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In this study, we report 31 spinal intramedullary astrocytoma (SIA) RNA sequencing (RNA-
seq) profiles for 25 adult patients with documented clinical annotations. To our
knowledge, this is the first clinically annotated RNA-seq dataset of spinal astrocytomas
derived from the intradural intramedullary compartment. We compared these tumor
profiles with the previous healthy central nervous system (CNS) RNA-seq data for
spinal cord and brain and identified SIA-specific gene sets and molecular pathways.
Our findings suggest a trend for SIA-upregulated pathways governing interactions with
the immune cells and downregulated pathways for the neuronal functioning in the context
of normal CNS activity. In two patient tumor biosamples, we identified diagnostic
KIAA1549-BRAF fusion oncogenes, and we also found 16 new SIA-associated fusion
transcripts. In addition, we bioinformatically simulated activities of targeted cancer drugs in
SIA samples and predicted that several tyrosine kinase inhibitory drugs and thalidomide
analogs could be potentially effective as second-line treatment agents to aid in the
prevention of SIA recurrence and progression.

Keywords: spinal intramedullary astrocytoma, glioblastoma, transcriptomic (RNA-Seq), RNA sequencing (RNA-
seq), molecular pathway activation, gene expression, spinal cord neoplasms
INTRODUCTION

Spinal intramedullary astrocytoma (SIA) is a rare subtype of glioma comprising about 2%–4% of all
primary central nervous system (CNS) neoplasms and approximately 6%–8% of tumors occurring
in the spinal cord. SIAs are mainly observed as low-grade tumors (WHO I and II) (1). Five-year
overall survival rate of patients with low-grade SIA is 70%–80% and declines to 14%–28% for grades
III–IV (2). However, clinical data on prognostic biomarkers and tumor molecular data associated
with treatment outcomes are needed for patients with spinal astrocytoma due to a particularly low
frequency of these tumors and lack of successful therapeutic regimens. In addition, diagnosis and
treatment of these neoplasms is often challenging given their ambiguous manifestations such as
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back pain, limb weakness, paresthesia, and bowel and bladder
dysfunction (1, 3). Spinal cord tumors are more frequently
diagnosed in children (3, 4) but also occur in adults (4).

Surgical resection remains the main primary treatment for
intramedullary astrocytomas of the spinal cord (3, 5). In turn,
second-line treatments usually include radiation therapy and
chemotherapy. It was also reported that the use of adjuvant
radiation therapy can result in an increase in the overall survival
of patients, especially for the lower-grade tumors (6). However,
the optimal regimen for an adjunctive therapy including
chemotherapy settings has not yet been precisely determined
(1, 3, 5). Treating spinal cord astrocytomas remains problematic
to date, and morbidity and mortality depend on various factors.
In order to better understand these relevant factors linked with
the outcomes of spinal cord astrocytomas, several studies were
conducted. Due to the complications associated with clinical
diagnosis, indecision about optimal surgical treatment, and
second-line treatment failures, most reports on intramedullary
astrocytomas represent either small cohort retrospective analyses
and case studies or data capturing current changes in treatment
options (1, 3, 5). Due to the low incidence of these tumors,
prospective clinical investigations are problematic to perform,
and alternative chemo- and targeted therapeutic agents and
regimens were poorly explored for SIA (7–9).

On the other hand, RNA expression profiles may serve as
potent predictors of tumor sensitivity to targeted therapeutics, as
shown in clinical investigations for microarray (10) and RNA
sequencing (RNA-seq) (11) data. Furthermore, molecular
pathway activation levels can be calculated using high-
throughput gene expression profiles (12, 13) and translated
into next-generation biomarkers (14–16) for algorithmic
scoring of cancer drug efficiencies (17, 18). Moreover,
aggregation of expression data of single gene products into
pathways or signatures results in significantly more robust
expression-level biomarkers, as deduced theoretically (19) and
shown on real cancer molecular data (20, 21). Thus, RNA-seq
profiles can be used for finding effective cancer prognostic or
predictive biomarkers and assist in finding better clinical
treatment regimens (22–24). However, there is a dearth of
clinically annotated molecular profiles of SIA that could be
used for such a purpose.

In this study, we report 31 new SIA RNA-seq profiles for 25
patients with documented clinical annotations. As far as we
know, the current study presents the first clinically annotated
RNA-seq dataset of spinal astrocytomas derived from the
intradural intramedullary compartment.

We compared these tumor profiles with the previous
healthy CNS RNA-seq data of spinal cord and brain samples
(24, 25). We identified differentially expressed gene (DEG)
sets in SIA and molecular pathways and analyzed the
occurrence of known diagnostic and new fusion transcripts.
In addition, we calculated prognostic balanced efficiency
scores for known targeted drugs and identified a fraction of
them that could be potentially helpful as second-line
treatment agents to aid in the prevention of SIA recurrence
and progression.
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RESULTS

SIAs were not previously characterized on transcriptome-wide
level, and in this study, we aimed to analyze RNA-seq profiles of
SIA samples in comparison with healthy brain and spinal cord
samples obtained from Genotype-Tissue Expression (GTEx)
Portal (25) and Atlas of RNA sequencing profiles for normal
human tissues (ANTE) database (24).

Spinal Intramedullary Astrocytoma
Diagnosis and Biosamples
Overall, 31 tumor tissue samples were taken from 14 male and 11
female donors who were diagnosed between 2003 and 2018 with
SIA (23 pilocytic astrocytomas, 4 glioblastomas, 2 anaplastic
astrocytomas, and 2 astrocytomas with uncategorized
histological subtype; Figure 1). The mean age was 32.73 years
(range 18–69 years) and 30.00 years (18–56 years), respectively.
The biosamples were formalin-fixed paraffin-embedded (FFPE)
histologically characterized tumor samples with at least 70%
cancer cells. Clinical annotations of tumor tissue specimens
investigated in this study and their patient origin are
summarized in Supplementary Table S1. Kaplan–Meier plots
for progression-free survival and overall survival are shown in
Supplementary Figure S1.

Characteristics of Sequencing
and Mapping
A total of 10,509.3 million reads were obtained for 31 independent
libraries of SIA tissues (median 55.3 million reads per sample). Most
reads reached Phred-like quality scores (Q-scores) at the Q30 level,
indicating that the probability of an incorrect base call is 0.001%.
The average coverage of sequencing depth reached approximately
53.45× of the human transcriptome. After alignment, 98.57% to
99.12% uniquely aligned reads were mapped to the reference
human genome.

Primary Comparison of RNA Sequencing
Profiles of Spinal Intramedullary
Astrocytomas and Healthy Central
Nervous System Tissues
To further characterize SIA transcriptomic data, we compared
using principal component analysis (PCA) distributions of RNA-
seq profiles among the SIA samples (n = 31) and publicly
available datasets of normal spinal cord (n = 159) and brain
(n = 9) tissues from GTEx and ANTE databases, respectively.
PCA was performed to investigate cross-dataset compatibility in
order to select proper reference group(s) for SIA comparison.
The profiles from ANTE database were chosen because they were
obtained using the same reagents, equipment, and protocols as
for the current experimental SIA sampling (24). The GTEx
reference group of samples was selected because this is, to our
knowledge, currently the biggest publicly available collection of
healthy spinal cord RNA-seq profiles [30]. Performing two-step
expression analysis allowed us to select the DEGs between SIA
and normal neural tissue explored using the same RNA-seq
platform (brain samples from ANTE) and using a different
March 2022 | Volume 12 | Article 837570
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platform but for the same tissue type (GTEx spinal cord
samples). Unfortunately, normal spinal cord samples were not
available in the ANTE database. We hope that this approach
allowed to establish differential gene expression profiles without
the influence of platform-specific batch effect.

PCA was performed first in the space of log10 transformed
quantile normalized gene counts. We observed tissue-specific
sample clustering corresponding to the biological nature of the
datasets under analysis, where SIA samples formed a separate
cluster (Figure 1A) . In addition, we performed PCA for brain
and spinal cord from GTEx, SIA, and ANTE normal brain data
normalized using quantile normalization, DESeq2, and
harmonized/batch corrected using XPN (26), CuBlock (27),
and Shambhala (28). It appeared that GTEx brain profiles
clustered with ANTE normal brain even in case of DESeq2
normalization, indicating that further batch correction was not
necessary (Supplementary Figure S2).

Then, we performed PCA based on pathway activation levels
(PALs) of 1,611 molecular pathways (29) calculated using the
same transcriptomic data for each sample under study
(Figure 1B ) . In case of pathway upregulat ion or
downregulation, PALs can take positive or negative values,
respectively, thus quantitatively reflecting the extent of a
pathway activation or inhibition relatively to the control group
of samples. Zero PAL values suggest unaffected activity of a
molecular pathway. Thus, PAL values can be used as the
quantitative functional characteristic of the interactome under
Frontiers in Oncology | www.frontiersin.org 3
analysis (14). We calculated PALs according to Borisov et al.
(12), with the 168 healthy CNS tissue samples taken as
the controls.

On the PAL-based PCA plot, we observed similar clustering
as for the gene expression-based PCA (Figure 1B), thus strongly
suggesting that SIA samples should be independently compared
to each of the above healthy CNS tissue datasets.

Differential Gene Expression Analysis
Subsequently, we performed paired differential gene expression
analysis between SIA samples relatively to each dataset of healthy
CNS tissues (Supplementary Table S2). Overall, 1,949 genes,
1,766 (90.61%) upregulated and 183 (9.39%) downregulated,
were found to be statistically significantly differentially
expressed [|log2FC|>5, false discovery rate (FDR)-adjusted p-
value <0.05] between SIA and GTEx spinal cord samples
(Figure 2A). In turn, 382 DEGs, 102 (26.70%) upregulated and
280 (73.30%) downregulated, were found for the comparison
between SIA and ANTE healthy brain samples (Figure 2B).

These DEG sets were then intersected with respect to log2FC
sign (Figures 3A, B). In order to test whether an observed
number of common differential genes can support random or
non-random intersection hypothesis, we performed perturbation
test for randomness according to Sorokin et al. (30) with 1,000
random gene sets. The percentile of the observed case precedent
in the distribution of random intersections was considered as a
measure of statistical significance.
A B

D EC

FIGURE 1 | Principal component analysis (PCA) of (A) gene expression and (B) pathway activation levels (PALs) for spinal intramedullary astrocytoma (SIA) tissue
samples and publicly available spinal cord and brain normal samples from The Genotype-Tissue Expression (GTEx) Portal and Atlas of Normal Tissue Expression
(ANTE). PALs were calculated according to Borisov et al. (12) with the 168 healthy CNS tissue samples taken as the controls for SIA. Histological examples of (C) a
diffuse, (D) a pilocytic, and (E) an anaplastic astrocytoma.
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A

B

FIGURE 2 | Distribution of differentially expressed genes between spinal intramedullary astrocytomas (SIAs) relative to (A) GTEx healthy spinal cord and (B) ANTE
healthy brain samples.
A B

FIGURE 3 | Intersection of differentially expressed gene sets between spinal intramedullary astrocytomas (SIAs), GTEx healthy spinal cord, and ANTE healthy brain
samples. Intersections of (A) upregulated and (B) downregulated differentially expressed gene sets between SIA–GTEx spinal cord and SIA–ANTE normal brain
samples are shown; p-values for intersection significance obtained in perturbation test are highlighted in bold.
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In total, 32 genes, 23 (71.88%) upregulated and 9 (28.12%)
downregulated, were commonly differentially expressed in SIA
samples according to both comparisons, which supported the
hypothesis that the intersections between the DEGs were non-
random (p < 0.01).

Gene Ontology Enrichment Analysis
To evaluate potential functional similarities of the above 32 SIA-
specific differential genes and the underlying molecular and
cellular processes, we then performed Gene Ontology (GO)
terms enrichment analysis (Figures 4A, B). We identified
significantly enriched 563 functional GO terms, where 340
terms (60.39%) were for upregulated and 223 (39.61%) were
Frontiers in Oncology | www.frontiersin.org 5
for downregulated DEGs. For statistical estimates, we used
Benjamini–Hochberg method for FDR correction (31) and p-
value threshold 0.05 (32).

Interestingly, most of the enriched terms for upregulated
DEGs were related to the regulation of an innate and adaptive
immune response, thus supporting a concept that immune
microenvironment may play a crucial role in the development
of spinal astrocytomas (33). In contrast, for downregulated
DEGs, the most strongly enriched terms were linked with
complex neuronal processes, such as cognition, learning ability,
and regulation of neurotransmitter secretion and transport. The
latter supports specific functional impairments occurring in
astrocytomas in comparison with healthy CNS tissues (34).
A

B

FIGURE 4 | Top 35 enriched Gene Ontology (GO) terms for significantly (A) upregulated and (B) downregulated differentially expressed genes between spinal
intramedullary astrocytomas (SIAs) and healthy CNS tissues: GTEx spinal cord and ANTE normal brain samples.
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Differential Pathway Activation Analysis
We then performed differential PAL analysis for SIA samples
relative to healthy CNS tissues (Figure 5). In total, 1,611
molecular pathways including 10 and more gene products were
interrogated from Oncobox pathway databank (29).

When comparing SIA and GTEx healthy spinal cord samples,
we identified 468 differentially regulated pathways, 272 (58.12%)
of them were activated and 196 (41.88%) were suppressed
(Figure 5). In turn, for the comparison between SIA and
ANTE normal brain samples, 464 differential pathways were
identified; among them, 254 (54.74%) were activated and 210
(45.26%) were suppressed (Figure 5).

The intersections between these pathway sets returned 397
common differential molecular pathways [222 (55.92%)
activated and 175 (44.08%) inhibited; Supplementary Tables
S3, S4]. This supported non-random intersection between the
differential pathways in both comparisons, p < 0.001 (Figure 5).

In both comparisons, top activated pathways deal with
intracellular signal transduction and with the immune
response, whereas top downregulated pathways are responsible
for translational regulation and neurotransmitter activities
(Figure 6). Except for the new feature of translational
regulation, this trend was in line with the results obtained
previously for the GO terms enrichment in the SIA differential
genes (Figure 4).

Simulated Activities of Anticancer
Targeted Therapeutics
A chemotherapeutic treatment of SIA remains a challenging and
poorly investigated field, and we performed computational
simulation whether anticancer targeted drugs (ATDs) that are
currently in use for other CNS tumors could be repurposed as
second-line treatment options for SIA. To this end, we utilized
Oncobox method for predicting efficiencies of ATDs based on
gene expression and molecular pathway activation data (35).
This returns for every drug a tumor sample-specific value of
balanced drug efficiency score [drug score (DS)]. DS reflects an
expected responsiveness of a tumor to a specific drug, where
higher values mean higher expected efficacy of an ATD.
Frontiers in Oncology | www.frontiersin.org 6
Furthermore, drugs with positive DS are predicted to be
potentially beneficial, and drugs with negative DS—potentially
harmful (35). This method was shown to be clinically beneficial
in a prospective clinical investigation on high-grade human solid
tumors [16] and was effective for individual selection of
experimental/off-label chemo- and targeted therapeutic
settings, e.g., Buzdin et al. (36) and Moisseev et al. (37). In
glioblastoma, Oncobox method could effectively predict tumor
response on temozolomide, a DNA-alkylating agent whose
activity is antagonized by MGMT gene products (38).

By using Oncobox algorithm, we identified 85 ATDs with
positive DS in the SIA–GTEx spinal cord comparison, and 70
ATDs with positive DS in the SIA–ANTE healthy brain
comparison (Figures 7, 8). In these lists, there were 66 common
drugs, thus evidencing non-random intersection between the two
comparison results (Figure 8 and Supplementary Tables S5, S6).

We then assessed available clinical trial reports for the top 20
DS-ranked drugs among these common 66 ATDs with the biggest
DS values for different CNS tumors (Table 1 and Figure 7).
Interestingly, the top predicted drugs mostly represented the
classes of tyrosine kinase inhibitors (i.e., regorafenib, lenvatinib,
nintedanib, sorafenib, dovitinib, sunitinib, tivozanib, pazopanib,
imatinib, foretinib, dasatinib, erdafitinib) and thalidomide analogs
(thalidomide and pomalidomide). Many of these drugs were
previously investigated for CNS tumors and related cancers like
neuroblastoma (Table 1).

On the other hand, drugs with the predicted negative drug
scores that were, therefore, algorithmically not recommended
belonged mainly to cyclin-dependent kinase inhibitors and
androgenic and anabolic steroid (AAS) classes.

Spinal Intramedullary Astrocytoma Fusion
Gene Transcripts
Chromosomal rearrangements resulting in fusion genes and
abnormal transcripts in some cases may become clinically
actionable targets of specific cancer therapeutics (71). Fusion
transcripts combine exons of 2 or more genes and may serve as
the oncogenic drivers in many cancers including CNS tumors
(72, 73).
A B

FIGURE 5 | Intersection of differentially regulated molecular pathways between spinal intramedullary astrocytomas (SIAs), GTEx healthy spinal cord, and ANTE
healthy brain samples. Intersections of significantly (A) upregulated (PAL >0) and (B) downregulated (PAL <0) molecular pathways between SIA–GTEx spinal cord
and SIA–ANTE normal brain samples are shown; p-values for intersection significance obtained in perturbation test are highlighted in bold.
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We used RNA-seq profiles for SIA patients to detect fusion
transcripts presenting in spinal astrocytoma and focused on the
fusions where at least on partner gene was a serine/threonine or
tyrosine kinase. This allowed to select potentially druggable
fusion genes. We found, in total, 16 different fusion transcripts
identified by STAR-Fusion software (74) (Figure 9 and
Supplementary Figure S3). One of them, KIAA1549-BRAF,
was found in two SIA patients and preserved BRAF kinase
domain (Figures 10A, B). Interestingly, this fusion transcript
was previously reported to confer a clinically less aggressive
phenotype in pediatric low-grade astrocytoma (75). It was also
found less abundant in the adult compared to pediatric patients
with pilocytic astrocytoma (76). Other fusions, to our knowledge,
were not reported previously and were not found in ChimerDB
fusion database.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

SIAs are rare tumors comprising 6%–8% of all spinal cord
tumors, and finding effective lines of treatment for SIA is a
challenging task (1, 3). Currently, second-line treatments after
surgical resection may include radiation and chemotherapy,
where the regimen for adjunctive therapy was not optimally
defined. Distance of tumor extension, type of surgery, and
adjuvant therapy were significantly associated with SIA
patients’ survival in a previous study (77). The limited number
of SIA clinical cases results in an absence of prospective studies
(7–9). H3-K27 mutation previously showed diagnostic relevance
and defined phenotypically and molecularly a distinct set of
tumors (78). However, these mutations rarely occur in SIA with
just several cases described in the literature (79).
A

B

FIGURE 6 | Top 10 activated (green) and suppressed (red) molecular pathways for the comparisons of spinal intramedullary astrocytomas (SIAs) with (A) GTEx
healthy spinal cord and (B) ANTE normal brain samples. Common top differential pathways are shown in bold.
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Here, we report the first RNA-seq molecular dataset with
documented clinical annotations for 31 samples of 25 SIA
patients. While there were studies by Biczok et al. (80) and
Zhang et al. (81) on SIA molecular profiling, the current study is,
to our knowledge, the only one with publicly available
sequencing data. In addition, Biczok et al. (80) performed only
targeted RNA-seq for 55 genes to detect fusion genes, while
we investigated gene expression profiling using total
RNA sequencing.

By comparing the experimental data obtained with the
healthy brain and spinal cord CNS tissues, we analyzed SIA-
specific DEGs, enrichment of GO terms, activation of molecular
pathways, presence of fusion transcripts, and simulated efficacies
of anticancer targeted drugs. Our study has certain limitations
such as retrospective design and a small number of patients with
mixed pathology of low-grade and high-grade spinal cord
astrocytomas, although taking into account the rarity of this
disease, this is expected.

Our results provide clues on possible molecular mechanisms
of spinal astrocytoma and on its biomarkers. Indeed, a group of
23 differential SIA-upregulated genes found in the study was
significantly enriched by GO terms mostly linked with regulation
Frontiers in Oncology | www.frontiersin.org 8
of innate and adaptive immune response. This strongly supports
a role of the immune microenvironment in SIA development and
progression. At the same time, a group of nine differentially
downregulated genes was enriched by the terms dealing with
neuronal and cognitive functions, thus reflecting their
impairment in the cancer tissue.

Interestingly, a secreted extracellular matrix protein periostin
was among the 23 SIA upregulated genes. Periostin was
previously associated with prognosis and performance status in
gliomas (82). Moreover, Mikheev et al. (83) showed that
periostin knockdown impaired the survival of xenografted
glioma stem cells and thus concluded that targeting periostin
may be a promising strategy. Our study supports these findings
and points to a potential role of periostin also in
spinal astrocytomas.

Furthermore, our algorithmic simulation predicted that 66
targeted therapeutics can be potentially beneficial for SIA
treatment. Some of them were already tested for CNS tumors
and passed Phases I or II of clinical trials. We speculate that they
could be repurposed from being used in other CNS tumors, and
related tumors such as neuroblastoma, to improving the second-
line treatment of SIA. Interestingly, the most highly ranked drugs
A B

FIGURE 8 | Intersection of targeted therapeutics assessed by Oncobox algorithm with (A) positive and (B) negative drug score (DS) predicted for spinal
intramedullary astrocytomas (SIAs) separately normalized on GTEx healthy spinal cord and on ANTE normal brain samples; p-values for intersection significance
obtained in perturbation test are highlighted in bold.
A B

FIGURE 7 | Top 20 targeted therapeutics ranked by drug score for spinal intramedullary astrocytomas (SIAs) separately normalized on (A) healthy GTEx spinal cord
and (B) ANTE normal brain samples. Targeted therapeutics that are common between the two top-20 lists are shown with green marks.
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(thalidomide and its derivatives) also reflect the top GO terms
enriched in the SIA-upregulated gene set, i.e., the cellular
response on tumor necrosis factor (Figure 4A), whose pathway
is a primary molecular target for these drugs (84). Many tyrosine
kinase inhibitory drugs were also predicted to be beneficial in
SIA treatment.

In contrast, there are some cancer therapeutics we predicted
to be potentially harmful for treating SIA, which mainly related
to cyclin-dependent kinase inhibitors (-Ciclibs) and
AAS hormones.
Frontiers in Oncology | www.frontiersin.org 9
At the level of molecular pathway analysis, we could identify
several specific molecular features of SIA. For example, the top
upregulated pathways were associated with transcriptional
targets of AP1 (Activator Protein-1) family member
transcription factors FOSL1 and FOSL2. Interestingly, AP1
transcription factors FOS and Fra1 were found to be
upregulated in pilocytic astrocytomas (85). Moreover, Fra1 was
shown to control architecture and migratory nature of
glioblastoma cells (86). This protein is also linked with
promotion of glioma aggressiveness through epithelial–
TABLE 1 | Overview of existing clinical trials conducted across Central Nervous System (CNS)-related tumors for target drugs with the highest drug score predicted for
spinal intramedullary astrocytoma (SIA) samples.

Drug Nosology Clinical Trials Reference

Thalidomide Advanced secondary glioblastoma – (39)
Neuroblastoma – (40)
Recurrent high-grade gliomas (anaplastic mixed glioma, anaplastic astrocytoma, or
glioblastoma multiforme)

Phase II (41)

Astrocytoma Phase II-Thalidomide, Temozolomide Tamoxifen (42)
Pomalidomide Pediatric recurrent, progressive, and refractory CNS tumors Phase I (Phase II failed) NCT02415153 (43)

Glioblastoma multiforme – (44)
Regorafenib Glioblastoma multiforme Phase II

NCT02926222
(45)

Recurrent high-grade astrocytoma - (very poor performance) (46)
Neuroblastoma – (47)

Lenvatinib Recurrent glioblastoma multiforme Phase II
NCT01433991

(48)

Pediatric solid tumors, including CNS tumors Phase I/II
NCT03245151

(49)

Nintedanib
(BIBF 1120)

Recurrent glioblastoma multiforme Phase II (clinically non-relevant antitumor activity)
NCT01251484

(50)

Glioblastomas/Anaplastic oligoastrocytoma/Gliosarcoma/Anaplastic Astrocytoma
(AA)/Anaplastic oligodendroglioma (AO)

Phase II
NCT01380782

(51)

Sorafenib Recurrent or progressive low-grade astrocytomas Phase II
NCT01338857

(52)

Progressive high-grade glioma – (53)
Neuroblastoma – (54, 55)

Dovitinib Recurrent glioblastoma Phase II
NCT01753713

(56)

Sunitinib Recurrent glioblastoma Phase II/III
NCT03025893

(57)

Recurrent glioblastoma and anaplastic astrocytoma Phase II
NCT00606008

(58)

Neuroblastoma – (59)
Copanlisib – – –

Tivozanib Recurrent glioblastoma Phase II
NCT01846871

(60)

Pazopanib Recurrent glioblastoma Phase II
NCT00459381

(61)

Perifosine Recurrent glioblastoma Phase I - Temsirolimus,
Perifosine
NCT01051557

(62)

Recurrent or refractory pediatric CNS and solid tumors Phase I (63)
Foretenib Glioblastoma multiforme – (64, 65)
Dasatinib Glioblastoma - (lack of activity against recurrent glioblastoma) (66)
Midostaurin – – –

Imatinib Relapsed/Refractory neuroblastoma Phase II
NCT00030667

(67, 68)

Recurrent glioblastoma Phase II
NCT00010049

(69)

Metastatic pilocytic astrocytoma – (70)
Denosumab – – –

Alpelisib – – –
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mesenchymal transition (87) and overall glioblastoma invasion
(88). In turn, downregulation of Fra1 enhances drug sensitivity
in breast cancer cells (89). Also, experimental Fra1 inhibitors
significantly suppressed tumor growth and lymph node
metastasis of head and neck cancers in a patient-derived
xenograft model (90). Thus, our results suggest that Fra1 could
be investigated as a potential drug target in rare CNS tumors,
such as SIA.
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Finally, 16 different fusion transcripts identified in this study
suggest the occurrence of chromosomal rearrangements
resulting in fusion oncogenes and abnormal transcripts in SIA.
Moreover, KIAA1549-BRAF fusion detected for two adult SIA
patients was previously relatively frequently found in pediatric
pilocytic astrocytomas [47] and was reported to confer a
clinically less aggressive phenotype in pediatric low-grade
astrocytoma (75). Thus, fusion transcripts found can be
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FIGURE 9 | Occurrence of fusions found across spinal intramedullary astrocytoma (SIA) samples by number of patients (A) and fusions (B).
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FIGURE 10 | Schematic representation of the KIAA1549-BRAF fusion transcripts identified for (A) BT-16 and (B) BT-12 samples of spinal intramedullary
astrocytoma (SIA).
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potentially clinically relevant for SIAs and should be further
tested, since many gene fusions were reported as oncogenic
drivers in CNS tumors (72, 73).
MATERIALS AND METHODS

Experimental Clinical Biosamples
This study was performed in agreement with the ethical
principles of Declaration of Helsinki. Retrospective biosamples
were obtained from patients diagnosed with SIAs who had
undergone surgery at the spinal department of Burdenko
Neurosurgical Center, Moscow. From all the patients involved
or from their legal representatives, informed written consents to
participate in this study were collected. The study design and
consent collection procedure were approved by the local ethical
committee of the Burdenko Neurosurgical Center. For all
patients enrolled and for their biosamples, the consent was
obtained for publication of age, sex, histological tumor type,
diagnosis, and molecular data including RNA-seq profiles but
not inc luding whole-genome and/or whole-exome
sequencing data.

Biosamples were FFPE tumor tissue blocks that were
evaluated and confirmed by a pathologist who estimated a
proportion of tumor cells and determined the histological type
of a tumor. In this study, only FFPE blocks with at least 70%
tumor cells were analyzed. In total, 31 samples for 25 SIAs
meeting the above criteria were obtained for further molecular
screenings (Supplementary Table S5).

Preparation of Libraries and
RNA Sequencing
RNA libraries were generated and sequenced according to
Suntsova et al. (24). RNA was extracted using RecoverAll™

Total Nucleic Acid Isolation Kit (Invitrogen). RNA
concentrations were measured with Qubit RNA Assay Kit, and
Agilent 2100 bioanalyzer was used to measure RNA Integrity
Number (RIN). Depletion of ribosomal RNA was performed
using RNA Hyper Kit (Roche), and then library concentrations
and fragment length distributions were measured with Qubit
(Life Technologies) and Agilent Tapestation (Agilent),
respectively. The RNA-seq was performed using Illumina
NextSeq 550 engine for 50-bp single-end reads and
approximately 30 million raw reads per sample using standard
protocol. Single-end sequencing was used because SIA samples
were FFPE tissue blocks that typically have a strong degree of
RNA degradation. Primary sequencing data quality control was
performed with Illumina SAV, and demultiplexing was made
according to Suntsova et al. (24) with Illumina Bcl2fastq2 v
2.17 software.

RNA Sequencing Data Processing
SIA profiles were processed according to Suntsova et al. (24).
STAR aligner (91) was used to process FASTQ files from RNA-
seq in “GeneCounts” mode for Ensembl human transcriptome
annotation GRCh38.89. The gene names for 36,596 annotated
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genes were converted to HGNC (HUGO Gene Nomenclature
Committee) gene symbols from Ensembl IDs according to
Complete HGNC dataset, version of August 17, 2021 (https://
www.genenames.org). Further quality control metrics for RNA-
seq data were obtained with NCBI MAGIC software (92–94).
RNA-seq profiles were preprocessed by quantile normalization
method (95), and then differential expression analysis was
performed using DESeq2 (96), and visualized with R package
EnhancedVolcano (97). Genes that were considered significantly
differentially expressed had to pass a threshold of FDR-adjusted
p-values <0.05 (98). GO enrichment analysis was conducted
using clusterProfile (v.4.2.1) and org.Hs.eg.db (v.3.8.2) R
packages. Fusion transcripts were detected with STAR-Fusion
tool (74), and PCA and visualization were done for log10
transformed counts of all genes using pca2d R (v.3.6.0) and
prcomp software. Code for data analysis is available at: https://
github.com/raevskymichail/SIA_analysis.

Healthy Tissue Transcriptomic Data
We used healthy tissue transcriptomic profiles obtained for
normal human spinal cord biosamples from GTEx project
portal (25) and for normal brain samples from the ANTE
database (24). In total, 9 ANTE and 159 GTEx normal CNS
samples were analyzed. Raw count quantification in
GENCODEv26 annotation was obtained from GTEx portal.

Calculation of Pathway Activation Levels
Algorithmically annotated molecular pathway graphs were taken
from our previously published database (29). PALs were
calculated with the Oncobox bioinformatic platform. It allows
quantitative assessment of PALs using RNA-seq data and
functionally annotated collection of molecular pathways (12,
29). We used a set of 1,611 pathways with 10 or more gene
products included because of previously reported poor
theoretically estimated data aggregation effect for smaller
pathways (15).

This method of calculating PAL showed a strong potential to
suppress batch effects (15, 16, 21) and to minimize the artifacts
introduced by the methods of experimental transcriptome
analysis (13, 99). An absolute value of PAL reflects the
strength of the pathway up/downregulation, while a positive or
negative sign indicates its activation or suppression, accordingly
(12). To calculate PAL, each sample RNA-seq profile was
normalized on mean geometric levels of gene expression in the
relevant control dataset.

Targeted Drug Efficiency Simulation
Drug score [Balanced Efficiency Score (BES)] for cancer-targeted
drugs was calculated according to Tkachev et al. (35), whose
method is based on the analysis of targeted molecular pathway
activation and relative expression levels of drug target genes.

Testing of Intersection Significance
To test whether an observed number of overlapping differential
genes or pathways between the two intersecting datasets is
significant, for every comparison, we performed 1,000 random
intersections according to Sorokin et al. (30). In every case, two
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random samples from the corresponding gene sets under
comparison were taken. Then, these random samples were
intersected for 1,000 iterations, and numbers of randomly
obtained common genes were registered. Then, p-value of
intersection significance was calculated as an expected fraction
of random intersects that is equal to or higher than the
experimentally observed number of overlapping genes.
CONCLUSIONS

We report here the first clinically annotated RNA-seq dataset for
31 tumor tissue samples of 25 patients with SIA, a rare CNS
tumor. Bioinformatic analysis revealed the presence of
characteristic KIAA1549-BRAF fusion transcripts in two
samples and 16 new fusions each present in one SIA patient.
For the first time, differential gene and molecular pathway
analysis showed that the top SIA-upregulated pathways govern
interactions with the immune cells, whereas the top inhibited
pathways deal with normal neuronal activities. In addition, we
found SIA-specific activation of molecular targets for cancer
drugs: several tyrosine kinase inhibitors and thalidomide
analogs. While this is a theoretical prediction, we propose
that they could be further investigated as second-line
treatment agents to aid in the prevention of SIA recurrence
and progression.
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