolic parameters were evaluated. Anti-A. actinomycetemcomitans antibody titers and
anti-F. nucleatum antibody titers were slightly associated with fat area, evaluated by abdom-
inal computed tomography. Anti-A. actinomycetemcomitans antibody titers also showed a
significant correlation with fasting plasma insulin, the homeostasis model of assessment
of insulin resistance, and AST. Moreover, anti-A. actinomycetemcomitans antibody titers
were negatively correlated with the liver/spleen ratio evaluated by abdominal computed
tomography [9].
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Up to the present, only one interventional study has investigated the effect of pe-
riodontal treatment on NAFLD. Ten NAFLD patients received non-surgical periodontal
treatment for three months. Serum AST and ALT levels were significantly decreased after
periodontal treatment [8]. The contents of this section are summarized in Table 4.

Table 4. Studies regarding periodontal disease in patients with NAFLD.

Ref. No.

Study
Country

Year
Sample Size

Parameters Evaluated for
the Diagnosis of NAFLD

Parameters Evaluated for
the Diagnosis of

Periodontitis
Major Findings

[8]

Yoneda et al.
Japan
2012

n = 150

Liver biopsy Detection of P. gingivalis in
saliva by PCR

The detection of P. gingivalis was higher in
NAFLD patients compared to non-NAFLD

control subjects (46.7% vs. 21.7%,
OR = 3.16, 95% CI = 1.58–6.33).

Serum AST and ALT levels of 10 patients
with NAFLD were significantly decreased
after receiving periodontal treatment for

3 months.

[9]

Komazaki et al.
Japan
2017

n = 52

Total fat area, visceral fat
area and the liver/spleen

ratio evaluated by
abdominal computed

tomography, fasting blood
insulin level, HOMA-IR,

Serum AST, ALT, and
γ-GTP

Serum antibody titers
against A.

actinomycetemcomitans, F.
nucleatum, P. gingivalis

Anti-A. actinomycetemcomitans antibody
titers and anti-F. Nucleatum antibody titers

were slightly associated with fat area.
Anti-A. actinomycetemcomitans antibody
titers showed a positive correlation with
fasting plasma insulin, the homeostasis

model of assessment of insulin resistance,
and AST, and a negative correlation with

the liver/spleen ratio.

[42]

Alazawi et al.
UK

2017
n = 69

Ultrasonography PD, CAL
An association among periodontitis and

the severity of NAFLD (NASH vs. NAFL)
and the presence of diabetes was reported.

[54]

Nakahara et al.
Japan
2018

n = 200

Liver biopsy Serum antibody titers
against P. gingivalis

A significant monotonic trend between the
fibrosis stage and antibody titers against P.
gingivalis fim A type 1 and 4 was observed.

An association between antibody titers
against P. gingivalis fim A type 4 and

advanced fibrosis was reported
(OR = 2.081, 95% CI = 1.098–3.943).

[55]

Furusho et al.
Japan
2013

n = 40

Liver biopsy
Detection of P. gingivalis

by immunohistochemistry
in hepatocytes

P. gingivalis-positive patients showed
progression of hepatic fibrosis compared to

patients without P. gingivalis.

NAFLD: nonalcoholic fatty liver disease, PCR: Polymerase chain reaction, HOMA-IR: the homeostatis model of assessment of insulin
resistance, AST: Aspartate transaminase, ALT: alanine aminotransferase, GTP: glutamyl transpeptidase.

4. In Vivo Basic Research Regarding the Relationship between NAFLD and
Periodontal Disease

Several studies have investigated the effects of periodontal disease on NAFLD in vivo.
In this section, we reviewed these reports according to each experimental model. The
contents of this section are summarized in Table 5.

4.1. P. gingivalis Lipopolysaccharide (LPS) Injection in Gingiva Model

Rats fed a high-fat diet for 12 weeks and injected with P. gingivalis LPS in the gingiva
once a day for 10 days showed large fat droplets, ballooning degeneration, and infiltra-
tion of inflammatory cells. These results demonstrated that high-fat diet feeding and P.
gingivalis-LPS injection accelerated the progression from simple steatosis to NASH in the
liver. Moreover, high radioactivity was observed in the liver of rats injected with double-
radiolabeled P. gingivalis LPS at 24 h [56]. Rabbits fed a high-fat diet for 40 days and injected
P. gingivalis LPS in the gingiva twice a week had a high score of acinar inflammation in
the liver and increased blood triglyceride and phospholipid levels compared to rabbits
without injected P. gingivalis LPS [57].
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4.2. Pulp Chamber Model

When P. gingivalis is injected into the pulp cavity, it is cultured in the pulp cavity and
the body receives a continuous supply of P. gingivalis. P. gingivalis is transferred from the
pulp cavity to the body through the root apex of the teeth [55], and the model can evaluate
how continuous P. gingivalis infection affects the systemic organs.

Mice were fed high-fat diet for 12 weeks and then infected with P. gingivalis from
the pulp chamber. These mice showed increased serum levels of LPS and more foci of
Mac2-positive macrophages. Furthermore, P. gingivalis was detected in Kupffer cells and
hepatocytes at 6 weeks after P. gingivalis infection [55]. Fibrosis and steatosis were more
severe in the livers of mice fed high-fat diet for 12 weeks and infected with P. gingivalis
compared to mice without P. gingivalis infection. Metabolome analysis of the liver was
performed using CE-TOFMS and LC-TOFMS. Fatty acid metabolism was significantly
disrupted, and expression levels of SCD1 and ELOVL6 were significantly reduced in P.
gingivalis-infected mice [54]. In addition, the same model mice showed an increased number
of hepatic crown-like structures, which was macrophage aggregation and related to liver
fibrosis, and the fibrosis area was also increased by upregulating the immunoexpression of
phosphorylated Smad2 (a key signaling molecule of TGF-β1) and Galectin-3 at 9 weeks after
P. gingivalis infection. P. gingivalis was detected in the liver by immunohistochemistry [58].

4.3. Intravenous Injection of the P. gingivalis Model

A single intravenous injection of P. gingivalis increased the bodyweight and accelerated
the progression of NAFLD in mice fed high-fat diet for 4 weeks [8]. Endotoxemia induced
by intravenous injection of sonicated P. gingivalis twice a week caused impaired glucose
tolerance, insulin resistance, and liver steatosis in mice fed high-fat diet for 12 weeks. Liver
microarray analysis demonstrated that fatty acid metabolism, hypoxia, and TNFα signaling
via NFκB gene sets were enriched. The mice demonstrated alteration of the gut microbiome,
especially increase of family Erysipelotrichaceae, the bacteria that were reported to be en-
riched in patients with NAFLD compared to healthy subjects [59]. Metagenome prediction
in the gut microbiota showed enriched citrate cycle and carbon fixation pathways [60].

4.4. Oral Administration Model

Mice orally administered P. gingivalis twice a week for 5 weeks experienced increases in
insulin resistance and systemic inflammation. Oral administration of P. gingivalis caused an
increase in hepatic fat and triglyceride levels as well as the mRNA expression of TNF-α, IL-6,
Fitm2, and Plin2, with the latter two being strongly associated with lipid droplet formation
in the liver. In addition, mRNA expression of Acaca and G6pc, which positively regulate
fatty acid synthesis and gluconeogenesis, respectively, were also upregulated. Blood
endotoxin levels tended to be higher, whereas gene expression of tight junction proteins
in the ileum was significantly decreased in P. gingivalis-administered mice. Furthermore,
pyrosequencing revealed that the population belonging to Bacteroidales was significantly
increased in the gut of P. gingivalis-administered mice [61].

Mice fed on high-fat diet for 6 weeks and administered A. actinomycetemcomitans
6 times a week also presented impaired glucose tolerance and insulin resistance compared
to saline-administered control mice. Oral administration of A. actinomycetemcomitans in-
creased liver steatosis and enriched glucagon signaling pathway, adipocytokine signaling
pathway, and insulin resistance in the liver. Based on 16S rRNA sequencing, A. actino-
mycetemcomitans administration changed the composition of the gut microbiota, especially
decreasing the genus Turicibacter, which correlates with the production of butyric acid [62].
An increase in butyrate levels has been associated with improved insulin sensitivity [63].
Therefore, administration of A. actinomycetemcomitans may affect insulin resistance by de-
creasing butyrate levels. Metagenome prediction in gut microbiota showed upregulation
of fatty acid biosynthesis and downregulation of fatty acid degradation in A. actinomycetem-
comitans-administered mice [9].
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4.5. Ligature-Induced Periodontitis Model

Silk ligature is used to induce periodontitis in mice and rats. Ligature ligation around
teeth causes local accumulation of anaerobic bacteria and periodontal tissue represents
rapid bone loss [64–67].

The livers of rats with ligature-induced periodontitis showed extensive microvesicular
steatosis with reduced NG2-positive pericytes. Although serum levels of ALT and AST did
not differ between control and ligated rats, periodontitis induced a significant decrease of
GSH and increased MDA concentrations in the liver [68]. Rats were fed a high-fat diet for
12 weeks and the ligature was placed around the maxillary first molar tooth at 4 weeks.
P. gingivalis slurry was applied around the ligature twice a week for 8 weeks. The rats
showed NASH characterized by perivenular lipid deposition, including large fatty drops,
ballooning degeneration, and focal necrosis with inflammation. Moreover, significant
increases in alanine aminotransaminase, AST, C-reactive protein, and endotoxin levels
were observed in the periodontitis rats with P. gingivalis [69].

Table 5. In vivo basic research regarding the relationship between NAFLD and periodontal disease.

Ref. No. Study Animals High-Fat Diet Model Major Findings

[8] Yoneda et al. Mice + Intravenous injection of
P. gingivalis

Increase in the body weight acceleration in the
progression of NAFLD

[9] Komazaki et al. Mice + Oral administration of
A. actinomycetemcomitans

Increased liver steatosis the enriched
glucagon-signaling pathway, adipocytokine

signaling pathway, insulin resistance in the liver
decrease in the genus Turicibacter in the gut.

[54] Nakahara et al. Mice + Pulp chamber model
Fatty acid metabolism was disrupted, and

expression levels of SCD1 and ELOVL6 were
reduced.

[55] Furusho et al. Mice + Pulp chamber model P. gingivalis was detected in Kupffer cells and
hepatocytes

[56] Fujita et al. Rats + P. gingivalis LPS injection
in gingiva

Large fat droplets
Ballooning degeneration

Infiltration of inflammatory cells

[57] Varela-López et al. Rabbits + P. gingivalis LPS injection
in gingiva

High score of acinar inflammation
Increase in the blood triglyceride and

phospholipid levels

[58] Nagasaki et al. Mice + Pulp chamber model Ipregulation of the immunoexpression of
phosphorylated Smad2 and Galectin-3

[60] Sasaki et al. Mice + Intravenous injection of
P. gingivalis

Impaired glucose tolerance, insulin resistance,
and liver steatosis

Alteration of the gut microbiome

[61] Arimatsu et al. Mice - Oral administration of
P. gingivalis

Increase in insulin resistance and systemic
inflammation

Increase in the order Bacteroidales in the gut

[68] Vasconcelos et al. Rats - Ligature-induced
periodontitis model

Decrease of GSH and increase of MDA
concentrations

[69] Kuraji et al. Rats + Ligature-induced
periodontitis model

Perivenular lipid deposition, including large
fatty drops, ballooning degeneration, and focal

necrosis with inflammation.

NAFLD: nonalcoholic fatty liver disease, LPS: lipopolysaccharides, GSH: glutathione, MDA: malondialdehyde.

5. In Vitro Basic Research Regarding the Relationship between NAFLD and
Periodontal Disease

Only a few studies have shown the effect of periodontal disease on NAFLD in vitro.
The contents of this section are summarized in Table 6. Human hepatocellular cells (HepG2)
accumulated more intracellular lipids when stimulated with P. gingivalis LPS compared
to cells treated with Escherichia coli LPS or the control not treated with LPS. Moreover, P.
gingivalis LPS treatment significantly upregulated MyD88 and proinflammatory cytokines
and increased the phosphorylation of p65 and JNK in HepG2 cells. Suppression of the
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phosphorylation of p65 and JNK by inhibitors and shRNA reduced lipid accumulation
upon P. gingivalis LPS stimulation, suggesting that P. gingivalis LPS might contribute to
intracellular lipid accumulation and inflammation in HepG2 cells via the activation of the
NF-κB and JNK signaling pathways [70]. In addition, oleic acid-induced HepG2 cells as
an in vitro model for NAFLD showed an increase in the presence of P. gingivalis in the
cells at an early phase of infection. Lipid droplets affected the removal of P. gingivalis
by altering the autophagy-lysosome system [71]. Palmitate-treated Hc3716-hTERT as an
in vitro steatotic hepatocyte model showed upregulation of TLR2 expression. P. gingivalis
LPS stimulation increased the mRNA levels of inflammasomes and proinflammatory
cytokines in steatotic hepatocytes [55]. P. gingivalis infection markedly induced TGF-β1
and Galectin-3 production in LX-2 and Hc3716-hTERT cells [58].

Table 6. In vitro basic research regarding the relationship between NAFLD and periodontal disease.

Ref. No. Study Cells Major Findings

[55] Furusho et al. Palmitic acid-induced
Hc3716-hTERT cells

Upregulation of TLR2 expression
Increase in the mRNA levels of inflammasomes and proinflammatory

cytokines

[58] Nagasaki et al. Palmitic acid-induced LX-2 and
Hc3716-hTERT cells Induction of TGF-β1 and Galectin-3 production

[70] Ding et al. oleic acid-induced HepG2 cells Accumulation of intracellular lipids
Enhancement in the phosphorylation of p65 and JNK

[71] Zaitsu et al. oleic acid-induced HepG2 cells Lipid droplets affected the removal of P. gingivalis by altering the
autophagy-lysosome system

NAFLD: nonalcoholic fatty liver disease, hTERT: Human telomerase reverse transcriptase, HepG2: Human Hepatocellular Carcinoma.

6. Immunological Responses in Periodontitis and NAFLD
6.1. Role of T Cells in Periodontal Disease

In 1976, Page et al. showed that activation of the adaptive immune system is important
for the progression of periodontitis by histological analysis of specimens from patients with
periodontal disease [72]. Previous studies of experimental periodontal disease suggested
that adaptive T cell immunity was required for alveolar bone destruction, as T cell deletion
resulted in disease resistance [73]. Subsequent analysis using mice showed that CD4-
positive T cells played an important role in the destruction of periodontal tissue [74].
Previous studies have focused specifically on the role of Th1/Th2 cells in periodontal
disease. Experimental periodontal disease studies have shown that IFN-γ-deficient mice
are more resistant to alveolar bone loss after oral infection by periodontal pathogens, such
as P. gingivalis [75]. However, in IFN-γ-deficient mice, an increase in the number of bacteria
was observed in the periodontium, the acute phase reaction after infection became stronger,
and the mice died due to disseminated bacterial infection [76]. These results indicate that
the Th1 cytokine IFN-γ acts suppressively against oral bacterial infections but may promote
the regulation of bone resorption due to periodontal disease. On the other hand, IFN-γ
strongly suppresses osteoclast differentiation, and there may be pathological conditions that
cannot be explained by Th1/Th2 balance [77–79]. Th17 cells are a defined subpopulation
of T helper cells named after IL-17A, a cytokine that is primarily secreted [80]. In addition
to IL-17A, members of the IL-17 family include IL-17B, IL-17C, IL-17D, and IL-17E [81,82].
Of these, IL-17F shares the greatest homology with IL-17A, and the two cytokines may
be regulated by similar mechanisms due to chromosomal proximity and coordinated
expression patterns. IL-17A is the most widely studied member of the IL-17 family and
mediates many of the known effector functions of Th17 cells [83–85]. IL-17A is involved in
host protection from certain extracellular bacteria and fungi, such as Klebsiella pneumoniae
and Candida albicans [86,87]. IL-17A induces many proinflammatory cytokines, such as IL-6,
granulocyte colony stimulating factor, and TNF-α in both immune and non-immune cells.
Among other activities, it leads to the activation of innate immune cells, proinflammatory
signaling pathways, and neutrophil recruitment. Therefore, IL-17A is an important factor
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that plays a protective role against infection. The presence of IL-17A-producing cells in
human and mouse gingival tissues has been demonstrated using immunohistochemistry
and flow cytometry [88,89]. Analysis using mice revealed that Th17 cell accumulation
in periodontal disease tissues is dependent on oral bacteria. In human studies, IL-17A-
producing cells were more abundant in the gingival tissue of patients with periodontal
disease than in healthy gingival tissue, resulting in infiltration of IL-17A-producing cells
and inflammation of periodontal disease tissue [90]. This suggests that the number of
Th17 cells may correlate with the degree of gingival inflammation. Interestingly, Tsukasaki
et al. reported that mice lacking both IL-17A and IL-17F were found to not only suppress
periodontal disease-related bone destruction but also increase the amount of bacteria in
periodontal tissue. Furthermore, the composition of indigenous bacteria in the oral cavity
was also changed [89].

This suggests that Th17 cells contribute to both the destruction of alveolar bone and
elimination of oral bacteria. In fact, Th17-related cytokines contribute to the maintenance
of the intestinal flora and the secretion of antibacterial peptides, and may have a similar
role in indigenous bacteria in the oral cavity [90,91].

6.2. Innate Immune Response in NAFLD

In NAFLD, Kupffer cells and monocyte-derived macrophages are the major players in
innate immunity [92]. In the steady state, Kupffer cells can inhibit dendritic cell-induced
antigen-specific T cell activation and promote regulatory T cell (Treg) inhibitory activity [93].
The main action of Tregs is to prevent self-reaction to self-antigens. It can also avoid
excessive effector T cell activation and subsequent tissue damage during an induced
immune response [94]. The role of Tregs in NAFLD is described below. Kupffer cells
secrete CCL2 and other substances to mobilize monocytes to the liver, and inflammatory
cytokines, such as TNF-α, promote liver fibrosis [95].

6.3. Role of T Cells in NAFLD

Regarding acquired immunity, T cells are particularly involved in NAFLD. Among T
cells, there are cell types that exert pathogenicity and those that act defensively. Tregs are
anti-inflammatory cells that use the transcription factor Foxp3 as a master regulator [94].
As mentioned above, since Tregs play a role in suppressing autoimmunity, Treg deficiency
shows a lethal phenotype in both mice and humans [96–98]. Tregs present in visceral
adipose tissue suppress the inflammation of visceral adipose tissue and maintain constant
insulin sensitivity and glucose tolerance. In fact, animal models of obesity have reduced
Treg numbers in the spleen and are negatively associated with insulin resistance [99]. The
decrease in Tregs is due to their apoptosis by reactive oxygen species, and the adoption
of Tregs reduces inflammatory cytokines and suppresses steatohepatitis [100]. As a cell
type showing pathogenicity, Th1 cells are associated with the inflammation of adipose
tissue [101,102]. Th1 cell-deficient mice and IFN-γ-deficient mice show reduced adipose
tissue inflammation and improved glucose tolerance [102,103]. In contrast, Th1 cells reduce
IFN-γ production when co-cultured with stem cells derived from adipose tissue in obese
patients [104]. These discrepancies could not be explained by the Th1/Th2 paradigm. In
recent years, the association between NAFLD and Th17 has attracted attention [105–107].
Th17 cells are abundant in the liver and peripheral blood of animal models of NAFLD.
Studies involving humans have shown increased Th17 levels in the adipose tissue and
peripheral blood in patients with obesity and type 2 diabetes, and patients with NASH
have shown increased Th17 levels, similar to mice [108]. However, the exact role of Th17
cells in the development of steatosis is currently unclear. In an analysis using mice, IL-17A-,
IL-17F-, and IL-17RA-deficient mice showed liver steatosis in a fatty liver model due to
a methionine choline-deficient diet, but the degree of liver dysfunction was significantly
lower than that of wild-type mice [109]. However, in terms of liver fibrosis, several
studies have reported that the Th17 axis is pathogenic; thus, it is speculated that liver fat
accumulation and liver fibrosis are caused by different factors [110,111].
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6.4. Interrelationship between NAFLD and Periodontal Disease

Many studies have gradually revealed the relationship between periodontal disease
and NAFLD. Examining the relationship from an immunological point of view, the Th17
axis in vivo may be activated by infection with P. gingivalis. On the other hand, obesity
is induced by lifestyle factors, such as eating habits and decreased exercise, and liver
steatosis is promoted. The Th17 axis is increasingly activated according to the progression
of liver steatosis and may affect the progression of hepatitis and fibrosis. As a treatment
for suppressing the Th17 axis, IL-17A and IL-23 inhibitors have been clinically applied
as therapeutic agents for inflammatory bowel disease [112] and psoriasis [113], and these
drugs may be effective against NAFLD and periodontal disease. Oral pathobiont-reactive
Th17 cells arose from periodontal inflammation could migrate to the inflamed gut, and
could be activated by translocated oral pathobionts and cause development of colitis [114].
Th17 cells induced by periodontitis may migrate to the liver and aggravate NAFLD.

7. Conclusions

This review summarizes the relationship between NAFLD and periodontal disease
(Figure 1) and shows the possibility that periodontal disease aggravates NAFLD. Epidemi-
ological studies have revealed positive associations between periodontal disease and the
onset/progression of NAFLD. Furthermore, an in vivo animal model showed a piece of the
mechanism by which periodontal disease affects NAFLD. Detection of periodontopathic
bacteria in the liver suggested that bacteremia caused by periodontal disease has a direct
influence on NAFLD. Remarkably, alterations in the gut microbiome were also observed
after the administration of periodontopathic bacteria. Although the number of in vitro
studies is limited, some have shown that P. gingivalis LPS induces inflammation and intra-
cellular lipids in hepatocytes. In addition, Th17 might be a key molecule for explaining the
relationship between periodontal disease and NAFLD.

Figure 1. The summary of this review. Periodontal disease has an association with NAFLD.

Successful periodontal treatment is effective for glycemic control in patients with
type 2 diabetes and periodontal disease [14,115,116]. However, the effects of periodontal
treatment on NAFLD are currently unclear. However, the progression and aggravation of
NAFLD and type 2 diabetes are closely related. Further studies are required to clarify the
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relationship between periodontal disease and NAFLD and to establish the general concept
that oral health is essential for systemic health, especially in patients with NAFLD.
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