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ABSTRACT
Ever-increasing hardware capabilities and computation powers have enabled acquisition and analysis of big
scientific data at the nanoscale routine, though much of the data acquired often turn out to be redundant,
noisy and/or irrelevant to the problems of interest, and it remains nontrivial to draw clear mechanistic
insights from pure data analytics. In this work, we use scanning probe microscopy (SPM) as an example to
demonstrate deep data methodology for nanosciences, transitioning from brute-force analytics such as data
mining, correlation analysis and unsupervised classification to informed and/or targeted causative data
analytics built on sound physical understanding.Three key ingredients of such deep data analytics are
presented. A sequential excitation scanning probe microscopy (SE-SPM) technique is first developed to
acquire high-quality, efficient and physically relevant data, which can be easily implemented on any
standard atomic force microscope (AFM). Brute-force physical analysis is then carried out using a simple
harmonic oscillator (SHO)model, enabling us to derive intrinsic electromechanical coupling of interest.
Finally, principal component analysis (PCA) is carried out, which not only speeds up the analysis by four
orders of magnitude, but also allows a clear physical interpretation of its modes in combination with SHO
analysis. A rough piezoelectric material has been probed using such a strategy, enabling us to map its
intrinsic electromechanical properties at the nanoscale with high fidelity, where conventional methods fail.
The SE in combination with deep data methodology can be easily adapted for other SPM techniques to
probe a wide range of functional phenomena at the nanoscale.

Keywords: sequential excitation, scanning probe microscopy, principal component analysis, simple
harmonic oscillator model

INTRODUCTION

The fusion of scientific research and big data has pro-
vided an unprecedented opportunity for accelerated
discovery, understanding and innovation [1–6], yet
it also imposes new challenges for scientists to
adjust to, adapt to and thrive in the face of daunt-
ing data volume [7,8]. Ever-increasing hardware
capabilities and computation powers have made ac-
quisition and analysis of big scientific data routine,
though much of the data acquired often turn out to
be redundant, noisy and/or irrelevant to the prob-
lems of interest, and it remains nontrivial to draw
clear mechanistic insights from brute-force data an-
alytics [2,7,9]. As such, there is strong desire to push
big data toward deep data, namely from data min-

ing, correlation analysis and unsupervised classifica-
tion to causative data analytics that fuse scientific
knowledgeof physics, chemistry andbiology intobig
data [2,3,5,6,9,10] and thus from brute forces to in-
formed and/or targeted strategies. We believe that
three key questions need to be answered to enable
such a vision: (i) how do we develop innovative ex-
perimental and/or computational methodologies to
acquire high-quality (less noisy), efficient (less re-
dundant) and physically relevant scientific data to
enable deep analysis; (ii) how can we learn clear
mechanistic insights from thedata, guidedby the un-
derlying physical principles; and (iii) how can we
accelerate and enhance physical understanding by
informed and targeted big-data analytics? Scanning
probe microscopy (SPM) is capable of acquiring
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Figure 1. The schematics of dynamic SPM experiments based on DART, BE and SE techniques, wherein the AC waveforms combining two distinct or a
band of frequencies are synthesized to excite the sample under DART or BE, respectively, while a sequence of AC waveforms with different frequencies
are used to excite the sample under SE.

multi-dimensional physical datasets in the form of
high-resolution images and spectroscopy [11–14],
providing us with an ideal playground for deep data
methodology. In this work, we demonstrate the
essence of such deep data analysis via a simple yet
revealing case study of SPM that incorporates all the
three key ingredients above, wherein an experimen-
tal methodology is designed to acquire high-quality,
efficient and physically relevant SPM data amenable
tobothphysicalmodeling anddata analytics,making
it possible to accelerate and enhance physical under-
standing by targeted big data.This also enables us to
resolve a long-standing challenge in scanning probe
microscopy—mapping weak intrinsic responses at
the nanoscale quantitatively [15–17]. Of particular
interest is a clear mechanistic understanding of the
unsupervised principle component analysis (PCA)
[18–20] acquired through sound physical principle,
which speeds up physical analysis by at least four or-
ders of magnitude.

RESULTS AND DISCUSSION
Sequential excitation
As the first step, we develop a sequential excita-
tion scanning probe microscopy (SE-SPM) tech-
nique [21] to acquire high-quality, efficient and

physically relevant data in the frequency domain,
and the method can be easily implemented in any
standard atomic force microscope (AFM) without
the need for any additional hardware and instrumen-
tation [22]. To this end, we note that the majority
of SPMmeasurements deduce physical properties of
samples from the interactions between a cantilever
with a sharp tip and a sample surface, as schemati-
cally shown in Fig. 1, and the dynamics of the inter-
action can be described well by a simple harmonic
oscillator (SHO)model [23,24]:

A(ω) = A0ω
2
0√

(ω2
0 − ω2)2 +

(
ω0ω

Q

)2
, (1.1)

φ(ω) = tan−1
[

ω0ω

Q(ω2
0 − ω2)

]
, (1.2)

where A0, ω0, and Q are intrinsic electromechani-
cal response (piezoelectricity), resonant frequency
(elasticity) and quality factor (energy dissipation)
of the system that we are interested in determining
quantitatively from the SPM experiment, not only
at a single point, but over a spatial mapping. Note
that (ω), is the excitation frequency, with A(ω) and
φ(ω) as the corresponding amplitude and phase
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Figure 2. A sequence of SE-PFM amplitude mappings obtained at distinct frequen-
cies in PZT ceramic.

that are directly measured in experiment. As such,
it is desirable to acquire the amplitude A(ω, x, y)
and phase φ(ω, x, y) over a 2D space (x, y) of
the sample surface as well as a frequency spectrum
of excitation (ω), from which A0, ω0, and Q , the
physical parameters of interest, can be solved by fit-
ting Equation (1). Conventional techniques such as
dual amplitude resonance tracking (DART) [24,25]
and band excitation (BE) [26,27] synthesize the AC
waveform, combining either two distinct or a band
of frequencies to excite the sample (Fig. 1).The for-
mer yields only two sets of data, not amenable for re-
liable fitting of the highly non-linear Equation (1),
and the resonance tracking is not always robust, es-
pecially for rough sample surfaces. The latter is ca-
pable of capturing the complete spectrum without
resonance tracking, though it distributes excitation
energy over a frequency band, reducing its signal
strength substantially, and thus the data quality is
not high. Newly developed general mode (G-mode)
SPM records complete time- instead of frequency-
domain data that are very powerful [7,28], although
a substantial portion of the data could be redundant
and thus the subsequent analysis is not very efficient,
and it requires sophisticated instrumentation that is
not easily accessible.Therefore, there is still a strong
desire for an innovative yet simple and easily accessi-
ble approach to acquire high-quality (less noisy), ef-
ficient (less redundant) and physically relevant SPM
data to enable deep analysis.

To this end, we developed sequential excitation
(SE) that excites the sample using a sequence of AC
waveforms with distinct frequenciesω j , as shown in
Fig. 1, wherein the excitation energy is concentrated
on only one frequency at a time instead of being dis-
tributed over a band of spectra, ensuring that the sig-
nal is strong and the response is not noisy. In such a
setup, each excitation frequency captures cantilever-
sample resonance at selected spatial points that are
unique, ensuring that the data are relevant yet not

redundant. Furthermore, no resonance tracking is
needed as in DART, ensuring that themeasurement
is robust and reliable. In a sense, such a strategy of
SE is analogous to super-resolution microscopy in
biology that turns specific fluorescent molecules on
and off in a sequential manner for imaging [29,30],
wherein we excite specific resonances of different
points sequentially using distinct frequencies. Our
approach, however, requires no extra hardware and
further instrumentation in a standard AFM, and it
can be easily implemented, making it widely acces-
sible.

As a demonstration, we studied the piezore-
sponse force microscopy (PFM) of a PZT ce-
ramic under SE, wherein a sequence of its ampli-
tude mappings A(ω j , x, y) are shown in Fig. 2,
obtained using AC excitation frequencies rang-
ing from 320 to 400 kHz as determined from a
preliminary DART scan. The drifting between dif-
ferent scans has been corrected as detailed in Sup-
porting Information (SI), available as Supplemen-
tary Data at NSR online. It was observed that
the PFM amplitude is very sensitive to the exci-
tation frequency ω j , as expected, and there are
substantial amplitude changes when the excitation
frequency varies. In addition, substantial spatial
heterogeneity is observed within each mapping,
reflecting possible variations in intrinsic piezoelec-
tricity, elasticity, energy dissipation or their com-
binations. Such crosstalk makes it difficult to de-
termine the intrinsic SPM response quantitatively,
and it is necessary to deconvolute these differ-
ent effects. In fact, our work was originally mo-
tivated by this very issue, which has important
implications in the nanoscale probing of electrome-
chanical coupling, ubiquitous in nature, that under-
pins the functionalities of both synthetic materi-
als and the biology for information processing as
well as energy conversion and storage [11,31–37].
While dynamic strain-based SPM techniques have
emerged as a powerful tool to investigate electrome-
chanical coupling at the nanoscale in the last decade
[11],which are knownasPFMfor piezoelectrics and
ferroelectrics [36,38–44] and as electrochemical
strain microscopy (ESM) for electrochemical sys-
tems [45–50], determining intrinsic electromechan-
ical response remains challenging due to its crosstalk
with topography, elasticity and energy dissipation.
SE-PFMmakes it possible to overcome suchdifficul-
ties, though we must reconstruct data to determine
the intrinsic response, analogous to super-resolution
microscopy in biology. In this regard, the 3D data
sets of A(ω, x, y) and phase φ(ω, x, y) obtained
from SE are amenable to both physics-based SHO
analysis and statistics-based PCA, making deep data
analysis possible.
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Figure 3. Comparison of PZT mappings acquired by SE-PFM and DART-PFM processed via SHO; (a) SHO fitting of SE-PFM spectrum data for one
representative pixel; (b) rough topography mapping; and (c)–(e) reconstructed SE-PFM mappings of (c) intrinsic amplitude A0 , (d) resonance frequency
ω0 and (e) quality factor Q ; (f)–(h) reconstructed DART-PFM mappings of (f) the intrinsic amplitude, (g) resonance frequency and (h) quality factor
obtained, wherein white areas show points where SHO analysis fails.

Physical analysis by a simple harmonic
oscillator model
We start with brute-force physical analysis ac-
complished by fitting 3D datasets of amplitude
A(ω, x, y) at each pixel (x, y) using the SHO
model of Equation (1.1). This is demonstrated by
one representative pixel in Fig. 3a, yielding a res-
onant frequency of 347.8 kHz, quality factor of
33.23 and intrinsic electromechanical response of
15.25 pm at that particular point. Note that the sam-
ple surface is rather rough, as revealed by its topog-
raphy (Fig. 3b), which imposes substantial difficulty
for DART-PFM, yet SHO analysis can be easily ap-
plied to each pixel of the SE-PFM to reconstruct
the mappings of intrinsic amplitude, resonant fre-
quency and quality factor, as shown in Fig. 3c–e. In-
deed, there is strong spatial variation in the intrin-
sic amplitude mapping, though little correlation is
seen between topography (Fig. 3b) and amplitude
(Fig. 3c), even in regionswith substantial roughness,
such as in the valley on the top part of the map-
ping marked by the dotted red square. The map-
ping of R2—a statistical measure known as the fit-
ting coefficient of determination assessing how close
the data are to the fitted regression line—is pre-
sented in Supplementary Fig. 1 in SI, available as
Supplementary Data at NSR online, revealing val-
ues ranging from 0.85 to 0.99 and thus a high fi-
delity of SHO analysis. This demonstrates the ca-
pability of SE-PFM even for highly inhomogeneous
and rough samples. Such a capability, however, is
beyond the conventional DART-PFM, as exhibited

in Fig. 3f–h, where it is observed that a significant
percentage of points (27%) fail to yield a valid so-
lution in SHO analysis, as highlighted by the white
pixels in the mappings. Such a problem also casts
doubts on the points wherein SHO analysis works
and, indeed, mappings of intrinsic amplitude, reso-
nant frequency and quality factors all show not so
subtle difference between SE- and DART-PFM, es-
pecially in rough regions. This highlights the advan-
tage of SE over DART, which measures responses
at only two excitation frequencies across resonance,
as schematically shown in Fig. 1, and uses the differ-
ence between these two responses as feedback for
resonance tracking. Such a strategy often runs into
difficulties: if the separation between two excitation
frequencies is too small, theywill easily fall out of res-
onance range during scanning and thus fail to track
resonance shift; and, if the separation is too large,
then the responses are weak and the signal-to-noise
ratios are low. For materials exhibiting substantial
heterogeneity at the nanoscale, for instance near the
grainboundaries [16,51,52]wherein the contact res-
onance frequency can shift significantly over a rel-
atively short distance, resonance tracking and thus
SHO analysis often fail [17]. This is clearly demon-
strated in PZT (Fig. 3f–h), which has strong piezo-
electric response yet a rough topography (Fig. 3b)
that is not uncommon in practice, and the excita-
tion frequency must shift substantially during scan-
ning (Fig. 3g and Supplementary Fig. 2, available
as Supplementary Data at NSR online). An excel-
lent ferroelectric material such as PZT still suffers
from such a difficulty, and the issue is all the more
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serious for other materials with weaker electrome-
chanical coupling. Mappings acquired from SE-
PFM, on the other hand, are free of such problems.

PCA and its physical interpretation
While SHO fitting works well under SE-PFM, it is
a computationally expensive process, taking an In-
tel XeonE5–2695CPUapproximately 0.06 s for one
pixel and thus 1.09 hr for a 256 × 256 mapping (or
5.8 min for a parallel pool with 28 CPU workers).
We thus resort to multivariate statistical tools such
as PCA to speed up the analysis [18], as a sequence
of images has been obtained under different excita-
tion frequencies, ideal for PCA.Through orthogonal
transformation, PCAconverts a set of possibly corre-
lated variables, in this case SE-PFMmappings under
different excitation frequencies, to a set of linearly
uncorrelated variables known as principal compo-
nents. As a powerful unsupervised data-analytic tool,
PCA is widely used to compress and visualize multi-
dimensional datasets, though its physical meaning is
often unclear.

Here, we demonstrate that PCA not only speeds
up our computation by four orders of magnitude,
but also allows a clear physical interpretation of its
modes in combination with SHO analysis. To this
end, we recast a 3D dataset of A(ω, x, y) into 2D
dataset of A(ω, x), where a 2D spatial grid is col-
lapsed into 1D.This reshaped dataset can be viewed
as a 2D matrix A, such that each row of A repre-
sents a spatial mapping at a particular excitation fre-
quency, while each column represents a spectrum of
data spanning all excitation frequencies for a particu-
lar grid point.The details of the following derivation
are presented in the SI, available as Supplementary
Data at NSR online wherein principal components
ofA, namely the spatial eigenvectorswi of the covari-
ancematrixATA, are evaluatedbya singular valuede-
composition (SVD) [53].Therefore, the jth rowofA,
Aj-row, can be regarded as a linear combination of wi
with coefficients ξi .

A j -r ow =
∑
i

ξi (ω j) · wi. (2)

On the other hand, Aj-row can also be reformulated
fromEquation (1) of SHOasdetailed in SI, available
as Supplementary Data atNSR online:

A j -r ow =
∑
i

λi (ω j) · αi =
∑
i

ζi (ω j) · βi,

(3)
where components {αi} = A0Qω0 ◦ [1,Q − Q̄ ,

ω0 − ω̄0, (ω0 − ω̄0)
2
,...] inherit all spatial variance

of vectors A0, Q , and ω0 that are reshaped from

intrinsic parameter mappings A0(x, y), Q(x, y),
and ω0(x, y), 1 is a 1D vector with components
to be 1, and Q̄ = 1 · Q̄ , ω̄0 = 1 · ω̄0. Here, oper-
ator ◦ denotes the Hadamard product of two vec-
tors, A0Qω0 = A0 ◦ Q ◦ ω0, and the overhead bar
is used to denote spatial averaging. Note thatα1 cor-
responds to A0Qω0 because it is always the leading
term in the 2D Taylor series, while the sequence of
following αi depends on the relative variation of Q
and ω0, and the order could be different for differ-
ent physical systems. Since wi is orthogonal while
αi is not, to ensure the comparison with Equation
(2), we transform {αi} into a set of orthonormal ba-
sis {βi} via Gram–Schmidt process [54], with β1 =
α1 = A0Qω0, β2 = α2 − α2·β1

‖β1‖2 β1, and β3 = α3 −
α3·β1
‖β1‖2 β1 − α3·β2

‖β2‖2 β2 after which {βi} is normalized.
TheanalogybetweenEquation(3) andEquation(2)
is evident, suggesting that PCA components {wi }
correspond to an orthonormal basis {βi} derived
from SHO, which has a clear physical interpreta-
tion related to intrinsic electromechanical response
(piezoelectricity)A0, resonant frequency (elastic-
ity) ω0, and quality factor (energy dissipation) Q
of the system. In a completely parallel manner, the
correspondence between PCA spectral eigenvectors
and SHO expansion can be established by switch-
ing the row and column of A, namely between PCA
spectral eigenvectors Awi and SHO spectral basis
Aβi , as detailed in the SI, available as Supplementary
Data at NSR online. In particular, elements of Awi
represent the weight ξi that wi takes up in each scan
according to Equation (2).

To demonstrate this analysis, we compare the
first three spectral eigenvectors of PCA versus the
SHO expansion in Fig. 4a, derived from SE-PFM
data presented in Fig. 2. Good agreement between
PCA spectral eigenvectors Awi and SHO spectral
basisAβi is observed.Thefirst three spatial eigenvec-
tors of PCA are shown in Fig. 4b, in comparisonwith
the first three SHO spatial basis in Fig. 4c, wherein
good agreement is again observed, with β1 =
A0Qω0, andβ2 andβ3 derived fromα2 = A0Qω0 ◦
(ω0 − ω̄0) and α3 = A0Qω0 ◦ (ω0 − ω̄0)

2 via the
Gram–Schmidt process. Note that, for the PZT
sample probed, the second-order variation of ω0
dominates the first-order variation of Q , so that
α3 = A0Qω0 ◦ (ω0 − ω̄0)

2. The structural similar-
ities (SSIMs) [55] for the first three pairs are eval-
uated to be 99.7, 98.5 and 95.5%, while the Pearson
correlation coefficients (PCC) [56] are 90.06, 91.15
and 72.97%, as detailed in SI, available as Supple-
mentaryData atNSRonline, confirming our analysis
numerically.

Intuitively, the set of SE-PFM mappings un-
der different frequencies contains two important
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Figure 4. Comparison of PCA and SHO expansion for SE-PFM data of PZT; (a) first three PCA spectral eigenvectors in com-
parison with corresponding SHO spectral basis; (b) first three PCA spatial eigenvectors; (c) corresponding SHO spatial basis.

pieces of information: the variations of the ampli-
tude with respect to the spatial locations and with
respect to excitation frequencies, which are inter-
connected in the original mappings of Fig. 2. Under
PCA, the data are transformed, such that the spatial
variation is best represented by the spatial eigenvec-
tors, and the frequency variation is reflected in the
spectral eigenvectors for each PCAmode. Note that
the principal components are sorted by their eigen-
values in a descending manner, with the first princi-
pal component accounting for the maximum possi-
ble variability in the data, as shown by the scree plot
of variance in Supplementary Fig. 3, available as Sup-
plementary Data at NSR online. The physical inter-
pretations of PCA eigenvectors, however, are often
unclear, which we have resolved in this work with
the assistance of SHO analysis. Note that PCA takes
only 0.24 s for an Intel Xeon E5–2695 CPU to com-

plete, which is four orders of magnitude faster than
brute-force fitting.

The spatial variation of intrinsic amplitude, res-
onant frequency and quality factor—key material
parameters of interest in this analysis—are not
known in advance. Thus, in order to unambigu-
ously establish our physical interpretation of PCA,
we construct a model three-phase system numer-
ically with pre-determined distribution of intrin-
sic and uniform amplitude, resonant frequency and
quality factor for each phase, as shown in Fig. 5a,
from which corresponding SE-PFM mappings can
be computed using an SHOmodel followed by PCA
analysis. Taylor expansion of SHO can then be car-
ried out. The comparisons of the first three spec-
tral eigenvectors are shown in Fig. 5b, which agree
with each other well. Meanwhile, the comparison
of spatial eigenvectors for PCA (Fig. 5c) and SHO
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expansion (Fig. 5d) reveals a structural similarity
of over 99.9% and a Pearson correlation coefficient
of over 99.8% for the first three modes, suggesting
that the first three PCA spatial eigenvectors are β1,
β2 and β3 derived from (α1, α2, α3) = A0Qω0 ◦
[1,Q − Q̄ , ω0 − ω̄0], respectively, since the vari-
ation of Q dominates that of ω0 for the model sys-
tem considered.This set of studies thus confirms the
physical interpretation of PCAmodes, which can be
used to substantially speed up the analysis.

CONCLUSIONS
Principal component analysis (PCA) has been
widely used to compress and visualize multi-
dimensional datasets, though its physical meaning
is often unclear. SPM measures a wide range of
sample properties through tip-sample interactions
in terms of cantilever dynamics, though the intrinsic
response is rather challenging to determine quan-
titatively, often interfered with various forms of
crosstalk. The SE technique that we developed, in
combination with a dynamics-based SHO model
and data-analytic PCA, allows us to overcome such
difficulties through deep data methodology. Of par-
ticular interest is a clear mechanistic understanding

of the unsupervised PCA acquired through a sound
physical principle, making it possible to speed up
physical analysis by at least four orders of magni-
tude. The method can be easily implemented in any
standard AFM without the need for any additional
hardware and instrumentation. While the technique
is demonstrated in terms of electromechanical
coupling via PFM, the dynamics involved are
universal in SPM, making the method applicable to
improving other SPM techniques, such as in Kelvin
probe force microscopy, to determine the surface
potential, and in a contact resonance method to
map the Young’s modulus, among others.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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