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Layers of regulation of cell-cycle gene expression 
in the budding yeast Saccharomyces cerevisiae

ABSTRACT In the budding yeast Saccharomyces cerevisiae, transcription factors (TFs) 
regulate the periodic expression of many genes during the cell cycle, including gene products 
required for progression through cell-cycle events. Experimental evidence coupled with 
quantitative models suggests that a network of interconnected TFs is capable of regulating 
periodic genes over the cell cycle. Importantly, these dynamical models were built on tran-
scriptomics data and assumed that TF protein levels and activity are directly correlated with 
mRNA abundance. To ask whether TF transcripts match protein expression levels as cells 
progress through the cell cycle, we applied a multiplexed targeted mass spectrometry ap-
proach (parallel reaction monitoring) to synchronized populations of cells. We found that 
protein expression of many TFs and cell-cycle regulators closely followed their respective 
mRNA transcript dynamics in cycling wild-type cells. Discordant mRNA/protein expression 
dynamics was also observed for a subset of cell-cycle TFs and for proteins targeted for 
degradation by E3 ubiquitin ligase complexes such as SCF (Skp1/Cul1/F-box) and APC/C 
(anaphase-promoting complex/cyclosome). We further profiled mutant cells lacking B-type 
cyclin/CDK activity (clb1-6) where oscillations in ubiquitin ligase activity, cyclin/CDKs, and cell-
cycle progression are halted. We found that a number of proteins were no longer periodi-
cally degraded in clb1-6 mutants compared with wild type, highlighting the importance of 
posttranscriptional regulation. Finally, the TF complexes responsible for activating G1/S tran-
scription (SBF and MBF) were more constitutively expressed at the protein level than at peri-
odic mRNA expression levels in both wild-type and mutant cells. This comprehensive investi-
gation of cell-cycle regulators reveals that multiple layers of regulation (transcription, protein 
stability, and proteasome targeting) affect protein expression dynamics during the cell cycle.

INTRODUCTION
The eukaryotic cell cycle is a complex biological process, in which 
many regulatory proteins have been characterized. The cell cycle is 
very well understood in the budding yeast model system Saccharo-

myces cerevisiae (Hartwell et al., 1974; Elliott and McLaughlin, 
1978; Lord and Wheals, 1981). Cyclins, cyclin-dependent kinases 
(CDKs), and protein degradation machinery trigger and order cell 
cycle events, and transcription factors (TFs) regulate the abundance 
of these cell-cycle regulators by activating “just-in-time” phase-
specific gene expression (Spellman et al., 1998; Simon et al., 2001; 
Lee et al., 2002; Pramila et al., 2006; Orlando et al., 2008, Cho 
et al., 2017a; reviewed in Haase and Wittenberg, 2014). Cell-cycle 
machinery is highly conserved across eukaryotes (Lee and Nurse, 
1987; Elledge and Spottswood, 1991; Ninomiya-Tsuji et al., 1991), 
and programs of periodic genes have been identified in many spe-
cies (Ishida et al., 2001; Rustici et al., 2004; Menges et al., 2005; 
Grant et al., 2013, Kelliher et al., 2016). Despite the observation 
that many regulatory components of the eukaryotic cell cycle are 
periodically transcribed, it is largely unknown whether periodic 
mRNAs are also periodically expressed at the protein level.
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Posttranscriptional modifications such as phosphorylation and 
ubiquitination are known to affect protein activity and rate of turn-
over, respectively, for cell-cycle regulators (Ubersax et al., 2003; 
Breitkreutz et al., 2010; Swaney et al., 2013). Indeed, several studies 
have shown that mRNA and protein expression levels can be poorly 
correlated (Futcher et al., 1999; Gygi et al., 1999; Serikawa et al., 
2003; Washburn et al., 2003; Jensen et al., 2006; Lackner et al., 
2007; de Godoy et al., 2008; Marguerat et al., 2012; Li et al., 2014; 
reviewed in Vogel and Marcotte, 2012). However, most of these 
studies have analyzed the relationship between mRNA and protein 
abundance from steady state populations of cells, without consider-
ing the timing or kinetics of mRNA and protein turnover in the cell 
cycle. Only a few previous studies have profiled proteome dynamics 
for S. cerevisiae, Schizosaccharomyces pombe, and human cells at 
time points corresponding to the major cell-cycle phases (Flory 
et al., 2006; Carpy et al., 2014; Ly et al., 2014). Gene expression 
dynamics have been investigated with denser sampling over time 
for a small number of cell-cycle proteins by our group and others, 
which demonstrated that S. cerevisiae cell-cycle protein expression 
closely followed periodic mRNA expression levels (Ball et al., 2011).

While microarray and RNA-sequencing technologies enable 
complete quantitation of the S. cerevisiae transcriptome, a comple-
mentary methodology is still lacking for quantitation of the total pro-
teome. ORF-tagging strategies have enabled single-cell fluores-
cence or immunoblotting analysis of protein expression for individual 
proteins (Ghaemmaghami et al., 2003; Huh et al., 2003; Kulak et al., 
2014; Chong et al., 2015; Yofe et al., 2016), but available tools are 
not amenable to multiplexing across cell-cycle time. Likewise, unbi-
ased proteomics using liquid chromatography tandem mass spec-
trometry (LC-MS/MS) and isobaric tagging have achieved nearly 
complete quantitation of the S. cerevisiae proteome (∼5000 pro-
teins) but require extensive fractionation and are limited to multi-
plexing of ∼10 samples (Paulo et al., 2015). In contrast, targeted 
proteomics can offer high sensitivity and quantitative precision and 
the capability of multiplexed protein quantitation across unlimited 
numbers of samples (Picotti et al., 2009, 2013; Costenoble et al., 
2011; Mirzaei et al., 2013; Soste et al., 2014).

Here, we sought to apply the first targeted proteomic approach 
to quantifying cell-cycle-dependent protein expression across a 
large set of S. cerevisiae proteins during the cell cycle. Specifically, 
we quantified protein abundance from synchronous cells and com-
pared transcriptome with proteome dynamics during the cell cycle. 
Our study is the most densely sampled proteomics data set across 
the cell cycle (20 or more time points), enabling us to quantify de-
tailed cell-cycle dynamics from ∼45 TFs and regulatory proteins in 
S. cerevisiae. We found that many proteins match their respective 
mRNA dynamics, with some interesting exceptions. Furthermore, 
we profiled the transcriptome and proteome from mutant cells and 
demonstrated that periodic cyclin/CDK and periodic ubiquitin li-
gase activity are required for the dynamic expression of some cell-
cycle proteins.

RESULTS
Targeted mass spectrometry method development
We developed a targeted proteomic assay for multiplexed quantita-
tion of 45 cell-cycle proteins and four constitutively expressed con-
trols for cytoplasmic (Rim11, Vps9) and nuclear (Cic1, Taf12) localiza-
tion (Supplemental Table 1). To select peptides for quantitation, we 
used available discovery-based and targeted proteomic data from 
PeptideAtlas and other sources, along with previously published 
guidelines for optimal peptide selection (see Materials and Methods; 
Desiere et al., 2006; Mirzaei et al., 2013). In the absence of prior 

experimental data, we chose peptide sequences that were selected 
by Aebersold and colleagues to quantify the entire yeast proteome 
(Picotti et al., 2013). In total, 149 stable isotope-labeled (SIL) pep-
tides were synthesized to be used as internal standards for identifi-
cation and quantitation of the 49 targets (Supplemental Table 1).

To test the assay, SIL peptides were spiked into whole-cell tryptic 
digests of asynchronous wild-type S. cerevisiae cells, and 1 µg of 
digests was analyzed by LC-MS/MS using parallel reaction monitor-
ing (PRM), a highly sensitive targeted proteomic approach. Native 
yeast peptides were identified based on the retention time and MS/
MS spectra of the SIL peptide standards. After removing targets that 
had poor reproducibility across triplicate analyses or were undetect-
able above noise, we were able to quantify 38 peptides belonging 
to 22 proteins (only 45% of the proteins of interest; see Supplemen-
tal File 1). Because many cell-cycle regulators are transiently ex-
pressed in specific phases of the cell cycle, we hypothesized that 
undetectable proteins in asynchronous yeast samples were diluted 
below the limits of detection.

Many cell-cycle regulators exhibit dynamic protein 
expression during a wild-type cell cycle
We previously profiled transcriptome dynamics from wild-type bud-
ding yeast cells across multiple cell cycles using RNA sequencing, 
sampling every 5 min (Kelliher et al., 2016). We applied our MS 
method to cells grown under identical conditions to compare cell 
cycle-dependent protein expression (Materials and Methods). Cells 
were collected over time to monitor the budding index (a marker for 
cell cycle entry) and to extract protein. Protein expression was quan-
tified by PRM in two replicate time series (sampling every 7 min for 
20 total time points). For each of the two biological replicate experi-
ments, QC samples were designed by pooling equal amounts of the 
time points for internal technical replicates. We targeted two pep-
tides per protein of interest to maximize MS duty cycle and sensitiv-
ity, based on measurements from method development and the 
pooled QC samples. For each biological replicate, the time series 
samples were analyzed in a random order and were interspersed 
with five analyses of the QC pools.

Using the SIL peptides as internal references, we selected interfer-
ence-free product ions for quantitation of each of the peptides (Sup-
plemental Table 1) and normalized the expression of native proteins 
to the SIL peptide standards (Materials and Methods). In total, we 
quantified ∼80 peptides corresponding to 48 proteins across each of 
the experiments. A greater number of peptides were identified and 
quantified in the time-series samples than in asynchronous cells, likely 
due to high, but transient expression of target proteins at specific 
points in the cell cycle (Supplemental File 1). We further filtered the 
data to include only peptides that were reproducibly quantified 
across QC pools and/or between the two biological replicate experi-
ments. In addition, we analyzed expression-level noise between pep-
tides using the QC pools and individual samples over the two biologi-
cal replicates (Supplemental Table 2). On the basis of these multiple 
factors, we assigned the highest confidence to the quantitation of 44 
peptides belonging to 31 unique proteins (excluding the four nuclear 
and cytoplasmic controls, which were detected with high confidence 
but were not dynamically expressed during the cell cycle).

To compare transcriptome and proteome dynamics, we aligned 
the time-series data to a common cell-cycle timeline using the 
CLOCCS algorithm (Orlando et al., 2007; Supplemental File 1), and 
the relative expression of mRNA and protein was visualized across 
the 31 cell-cycle genes. Qualitatively, many proteins appear to 
follow their respective RNA dynamics with some delay (Figure 1), 
indicating that the dynamic transcriptome is generally a good proxy 
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for protein dynamics. Our results support previous immunoblotting 
experiments for 14 individual cell-cycle proteins (Supplemental 
Table 1) and demonstrate cell-cycle dynamics for 17 proteins for the 
first time.

Prior to cell-cycle Start, early G1 genes are controlled by the con-
stitutively expressed coactivator Mcm1 and the cycling corepressors 
Yhp1 and Yox1 (Pramila et al., 2002; Supplemental Figure 1A). At 
cell-cycle Start, ∼ 200 periodic genes are activated by the heterodi-
meric TFs SBF (Swi4/Swi6) and MBF (Mbp1/Swi6) (Iyer et al., 2001; 
Eser et al., 2011; Supplemental Figure 1B) after removal of the early 
G1 corepressors Whi5 and Stb1 (non-high-confidence proteins; 
Supplemental Table 2). S-phase genes are then activated by Hcm1 
and regulated by the paralogous TFs Plm2 and Tos4 (Horak et al., 
2002; Pramila et al., 2006; Supplemental Figure 1C). G2/M genes 
are controlled by the Swi Five Factor (SFF) complex of TFs: Mcm1, 
Fkh1, Fkh2, and the cycling co-activator Ndd1 (Reynolds et al., 
2003; Supplemental Figure 1D). M/G1 genes are activated by the 
periodic paralogues Ace2 and Swi5 (Di Talia et al., 2009; Supple-
mental Figure 1E). Intriguingly, several of these core cell-cycle TFs 
did not appear to cycle strongly in abundance at the protein level in 
comparison with the dynamic behavior of the corresponding RNA 
expression. An additional subset of cell-cycle regulators were not 
periodically expressed by visual inspection (Supplemental Figure 2, 
A–F), totaling over 10 proteins that did not appear to match cycling 
transcript dynamics (Figure 1). A majority of cell-cycle regulators 
(20/31, 64.5%) did appear to cycle at the protein level (Figure 1; 
Supplemental Figure 3).

Specifically, the core cell-cycle TFs Swi4, Mbp1, Swi6, Fkh1, and 
Fkh2 did not appear strongly periodic at the protein level (Supple-
mental Figure 1, B and D). Fkh1-2 function in the SFF complex, 
whose coactivator Ndd1 is periodic at the protein level. Thus, the 
periodic activity of the SFF complex is gated by Ndd1 expression 
(Reynolds et al., 2003). On the other hand, all subunits of the SBF 
and MBF TF activator complexes did not appear to be strongly 
periodically expressed at the protein level despite periodic mRNA 
expression (Orlando et al., 2008; Kelliher et al., 2016). MBF is inacti-
vated during the S-phase by its corepressor Nrm1 (de Bruin et al., 
2006). The SWI4 transcript is repressed by the paralogous TFs Yhp1 
and Yox1 (Pramila et al., 2002), and the SBF complex is inactivated 
and removed from target gene promoters later by B-type cyclin/CDK 
phosphorylation (Amon et al., 1993). Two key negative regulators of 
SBF and MBF, Clb2 and Yhp1, were not detected with high confi-
dence in the wild-type PRM assay. Time series immunoblotting ex-
periments in triplicate suggest that the proteins are periodic and 
match the dynamics of their cognate mRNAs (Figure 2, D and E; 
Supplemental Figure 4, D and E). Additionally, we validated the pro-
tein expression dynamics of Swi4, Nrm1, and Yox1 TFs by immu-
noblotting (Figure 2, A–C; Supplemental Figure 4, A–C). While 
Nrm1 and Yox1 appeared to match the dynamics of their respective 
mRNAs, Swi4 did not appear strongly periodic. Taking these to-
gether, it appeared that repressor protein dynamics more closely 
matched mRNA dynamics than activator TFs at G1/S phase.

We next sought a method for measuring similarity of mRNA and 
protein expression curves to quantify the extent to which the 

FIGURE 1: Proteome dynamics of cell-cycle regulators follow the transcriptome with delay during the cell cycle in 
S. cerevisiae. Wild-type budding yeast cells were grown in 2% YEPD rich media, synchronized by alpha-factor mating 
pheromone, released into YEPD, and monitored over ∼2 cell cycles. Samples were collected every 5 min for RNA 
sequencing (Kelliher et al., 2016) (A) or every 7 min for total protein extraction (B, C). Population synchrony was 
monitored by counting at least 200 cells per time point for the presence or absence of a bud (bottom). A total of 31 
high-confidence proteins (44 total peptides) are shown, with multiple high-confidence peptides per protein for Cdc28, 
Swi4, Cln2, Tos4, Hcm1, Plm2, Nrm1, Ndd1, Fhl1, Swi5, Ace2, and Sic1. Genes and proteins were ordered on the y-axis 
by peak time of mRNA expression (A). Transcript and protein levels are depicted as z-score changes relative to 
expression mean in the respective data sets, where values represent the number of standard deviations away from the 
mean. Each column represents a lifeline point on a common cell-cycle timeline determined by the CLOCCS algorithm 
(Supplemental File 1). Individual line plots from Figure 1 are shown for core cell-cycle TFs (Supplemental Figure 1), 
non-strongly-cycling regulators (Supplemental Figure 2), and periodic regulators (Supplemental Figure 3). Eleven 
regulators (Gat1, Cdc28, Swi4, Fhl1, Fkh1, Fkh2, Msn2, Swi6, Mbp1, Ixr1, and Mcm1) were somewhat constitutively 
expressed, and 20 regulators (Phd1, Pcl2, Msn4, Yox1, Clb5, Pcl1, Cln2, Tos4, Hcm1, Plm2, Nrm1, Cin8, Pds1, Ndd1, 
Swi5, Ace2, Sfg1, Cdc20, Ash1, and Sic1) appeared to be cycling.
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dynamics of a transcript matches the dynamics of its protein and to 
estimate the temporal delay between mRNA and protein (i.e., the 
degree and nature of posttranscriptional regulation on cell-cycle 
proteins). Inspired by the algorithm JTK_CYCLE, which was de-
signed to identify rhythmic dynamics in time series experiments 
(Hughes et al., 2010), we adapted the Kendall tau distance function 
on ranked lists to the problem of measuring curve-shape similarity 
(Materials and Methods). The Temporal Alignment Kendall-Tau 
(TAKT) algorithm produces measures of curve-shape similarity and a 
significance score to assess the degree of dynamic similarity be-
tween mRNA–protein pairs over cell-cycle time. Using the TAKT 
method, we found that 81 out of 94 (86.2%) total peptides or 
immunoblot measurements (44 high-confidence peptides in two 
biological replicates, two proteins quantified by Western blot in 
three biological replicates) were well correlated with mRNA expres-
sion (Supplemental Table 3; empirical p value < 0.05). Thus, a major-
ity of protein time series curves had a better TAKT similarity score to 
their cognate mRNA curves than was achieved by at least 95% of 
randomized mRNA expression profiles (Materials and Methods).

In some cases, only a subset of the peptides and/or biological 
replicates associated with a given protein exhibited strong dynamic 

similarity to the corresponding mRNA dynamics. Eleven discordant 
RNA–protein pairs were identified by eye (Figure 1: Cdc28, Fhl1, 
Fkh1, Fkh2, Gat1, Ixr1, Mbp1, Mcm1, Msn2, Swi4, and Swi6), and all 
had at least one peptide and/or biological replicate with a TAKT score 
of p > 0.01, indicating that these proteins may be regulated posttran-
scriptionally (Supplemental Figures 1 and 2). That said, only Cdc28 
(both peptides) and Msn2 (one peptide) were significantly dynami-
cally different from mRNA expression in all measured peptides across 
biological replicates (Supplemental Table 3). Seven proteins (Fkh1, 
Fkh2, Gat1, Ixr1, Mbp1, Mcm1, and Swi6) were quantified with one 
peptide, and only one biological replicate of that peptide suggested 
discordant RNA–peptide expression. Two proteins (Fhl1, Swi4) had 
2–3 high-confidence peptides and only one representative peptide 
with a discordant TAKT score (FHL1_1 in replicate 1; SWI4_3 in repli-
cate 2; Supplemental Figure 5). Thus, these 11 cell-cycle proteins dis-
play some variability in the degree of correlation between periodic 
mRNA expression and protein abundance (Orlando et al., 2008; 
Kelliher et al., 2016) and are not clearly cycling at the protein level 
(Supplemental Figures 1 and 2; Supplemental Table 3).

A majority of cell-cycle proteins did appear to be strongly influ-
enced by periodic mRNA expression, with varying amounts of 

FIGURE 2: Method validation and supplementation of targeted mass spectrometry in comparison with time series 
immunoblots. Line plots for mRNA expression (black, dashed), representative Western blot protein expression (orange, 
solid), and representative PRM peptide expression (blue, solid) were aligned on a common cell-cycle timeline using 
CLOCCS and plotted. Wild-type cells expressing Nrm1-HA3 (A), Swi4-13MYC (B), Yox1-13MYC (C), Clb2-HA (D), or 
Yhp1-13MYC (E) were grown in 2% YEPD media, synchronized by alpha-factor mating pheromone, released into YEPD, 
and monitored over ∼2 cell cycles. Samples were collected every 7 min for total protein extraction. Protein immunoblots 
were normalized to Cdc28/Pho85 (PSTAIR; constitutive levels over the cell cycle) with ImageJ. One representative 
Western blot is shown for each triplicate set of experiments (orange lines). To assess reproducibility between PRM and 
immunoblotting, Western blot data were compared with targeted mass spectrometry peptide data (blue lines) for 
NRM1_1 from PRM replicate 2, A; SWI4_1 from PRM replicate 1, B; and YOX1_1 from PRM replicate 1, C. Transcript 
expression, peptide light/heavy ratios, and Western blot data were scaled to maximum expression for each gene or 
protein ([0, 100] linear scale).
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temporal shift (Figure 3). Thus, we mined the literature for previously 
reported and predicted protein degradation mechanisms of cell-
cycle regulators of interest (Supplemental Table 4), and we quanti-
fied the delay between mRNA and protein expression using the 
TAKT algorithm (Supplemental Table 5; Materials and Methods). 
This analysis revealed that there was not one consistent lag time 

FIGURE 3: Cell-cycle proteins targeted for destruction by E3 ubiquitin ligases have unique 
expression features in wild-type cells. RNA expression and peptide light/heavy ratios were 
scaled to the maximum value for each gene or protein ([0, 100] linear scale). Line plots for mRNA 
expression (black, dashed) and biological replicates of wild-type peptide expression (replicate 1 
in green, replicate 2 in blue) are shown for canonical SCF targets: CLN2_1 (A), HCM1_1 (B), 
SIC1_1 (C), and SWI5_3 (D) or APC/C targets: CDC20_1 (E), CLB5_1 (F), PDS1_2 (G), and 
NDD1_1 (H). When multiple peptides per protein were detected (Figure 1), the peptide with 
lowest noise levels was selected (Supplemental Table 2).

between mRNA and protein synthesis, sup-
porting the conclusion that specific periodic 
proteins may be subject to posttranscrip-
tional and/or posttranslational regulation. 
We observed that proteins targeted for de-
struction at specific times during the cell 
cycle, such as Clb5 and Pds1, had long de-
lay times from mRNA to protein, yet exhib-
ited curve shape dynamics very similar to 
that of their cognate mRNA in cycling wild-
type cells (Figure 3, F and G; Supplemental 
Table 3).

To further investigate the effect of tar-
geted protein destruction on protein ex-
pression dynamics, we visualized SCF tar-
gets (Cln2, Hcm1, Sic1, and Swi5; 
Figure 3, A–D), APC/C targets (Cdc20, Clb5, 
and Pds1; Figure 3, E–G), and targets of 
both (Ndd1; Figure 3H) over the cell cycle 
(Supplemental Table 4). SCF-targeted pro-
teins are turned over at various times 
throughout the cell cycle, and this process is 
regulated by target phosphorylation 
(Figure 3, A–D). APC/C targets were turned 
over at a precise time during the G2/M 
phase, and this destruction timing lined up 
with peak expression of the APC/C cofactor, 
Cdc20 (Figure 3E). Interestingly, the accu-
mulation of some APC/C target proteins 
also appeared to be regulated, with a sub-
stantial delay between increases in mRNA 
expression and subsequent protein expres-
sion (Figure 3, G and H). This result is sup-
ported by previous work on the role of APC/
C-Cdh1 in inhibiting the accumulation of 
select G1/S cell-cycle proteins, thus enforc-
ing the timing of S-phase entry (Huang 
et al., 2001; Yeong et al., 2001; Yuan et al., 
2014). SCF targets had a shorter average 
mRNA-to-protein delay time of ∼8.1 ± 
4.8 min (assuming a 70-min cell cycle, 11.6 ± 
6.9 cell-cycle timeline points) compared 
with ∼13.1 ± 11.3 min (18.7 ± 16.1 cell-cycle 
points) for APC/C targets (Supplemental 
Table 5).

In the absence of periodic cyclin/CDK 
and ubiquitin ligase activities, some 
cell-cycle proteins continue to be 
dynamically expressed
To query the importance of periodic SCF 
and APC/C activity in regulating cell-cycle 
protein expression, we profiled clb1-6 
cells where these E3 ubiquitin ligase com-
plexes should not have periodic activity, 
but many cell-cycle genes continue to be 

periodically transcribed (Haase and Reed, 1999; Orlando et al., 
2008). Upon synchronization and induction, cells lacking B-type 
cyclins become physically arrested at the G1/S phase border and 
cannot initiate DNA replication (Haase and Reed, 1999). Cell-cy-
cle proteins that are phosphorylated by B-cyclin/CDKs and tar-
geted for degradation by SCF should therefore be stabilized. 
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APC/C-Cdh1 should be active only at the beginning of the time 
series (as observed in wild-type cells) and subsequently inacti-
vated by Cln/CDKs and other kinases (Zachariae et al., 1998; Hall 
et al., 2004). Later in time, APC/C-Cdc20 should not become ac-
tivated because functional Cdc20 requires B-cyclin/CDK phos-
phorylation (Rudner and Murray, 2000; Rahal and Amon, 2008). 
Therefore, clb1-6 mutant protein expression dynamics should be 

FIGURE 4: E3 ubiquitin ligase targets display altered dynamics and RNA-to-protein delay times 
in clb1-6 mutant cells. RNA expression and peptide light/heavy ratios were scaled to the 
maximum value for each gene or protein ([0, 100] linear scale). Line plots for mRNA expression 
(black, dashed) and biological replicates of clb1-6 mutant peptide expression (replicate 1 in red, 
replicate 2 in purple) are shown for canonical SCF targets: HCM1_2 (A), SIC1_1 (B) or APC/C 
targets: PDS1_2 (C), and NDD1_1 (D). When multiple peptides per protein were detected, the 
peptide with lower noise levels was selected (Supplemental Table 2). In the cell-cycle timeline for 
clb1-6 cells, S and G2/M phases are shown as gray boxes to indicate that B-cyclin mutant cells 
are physically arrested at the G1/S border. RNA-to-peptide delay times were calculated using 
the TAKT algorithm and shown in cell-cycle timeline points (wild-type replicates: green and blue 
bars; clb1-6 replicates: red and purple bars) (E). RNA–protein pairs are grouped based on 
putative targeted degradation mechanism (Supplemental Table 4). The average time delay for 
peptides shown in clb1-6 mutant cells was 33.7 ± 22.0 cell-cycle points, compared with 16.5 ± 
11.3 cell-cycle points in wild-type cells (E).

largely dependent on mRNA dynamics 
and protein half-life.

GAL-CLB1 clb1-6 cells were cultured in 
YEPG media, arrested in G1 phase using 
alpha-factor mating pheromone, supple-
mented with dextrose to inhibit CLB1 ex-
pression, and then released into YEPD 
media at 30°C. Cells were collected over 
time to monitor the rebudding index, iso-
late mRNA, or extract protein (Materials 
and Methods). Replicate time series ex-
periments were aligned to a common cell-
cycle timeline using the CLOCCS algo-
rithm (Orlando et al., 2007; Supplemental 
File 1).

Cell-cycle regulatory proteins were less 
correlated with their respective mRNA pre-
cursors in clb1-6 mutant cells by TAKT 
score than wild type, with only 13 positively 
correlated RNA–peptide pairs in both bio-
logical replicates, representing 11 unique 
proteins (Supplemental Table 3 and Sup-
plemental Figure 6). This included a subset 
of core cell-cycle TFs (Swi4, Swi6, Nrm1, 
Ndd1, Ace2, and Swi5), which were posi-
tively correlated with mRNA expression in 
mutant cells (Supplemental Figure 6, B, D, 
and E). Poorer RNA–protein correlation 
scores in mutant compared with wild-type 
cells were likely not due to noise in protein 
expression data, as the magnitude of noise 
values was similar between experiments 
(Supplemental Table 2).

We hypothesized that lack of periodic 
protein destruction could explain the de-
creased correlation for some RNA–protein 
pairs in mutant cells as compared with 
wild type. In support of this hypothesis, 
both APC/C and SCF targets had variable 
degradation kinetics in mutant cells as 
compared with wild type (Figure 4, A–D). 
We posited that SCF targets requiring 
Clb/CDK phosphorylation would be stabi-
lized and that SCF targets requiring Cln/
CDK phosphorylation would be highly un-
stable in mutant cells. Consistent with this 
expectation, Sic1 exhibited only one early 
peak of protein expression in clb1-6 cells, 
which suggested persistent Cln/CDK 
phosphorylation and SCF degradation 
later in the time series (Figure 4B). On the 
other hand, Hcm1 was not turned over to 
low levels in clb1-6 cells (Figure 4A), which 
is consistent with the stabilization of Hcm1 
mutants lacking B-type cyclin/CDK phos-

phorylation sites (Landry et al., 2014). Finally, canonical APC/C 
target proteins accumulated after APC/C-Cdh1 removal and 
were not destroyed later, which is likely because APC/C-Cdc20 is 
inactive in clb1-6 mutants (Figure 4, C and D). The absolute pro-
tein expression levels of these APC/C targets were also increased 
in clb1-6 compared with wild type, where Ndd1 and Pds1 pep-
tide abundance increased more than fourfold (0.0374/0.00682 
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and 0.0306/0.00653, respectively, for 
Ndd1 and Pds1; average light/heavy ra-
tios from Supplemental Tables 6 and 7). 
Delays between mRNA and protein ex-
pression were generally greater in mutant 
cells than in wild type (Figure 4E; Supple-
mental Table 5).

Repressor TFs are more periodically 
expressed at the protein level than 
G1/S activator TFs in both 
wild-type and mutant cells
After commitment to the cell cycle, ∼200 
genes are periodically activated at G1/S 
phase by the TF complexes SBF and MBF in 
S. cerevisiae (Iyer et al., 2001; Eser et al., 
2011). These TFs are functionally analogous 
to the E2F family of TFs in mammalian cells 
(reviewed in Bertoli et al., 2013). The sub-
units of SBF and MBF (Swi4, Swi6, and 
Mbp1) are periodically transcribed during 
the cell cycle (Spellman et al., 1998). The 
program of G1/S genes is periodically acti-
vated in both wild-type and clb1-6 mutant 
cells, suggesting that the activity of SBF and 
MBF is periodic under both conditions 
(Orlando et al., 2008).

We compared the mRNA and protein 
expression dynamics of G1/S activator 
(Swi4) and repressor (Yox1, Yhp1, Nrm1) 
TFs in wild-type and clb1-6 mutant cells 
(Figure 5). As observed previously for wild-
type cells (Figures 1 and 2), repressor TFs 
were more completely degraded and dy-
namically expressed at the protein level in 
clb1-6 mutant cells (Figure 5, F–H). These 
results are consistent with previous find-
ings that non-CDK-phosphorylatable al-
leles of Yhp1 and Yox1 continue to cycle 
with higher protein expression levels 
(Landry et al., 2014). Because SBF and 
MBF subunits do not appear to be periodi-
cally expressed at the protein level, we 
posit that the abundance of inhibiting co-
factors plays an important role in regulat-
ing the TF activity of SBF and MBF. The 
SWI4, SWI6, and MBP1 subunits are clearly 
periodic at the mRNA level (Figure 1; Sup-
plemental Figure 1B; Figure 5A; Orlando 
et al., 2008; Kelliher et al., 2016), so it is 
possible that nascent pools of unmodified 
SBF and MBF proteins are required each 
cell cycle from periodic mRNA synthesis, 
while the total protein abundance of SBF 
and MBF remains constitutive over the cell 
cycle. Alternatively, the nuclear localization 
of Swi4, Swi6, and/or Mbp1 could be al-
tered without changing the total protein 
abundance, which has been demonstrated 
for Swi6 nuclear export following Clb6/
CDK phosphorylation (Geymonat et al., 
2004).

FIGURE 5: Gene expression dynamics of G1/S TFs in wild-type and clb1-6 mutant cells reveal 
that repressor proteins are more dynamically expressed than activators. RNA and protein 
expression data sets were aligned on a common cell-cycle timeline using CLOCCS. Line plots for 
mRNA expression (dashed) and representative peptide expression (solid lines; wild type in blue 
and clb1-6 mutant in purple) are shown. mRNA expression values (fpkm units) on the y-axes 
were normalized together for the two data sets (A–D). Peptide expression values (light/heavy 
ratios) on the y-axes are comparable between the time series data sets because a constant 
amount of SIL peptides was used in all experiments (E–H). Representative peptides from PRM 
experiments are SWI4_1 from wild-type replicate 1 and clb1-6 replicate 2, E; YOX1_1 from 
wild-type replicate 2 and clb1-6 replicate 2, F; YHP1_5 from clb1-6 replicate 2, G; and NRM1_1 
from wild-type replicate 2 and clb1-6 replicate 2, H. Yhp1-13MYC protein expression levels in 
wild-type cells were taken from Figure 2 (G, orange line). The immunoblotting data were scaled 
relative to the maximum value for the experiment ([0, 100] linear scale) followed by scaling to 
the maximum value to match the PRM data from clb1-6 cells ([0, 0.02] linear scale, arbitrary 
units; G).
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Sevim et al., 2010; Simmons Kovacs et al., 
2012; Hillenbrand et al., 2016; Cho et al., 
2017a). The proposal that cascading tran-
scriptional activation occurs through a TF 
network relies on the assumption that 
mRNA expression is a reliable proxy for cell-
cycle protein activity. Although not all peri-
odic mRNAs of network regulators pro-
duced periodic proteins (Figure 1), at least 
one component of each TF complex (e.g., 
SFF) or TF family (e.g., Swi5/Ace2) exhibits 
periodic dynamics (Figure 6), which still sup-
ports the TF network models. The interest-
ing exceptions appear to be the G1/S acti-
vator complexes SBF and MBF. However, 
the negative regulators of these complexes 
(Nrm1, Yhp1, Yox1, and Clb2) all exhibit 
protein dynamics that are a strong match to 
their periodic mRNAs (Figures 1 and 2; Sup-
plemental Figure 1; Supplemental Table 3; 
Orlando et al., 2008; Kelliher et al., 2016). 
Consistent with the most current cell-cycle 
models (Cho et al., 2017b), negative feed-
back can generate a pulse of transcriptional 
activation in the absence of a strong drop in 
abundance of SBF/MBF components.

We also profiled RNA and protein ex-
pression from clb1-6 mutant cells and dem-
onstrated that a set of cell-cycle regulators 
continued to correlate with mRNA expres-
sion independent of B-type cyclin/CDK ac-
tivity (Supplemental Table 3; Supplemental 
Figure 6), allowing some periodic transcrip-
tion to persist in clb1-6 cells (Haase and 
Reed, 1999; Orlando et al., 2008; Cho et al., 
2017a). Other cell-cycle regulator proteins 
depended on periodic posttranscriptional 
regulatory mechanisms and were not ex-
pressed in a way consistent with their mRNA 
expression pattern in mutant cells (Supple-
mental Table 3; Figure 4E), highlighting a 
role for ubiquitin ligases and other posttran-
scriptional mechanisms in the control of cell 
cycle network components. Future quantita-
tive cell-cycle modeling work could improve 
both wild-type and clb1-6 mutant gene 
regulatory networks by fitting both RNA and 
protein expression levels from this study. 
Taken together, our results show that redun-
dant layers of regulation control the expres-
sion of cell-cycle proteins during the yeast 
cell cycle.

Here, we demonstrated that there is not 
a single delay time for RNA-to-protein synthesis for the cell-cycle 
regulators of interest. Along with previous work (Ball et al., 2013), 
this finding has implications for quantitative models where bio-
chemical rate parameters are assumed to be equal across network 
components. We estimate that the transcription–translation delay 
time for the average dynamic yeast protein is ∼14 min with a 13-min 
SD (Supplemental Table 5). Variance in delay times could indicate 
mechanisms that differentially control translation or protein stability. 
Proteins targeted for degradation by the SCF complex had short 

FIGURE 6: An integrated cell-cycle network includes windows of targeted E3 ubiquitin ligase 
activity. Cell-cycle ordering is maintained by cyclin/CDK activity, an interconnected network of 
transcription factors, and E3 ubiquitin ligase activity. Approximate windows of peak degradation 
machinery are shown based on wild-type data (Figure 3). Periodic TFs (activators in green, 
repressors in red) are placed on the cell-cycle timeline approximately by peak mRNA expression. 
In blue, G1 (Cln) and B-type (Clb) cyclin/CDKs, APC/C, Cdc14, and Sic1 regulate each other and 
TFs in the network. Edges from TFs represent evidence for transcriptional regulation: ChIP-chip 
data for TF binding and/or genetic evidence for regulation type (compiled in Orlando et al., 2008; 
McGoff et al., 2016; Cho et al., 2017a). Edges between regulatory proteins and TFs represent 
protein-level modifications (e.g., phosphorylation or ubiquitination). Pointed arrows indicate 
activation, and blunted arrows mark repression or protein degradation. Proteins outlined in black 
were detected with high confidence in our study (Supplemental Table 2), and gray indicates 
low-confidence peptides. Dashed outlines mark periodic cell-cycle regulators, and solid boxes 
represent more stable TF expression. Paralogues from the whole genome duplication include 
Yhp1 and Yox1, Plm2 and Tos4, Fkh1 and Fkh2, and Ace2 and Swi5. Complexes of TFs include 
SBF (Swi4 and Swi6), MBF (Mbp1 and Swi6), and SFF (Mcm1, Fkh1-2, and Ndd1).

DISCUSSION
During the cell cycle, an interconnected network of transcription fac-
tors, cyclin/CDK complexes, and E3 ubiquitin ligase machinery reg-
ulates the order of events and periodic gene expression (Figure 6). 
Here, we have provided further evidence for the importance of 
post-transcriptional modifications of cell-cycle regulatory proteins 
(Supplemental Table 4). Many quantitative models have been devel-
oped to explain how a network of TFs regulates periodic gene ex-
pression during the S. cerevisiae cell cycle (Orlando et al., 2008; 
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durations of protein expression in comparison with mRNA (Supple-
mental Table 5), while the protein accumulation of canonical APC/C 
targets was gated by both Cdh1 and Cdc20 activity (Figure 3, F–H). 
Some cell-cycle regulators are turned over by multiple mechanisms 
(Supplemental Table 4), which further indicates redundancy in cell-
cycle control. We posit that redundant destruction mechanisms buf-
fer the cell-cycle regulatory network against ectopic expression of 
TFs or other cell-cycle proteins in the incorrect phase. This redun-
dancy model could be tested by synchronizing yeast cells, constitu-
tively expressing a cell-cycle TF(s), and querying the degree to 
which downstream target gene expression is altered.

Curiously, we observed that some proteins did not damp in ex-
pression level as much as the respective RNA in the second cell cy-
cle (e.g. Figure 3, A and F). After synchronization, populations of 
budding yeast cells are expected to damp in gene expression levels 
over time due to asymmetric cell division between mother and 
daughter cells (Guo et al., 2013). This protein expression “anti-
damping” phenomenon is likely not due to data normalization, as 
immunoblotting results (where proteins of interest were normalized 
to a constitutive band) also showed evidence for lack of protein ex-
pression damping (Figure 2; Supplemental Figure 4). This anti-
damping phenomenon could be explained by previous findings 
that translation may be more efficient in the second cell cycle after 
release from alpha-factor synchronization (Serikawa et al., 2003; Go-
ranov et al., 2009).

Currently, DNA or RNA genomic technologies are used more 
frequently than mass spectrometry technologies to assay gene ex-
pression. Therefore, we do not have a complete understanding of 
the noise models and/or all sources of variance in proteomic data 
sets. We took advantage of both time series sampling and biologi-
cal replicate experiments to quantify noise in our PRM data sets 
(Supplemental Table 2). We dealt with the technical noise in the 
mass spectrometry data by targeting multiple peptides per protein 
and by quantifying multiple transitions per peptide (Supplemental 
Table 1). Future experiments will further our understanding of 
thresholds, sources of bias, and limits of detection in targeted mass 
spectrometry.

The current model of the budding yeast cell-cycle network is that 
unstable TF proteins sequentially activate a large program of gene 
expression each cell cycle. Future work could further interrogate E3 
ubiquitin ligase mutants (SCF, APC/C, proteasome inhibitor treat-
ment, etc.) to query the effects of stabilizing cell-cycle proteins and 
the resulting gene expression dynamics. The abundance of cell-cy-
cle regulators is only part of the complete mechanism—localization, 
TF complex formation, and affinity for DNA binding sites require 
further exploration to fully characterize the dynamics and biological 
parameters of the yeast cell-cycle network.

MATERIALS AND METHODS
Yeast strains, cultures, and synchronization
Saccharomyces cerevisiae strains are derivatives of BF264-15D 
MATa bar1. Strains were constructed using standard yeast methods 
(Supplemental File 1). Yeast cultures were grown in standard YEP 
media (1% yeast extract, 2% peptone, 0.012% adenine, 0.006% ura-
cil, and 2% dextrose or galactose).

For alpha-factor synchronization experiments, yeast cells were 
cultured for 2 d, grown overnight at 30°C to mid–log phase, and on 
the morning of day 3, arrested using 30 ng/ml alpha-factor for ap-
proximately one cell-cycle duration (wild-type cells: 110–115 min; 
clb1-6 mutant cells: 150–160 min). Wild-type cultures were main-
tained in YEPD media throughout arrest–release. Mutant PGAL1-CLB1 
clb1-6Δ cells were cultured prior to the experiments and during 

alpha-factor arrest in YEPG media. With 40–45 min remaining in al-
pha-factor arrest, clb1-6 cells were treated with 20% dextrose to a 
final concentration of 2% to inhibit Clb1 expression. Synchronized 
wild-type and clb1-6 cultures were washed and resuspended in 
fresh, prewarmed YEPD media at 30°C at a concentration of ∼1 × 
107 cells/ml. Aliquots were taken at each time point and assayed for 
budding index counts, protein extraction, or RNA extraction.

RNA isolation and RNA-sequencing analyses
Wild-type RNA-sequencing time series data collection and analysis 
were described previously (Kelliher et al., 2016). Raw RNA-sequenc-
ing data from wild-type cells can be found at the NCBI Gene Expres-
sion Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/) under accession 
number GSE80474. Wild-type data were renormalized to mutant 
clb1-6 data from this study.

For clb1-6 cells, total RNA was isolated by acid phenol extraction 
as described previously (Leman et al., 2014). Samples were sent to 
the Duke University Sequencing Facility for stranded library prepa-
ration. mRNA was amplified and barcoded using KAPA stranded 
mRNA-Seq library preparation kits, and reads were sequenced in 
accordance with standard Illumina HiSeq protocols. Libraries of 50 
base-pair single-end reads were prepared, and 12 samples were 
multiplexed for sequencing together in each lane. The RNA-se-
quencing data analysis pipeline has been described in detail previ-
ously (Kelliher et al., 2016). RNA-Seq mapping statistics for this 
study are presented (Supplemental File 1). Normalized RNA-Seq 
output (fpkm units) was used in the analyses presented. Raw RNA-
Seq data for clb1-6 cells have been submitted to the NCBI GEO 
database under accession number GSE104904.

Protein isolation and Western blotting
Cell samples were collected on filters (Millipore) at each time point 
and flash frozen in liquid nitrogen. For each set of time series sam-
ples, protein extraction was performed in a cold room at 4°C to in-
hibit yeast proteases and other enzymes. Cell filters were thawed on 
ice and then washed in 200 µl of cold 1X phosphate-buffered saline 
with 0.01% sodium azide (NaN3, which further inhibited yeast cel-
lular processes). Cells were pelleted, resuspended in 1 ml of cold 
10% trichloroacetic acid (TCA), and incubated on ice for 5 min. Cells 
were then resuspended in 100 µl of cold 10% TCA, and acid-washed 
glass beads (Sigma-Aldrich) were added to each tube. Samples 
were vortexed for 10 min at 4°C. Cell lysates were then transferred 
to a fresh tube using a gel-loading pipette tip. Glass beads were 
washed two times with 100 µl of cold 10% TCA, and cell lysates 
were transferred to the respective tubes. Lysates were cleared by 
centrifugation at maximum speed for 10 min at 4°C. After the super-
natant was aspirated, protein pellets were washed gently with 1 ml 
of cold 100% acetone. Aspirated pellets were flash frozen in liquid 
nitrogen and stored at –80°C.

Protein pellets for Western blot experiments were resuspended 
in 100 µl of Thorner buffer (8 M urea, 5% SDS, 40 mM Tris-HCl, 
pH 6.8, 0.1 mM EDTA, 0.4 mg/ml Bromophenol Blue, 1% β-
mercaptoethanol) plus 3 µl of 2M Tris Base (unbuffered), boiled for 
5 min, and stored at –20°C. SDS–PAGE gel electrophoresis was per-
formed using the Laemmli method. Samples on the gel were trans-
ferred to an Immobilon-P polyvinylidene fluoride (PVDF) membrane 
(Millipore) for ∼2 h using a semidry transfer system. Primary antibody 
solutions were composed of 1X TBS, 0.1% Tween-20, 5% dry milk 
(wt/vol), 0.02% NaN3, and antibody. The primary antibodies for 
tagged protein detection in this study were c-Myc (mouse 9E10, 
Santa Cruz Biotechnology, used at 1:1000) and HA (mouse 
anti-HA.11, Covance, used at 1:1000). Cdc28 and Pho85 served as 

www.ncbi.nlm.nih.gov/geo/
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cell-cycle loading controls and were detected with mouse anti-PSTAIR 
(mouse, Abcam, used at 1:10,000 or 1:16,667). Secondary antibodies 
were horseradish peroxidase–conjugated (horse anti-mouse immu-
noglobulin G, Cell Signaling Technology, used at 1:3000). Blots were 
visualized with SuperSignal West Pico Chemiluminescent Substrate 
(Thermo Fisher Scientific). Immunoblot quantification and normaliza-
tion to the loading control were performed in ImageJ.

Protein sample preparation for mass spectrometry
Stable isotope-labeled (SIL) peptides (SpikeTide TQL) were ordered 
from JPT Peptide Technologies (Berlin, Germany) and were di-
gested with trypsin as previously described (Foster et al., 2014). 
Three peptides per protein of interest were selected based on avail-
able data, preferring 1) peptides utilized in a prior targeted study of 
yeast TFs (Mirzaei et al., 2013) and 2) peptides with optimal charac-
teristics for targeted proteomics that had been identified in 
discovery- based proteomics studies (www.peptideatlas.org/; Desi-
ere et al., 2006). In the absence of these data, we selected proteo-
typic peptides as previously designed and analyzed by Aebersold 
and coworkers (Picotti et al., 2013).

Yeast protein samples were isolated as described above. TCA 
pellets were resuspended in 100 µl of 0.25% (wt/vol) acid labile 
surfactant (ALS-1) in 50 mM ammonium bicarbonate, pH 8 (Am-
Bic), followed by probe sonication for 4 × 3 s and shaking at 50°C 
for 10 min. After centrifugation at 15,000 ×g for 20 min, protein 
concentrations of supernatants were measured by Bradford as-
say. Protein (20 µg/sample) was reduced and denatured by heat-
ing at 80°C for 10 min in buffer containing 0.2% ALS-1 and 
10 mM DTT. After cooling, samples were alkylated with 25 mM 
iodoacetamide for 30 min and digested overnight with 
1:50 (wt/wt) of sequencing grade modified trypsin (Promega) at 
37°C. Following digestion, 2% (vol/vol) acetonitrile and 1% 
(vol/vol) TFA were added and the digests were incubated at 60°C 
for 2 h. After centrifugation, SIL peptides (Supplemental Table 1) 
were added to a final concentration of 5 fmol of each peptide per 
µg of peptide digests. Finally, peptides were transferred to 
maximum recovery LC vials (Waters).

Quantitative LC-MS/MS
Targeted quantitation of yeast proteins was performed using paral-
lel reaction monitoring (PRM; Gallien et al., 2012, 2014). Briefly, 1 µg 
of peptide digests per sample was analyzed using a nanoACQUITY 
UPLC system (Waters) coupled to a QExactive Plus high-resolution 
accurate mass tandem mass spectrometer (Thermo) via a nanoelec-
trospray ionization source. Peptides were trapped on a Symmetry 
C18 180 µm × 20 mm trapping column (5 µl/min at 99.9/0.1 vol/vol 
H2O/MeCN) followed by analytical separation using a 1.7-µm AC-
QUITY HSS T3 C18 75 µm × 250 mm column (Waters) with a 90-min 
gradient of 5–40% MeCN with 0.1% formic acid at a flow rate of 400 
nl/min and column temperature 55°C. Data collection on the QEx-
active Plus MS was performed in targeted MS/MS mode at resolu-
tion 17,500 (m/z 200) with a target AGC value of 5 × 104 ions, an 
isolation width of 1.0 m/z, and an ion fill time of 240 ms. Targeted 
MS/MS was triggered by an inclusion list, with 2-min retention time 
windows for each precursor.

PRM data analysis
PRM data were analyzed using Skyline (MacLean et al., 2010). To 
generate a spectral library, 50 fmol of neat SpikeTides were analyzed 
by data-dependent LC-MS/MS using nanoACQUITY and QExactive 
Plus MS followed by database searching using Mascot v2.5. Raw 
MS/MS data were imported into Skyline using the following transition 

setting tabs: filter, y-ions, >precursor m/z to last ion; and Full-scan, 
targeted acquisition using an Orbitrap analyzer with 17,500 resolu-
tion @ 200 m/z. Default peptide settings were used except for the 
structural modification, carbamidomethyl-Cys, and the isotope 
modifications, label: 13C6

15N4-Arg and label: 13C6
15N2-Lys isotope. 

Curated Skyline files and raw data were uploaded to the Panorama 
Targeted Proteomics data repository (panoramaweb.org; Sharma 
et al., 2014) and can be accessed at https://panoramaweb 
.org/yeast_cell_cycle_prm.url. Data can also be accessed via Proteo-
meXchange (PXD010937). Normalized PRM data from this study are 
available in Supplemental Tables 6 and 7.

TAKT algorithm details
The Kendall tau (KT) distance (Kendall, 1938) may be thought of as 
endowing a group of rankings of a fixed list of length n with a metric 
structure: the distance between two rankings is taken to be the 
number of pairs of ranks that are in a different order in the two rank-
ings. Because there are n(n-1)/2 possible pairs in a list of length n, a 
normalized KT distance is obtained by simply dividing the number 
of pairs of ranks that are in a different order in the two rankings by 
the total possible number of these so-called discordances. The KT 
metric can extend to a dissimilarity measure between partial rank-
ings—generated by lists with repeated values—by also counting as 
discordances those instances in which the pair is ambiguously 
ranked in one ranking but fully ordered in the other ranking (Fagin 
et al., 2006).

We consider a gene expression profile to be a (partial) ranking of 
the time points at which measurements were made in a time-course 
experiment. In other words, we assign to the list of n time points a 
(partial) ranking according to the measured expression levels, as-
signing rank 1 to the time at which the minimum expression was 
attained, and the time of the maximum measurement the rank m≤n 
(allowing for the possibility of ambiguous rankings due to repeated 
expression levels). By using the KT distance to compare the (partial) 
rankings—determined by two different expression profiles, v = (v(t1), 
v(t2), …, v(tn)) and w = (w(t1), w(t2), …, w(tn))—of the list of times 
points at which measurements were made, we record the number of 
pairs of time points {ti, tj} for which there is a discordancy in the rank-
ings of these time points, i.e., the number of instances where v(ti) < 
v(tj) while w(ti) > w(tj) or v(ti) > v(tj) while w(ti) < w(tj), or those instance 
where v(ti) = v(tj) while w(ti) ≠ w(tj), or vice versa. In this way, the KT 
measure of dissimilarity captures disagreement in the “up” and 
“down”’ patterns of expression between pairs of time points.

The KT metric has been used elsewhere to study the dynamic 
properties of time-series gene expression data. In particular, the pe-
riodicity detection algorithm JTK_CYCLE uses the KT metric to mea-
sure the disagreement in the “up” and “down” patterns of expres-
sion between a measured gene expression time course and 
template profiles from known periodic functions (Hughes et al., 
2010).

Because the KT metric depends only on the ranking of time 
points by an expression profile, it is invariant to certain transforma-
tions of an expression profile; in other words, the distance between 
the curves v and w is the same as the distance between v and bw + c, 
where c is any constant and b is any positive constant. This property 
is crucial when trying to compare the dynamics between two funda-
mentally different quantities whose units are not comparable, such 
as the various protein and transcript abundance measurements re-
ported here. Furthermore, even profiles that are dynamically identi-
cal but are shifted in time (i.e., v(t) = w(t + c) for all t, for some c) may 
be considered dissimilar by the KT metric. For this reason, the TAKT 
algorithm minimizes the normalized KT dissimilarity measure across 

www.peptideatlas.org/
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shifts of the time points of one curve (through one cell-cycle period) 
while holding the other curve fixed, and reports both the original 
dissimilarity—which may be large due only to a temporal delay—
and the minimal dissimilarity across time shifts. The time shift that 
yields the minimal normalized KT measure of dissimilarity is then 
defined as the estimate of the time delay between mRNA and pro-
tein expression.

To determine the significance of the TAKT measure of dissimilar-
ity between a protein abundance profile and its corresponding 
mRNA profile, 10,000 random mRNA abundance profiles were gen-
erated for each mRNA curve by permuting its time points, and the 
TAKT dissimilarity was computed between each random curve and 
the fixed protein profile. The fraction of pairs whose dissimilarity is 
not larger than the dissimilarity between the true profiles is then re-
ported as an empirical p value.
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