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Summary  

Alterations in tumor stroma influence prostate cancer progression and metastatic 

potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are 

largely unknown. Here, we compare mesenchymal cells from four genetically 

engineered mouse models (GEMMs) of prostate cancer representing different stages of 

the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-

seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 

transcriptionally and functionally distinct stromal populations responsible for common 

and GEMM-specific transcriptional programs. We show that stromal responses are 

conserved in mouse models and human prostate cancers with the same genomic 

alterations. We noted striking similarities between the transcriptional profiles of the 

stroma of murine models of advanced disease and those of of human prostate cancer 

bone metastases. These profiles were then used to build a robust gene signature that 

can predict metastatic progression in prostate cancer patients with localized disease 

and is also associated with progression-free survival independent of Gleason score. 

Taken together, this offers new evidence that stromal microenvironment mediates 

prostate cancer progression, further identifying tissue-based biomarkers and potential 

therapeutic targets of aggressive and metastatic disease. 

 

Keywords: prostate cancer, tumor microenvironment, cancer-associated fibroblasts, 

genetically-engineered mouse models, single-cell RNA sequencing, complement 

protein, innate and adaptive immunity, Wnt signaling, neuroendocrine tumor stroma, 

bone metastasis, predictive and prognostic signatures. 
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Introduction  

Prostate cancer (PCa) ranges from indolent to aggressive, castration-resistant 

prostate cancer (CRPC), which is associated with a poor prognosis1, 2. Genetic 

alterations in epithelial cancer cells however, do not fully explain the different clinical 

behavior of this malignancy3, 4. Previous studies linked stromal gene expression to 

prostate carcinogenesis and progression5, 6, 7, and our group  described that stromal 

transcriptional programs vary in areas surrounding low vs. high Gleason score. Notably, 

benign stroma is transcriptionally distinct in tumor- vs. non-tumor-bearing specimens, 

while benign epithelium does not display significant variability8. Furthermore, a stromal 

gene signature enriched in bone remodeling and immune-related pathways, largely 

overlapping with one derived from human xenografts that eventually metastasized9, 

predicts metastases8, 9. Importantly, prior analyses shows that the stroma is composed 

of heterogenous and diverse cell populations whose roles in mediating the disease 

progression have yet to be dissected10. In addition, whether the stromal 

microenvironment differs in the presence of diverse epithelial molecular subtypes of 

PCa remains to be determined. Therefore, genetically engineered mouse models 

(GEMMs) driven by different mutations and representing the different stages of prostate 

carcinogenesis can disentangle the complex stromal remodeling in PCa and reveal 

stroma-epithelial interacrtions in the tumor microenvironment. 

The Tmprss2-ERG (T-ERG) knock-in murine model11 displays a mild epithelial 

phenotype and serves as a model of PCa initiation. The Nkx3.1creERT2;Ptenf/f (NP) 

mice12, 13, and the Tg(ARR2/Pbsn-MYC)7Key (Hi-MYC) GEMMs14 represent prostatic 

intraepithelial neoplasia (PIN) with subsequent invasion. Advanced, aggressive, 
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invasive adenocarcinoma and neuroendocrine prostate cancer (NEPC) is represented 

by the Pb-Cre4 +/-;Pten f/f; Rb1 f/f;LSL-MYCN +/+ (PRN) model15, 16.  

To dissect in detail the tumor microenvironment (TME), and specifically the 

mesenchymal cells associated with the distinct epithelial lesions present in these 

GEMMs, we generated a comprehensive single-cell transcriptomic (scRNA-seq) 

compendium of the mouse PCa mesenchyme, identifying novel stromal cell subtypes 

characterized by distinct underlying expression programs, driven by regulatory 

transcription factors determining specific signaling pathways. Distinct mesenchymal cell 

populations were common across all GEMMs and wild-type (WT) mice, while others 

showed unique phenotypes aligning with specific PCa-drivers. We further investigated 

communications within the mesenchymal cells and between stromal components and 

other supporting or inflitrating cell types. The discovered regulons and interaction 

networks uncovered novel roles of PCa stroma, influencing disease course via 

interactions with both tumor and immune cells. Importantly, there is conservation of 

cluster identity as well as spatial tissue architecture from murine models to prostate 

cancer in patients. Our results reveal for the first time defined mesenchymal cell 

populations that might have distinct roles in mediating PCa progression.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

Results  

Distinct stromal populations associated with different stages of prostate cancer  

The stroma of PCa GEMMs differed significantly from that of WT counterparts. In 

particular, stromal remodeling with an increase in extracellular matrix (ECM) rich 

intraglandular areas begins early in PCa carcinogenesis, with a progressive and 

significant expansion of the stromal compartment, as measured by image analysis, in 

models displaying PIN/microinvasion, which reaches the peak in the aggressive 

neuroendocrine cancer PRN model. (Figure S1A-B). This finding highlights active 

remodeling of the stroma during tumor progression, suggesting that mesenchymal cells 

may change in function and composition during tumorigenesis. 

To gain further insights into the composition and the function of the mesenchymal 

populations responsible for this stromal reaction, we collected scRNA-seq profiles of 

43,582 genes from 101,853 cells in 38 mice using pooled single cell suspensions of all 

lobes of the mouse prostate without a priori marker selection (Table S1). We  excluded 

cells of epithelial, lymphoid, endothelial, and neural origin with appropriate markers 

based on the expression of canonical marker gene sets (Table S2). Subsequently, we 

identified fibroblasts and myofibroblasts (see Methods) based on existing validated 

gene sets (Table S2), yielding a dataset of 8,574 mesenchymal cells. The number of 

cells and transcripts from all models are shown in supplementary information and Table 

S1. After correcting for batch effects and reducing dimension using a conditional 

variational autoencoder (VAE) (see Methods), we determined the different stromal cell 

types across all mouse models. To this end, we constructed a k-nearest neighbor graph 

in the VAE latent space using Euclidean metric, and clustered with the Leiden algorithm. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

This analysis revealed 12 stromal cell populations. Based on an analysis of cluster-

cluster covariance and overlapping marker genes, three of these clusters were merged, 

while an additional cluster was removed as it had <5% of cells in WT mice. This resulted 

in a final number of eight distinct clusters (referred to as c0-c7) (Figure 1A). The 

distribution of the 8 mesenchymal clusters among the various GEMMs is shown in 

Figure 1B-C. Some clusters were shared by GEMMs and WTs (c0- c2), while others 

were strongly enriched in particular mutant models (c3-c7) (Figure 1C-D).  

Using ligand-receptor (LR) interaction analysis, we compared both the number and 

strength of signaling interactions between the stroma, epithelium, and immune 

compartments in both WT and GEMMs where both were much higher (Figure 1E). 

Specifically, outgoing signaling from the stroma of GEMMs was mediated mainly by the 

COLLAGEN signaling pathway followed by other pathways that were not active in the 

WT including WNT, PERIOSTIN, and TGFß (Figure 1E). The stromal-epithelium 

interactions were dominated by THBS, MIF, and WNT signaling pathways, especially in 

GEMMs (Figure 1E).   

Since transcription factors can play a role in cell lineage determination, knowledge of 

driving Gene Regulatory Network (GRN) would improve cluster designations17, 18. To 

this end, we performed cis-regulatory network inference to identify potential regulators 

(regulons) driving either genotypes or clusters19. First, modules of highly correlated 

genes were identified, then pruned to include only those for which a motif of a shared 

regulator could explain the correlations. Subsequently, we scored the activity of each 

regulon in each cell and identified a set of regulons with different activity in the eight 
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mesenchymal clusters (Figure S2). We then identified differentially expressed genes 

(DEGs) in all clusters (Table S3) using MAST20.  

 

Common mesenchymal clusters across different mouse models 

Myofibroblasts and pericytes 

Contractile marker genes including Acta2, Myl9, Myh11 and Tagln, and “muscle and 

smooth muscle cells contraction” by Reactome, were found in the c0 cluster. These 

cells also highly expressed Mustn1, Angpt2, and Notch3, suggesting a level of 

transcriptional complexity greater than previously suggested21, 22, 23. 

Interestingly, two distinct subpopulations of c0, named subclusters c0.1 and c0.2, were 

found (Figure 2A). Mesenchymal cells from c0.1 expressed myofibroblast marker 

genes Rspo3, Nrg2, Hopx, and Actg2 (Figure 2B-C)22, 23, 24 while c0.2 overexpressed 

pericyte markers (Rgs5, Mef2c, Vtn, Cygb, and Pdgfrb). Thus, the c0 cluster is 

composed of both bona fide myofibroblasts and pericytes. Although both sub-clusters 

were represented in all genotypes, sub-cluster 0.1 (c0.1) was predominantly found in 

PRN and sub-cluster 0.2 (c0.2) was enriched in NP (Figure 2A). Regulon analysis 

confirmed the separation of these two sub-clusters (Figure 2D). 

Mesenchymal cells with spatially restricted innate immune response genes are 

conserved across genotypes 

The common cluster c1 was characterized by the expression of Sfrp1 and Gpx3 (Figure 

3A) and by major complement system components such as C3, C7, and Cfh. Validation 

of the identified c1 markers (Gpx3 and C3) by multiplex immunohistochemistry (mIHC) 

revealed their substantial enrichment in the stroma surrounding PIN and invasive tumor 
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(Figure 3B-C). In addition, c1 showed a unique set of genes overexpressed along with 

components of immunoregulatory and inflammatory processes (Ccl11, Cd55, Ptx3, and 

Thbd) as well as members of the interferon-inducible p200 family of genes (Ifi204, 

Ifi205, and Ifi207) (Figure 3A). Ligand-receptor interaction analysis showed several 

communication networks from both c0 and c1 to the epithelium mediated mainly by 

COLLAGEN, LAMININ, and FN1 signaling pathways together with TENASCIN pathway 

(c1) (Figure 3D). Similarly, signaling from c0 and c1 to immune cells in the TME was 

mediated mainly by the COLLAGEN, THBS, MHC-1, and CXCL pathways together with 

CCL and COMPLEMENT (c1) pathways (Figure 3E). Finally, several regulons, such as 

Cebpα and Gabpb1, were identified as well as those governing the inflammatory 

signaling systems such as Nfkb1, along with downstream genes involved in immune 

activation, which show putative binding sites for these TFs (Figures 3A and S2).  

Mesenchymal cells from c2 were found in all genotypes (Figure 1C-D). Components of 

the c-Jun N-terminal kinase (JNK) pathway were prominently expressed in this 

population. This was supported by high levels of Ap-1 components including Jun, JunB, 

JunD, Fos, FosD, FosB, and Fosl2, activating factors (Atf3) (Figure 3A). These were 

concomitant to increased expression of negative regulators of Erk1/2 such as Dusp1, 

Dusp6, and Klf4 (Figure 3A). GRN analysis revealed candidate TFs regulating MAPK 

superfamily such as Atf3, Arid5a and Stat3 (Figures 3A and S2). Mesenchymal cells in 

c2 also expressed both negative regulators of the Stat pathway and Stat-induced Stat 

inhibitors (SSI) (Figure 3A). Interestingly, the expression of SSI family members went 

along with strong expression of Il6,  Irf1, which attenuate cytokine signaling. 

Additionally, similar to c1, c2 interactions with immune cells in the TME were mediated 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

through several signaling pathways including MHC-1, CXCL, and CCL pathways 

(Figures 3D-E and S3A-B).    

GEMM-specific mesenchymal clusters 

Complex regulation of opposing WNT pathways among stromal clusters  

Clusters c3 and c4 were predominantly enriched in T-ERG, Hi-MYC, and NP models. 

They expressed core components of the Wnt pathway including genes such as Sfrp2, 

Wnt5a, Lgr5, Apc, enhancers (e.g., Wnt4 and Wnt6), negative regulators of Wnt, (e.g., 

Notum and Wif1) as well as TFs such as Ctnnb1, Lef1, and Tcf4 (Figure 4A). In-situ 

validation of c3 and c4 markers by multiplex IHC imaging confirmed the expression of 

SFRP2 and LGR5 in T-ERG mesenchyme compared to the WT stroma. Interestingly, 

pronounced expression of these two Wnt-proteins was also observed in PRN 

mesenchyme (Figure 4B-C). Similar to the common clusters, signaling from c3 and c4 

to the epithelium and immune cells was mostly mediated by COLLAGEN and LAMININ 

pathways combined with a prominent activity of the PTN, THBS, and MK pathways 

(Figure 4E). THBS was also the predominant pathway mediating signaling from 

monocytes/macrophages (mainly through Thbs1) to c3 and c4 (mainly through Sdc4 

and Cd47) (Figure S3C). Importantly, the immune tumor microenvironment of the NP 

model had a more prominent infiltration of monocytes/macrophages compared to the 

other models (Figure S3A).  

Several signaling networks between c3, c4 and other stromal cells in the TME 

especially the PRN clusters (c5-c7) were identified (Figure S4A). The WNT and ncWNT 

signaling pathways in particular were predominantly involved in mediating signaling 

from c3 and c4 (expressing several WNT ligands like Wnt5a, Wnt2, and Wnt4) to the 
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PRN clusters which expressed several WNT receptors like Fzd1 and Fzd2 (Figure 

S4B).   

Although both c3 and c4 had similar transcriptional and functional profiles, GRN 

analysis identified several candidate TFs underlying gene expression differences 

between the two clusters. For instance, while Wnt-stimulatory TFs, including Sox9 and 

Sox10, were found in c3, Wnt-repressive TFs such as Foxo1 and Peg3 were enriched in 

c4 (Figures 4A and S2). Overall, these results suggest that the Wnt pathway plays an 

important yet very complex role in these two clusters. 

PRN stroma: opposing androgen receptor (Ar) and periostin expression 

Cells belonging to clusters c5-c7 were associated with the NEPC mouse models, 

PRN15, 16. Generally, cells in these clusters expressed cell cycle and DNA repair-related 

genes, neuronal markers, a unique repertoire of collagen genes, Tgfβ activation, and 

again Wnt signaling. Specifically, c5 and 7c expressed high levels of the proliferative 

markers Mki67, γH2ax, Top2a, Ccnb1, and Ccnb2 (Figure 4A-D). They also showed 

high expression of Cthrc1, several downstream targets of the Wnt signaling pathway 

including Wisp1 and Ctnnb1, Wnt receptors such as Fzd1, Fzd2, and Lgr5, as well as 

Wnt- secreted decoy receptors Sfrp4 and Sfrp2 (Figure 4A). Compared to the other 

clusters, c5 also expressed the neuronal marker Tubb3 (Figure 4A). The complex 

stromal response in the PRN mouse model was also highlighted by a unique repertoire 

of upregulated collagen genes, such as Col12a1, Col14a1, Col16a1, and 

metalloproteinase Mmp19, suggesting active remodeling in the tumor microenvironment 

(Figure 4A).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

Outgoing signals from the PRN clusters to the epithelium and immune cells showed 

increased activity of the COLLAGEN, THBS, FN1, MHC-1, CCL, and CXCL pathways 

(Figure 4F). On the other hand, the PRN mesenchyme showed high frequeny and 

strength of incoming signals from monocytes/macrophages mainly through the THBS 

and SPP1 pathways and from Tregs through the ITGAL-ITGB2, TGFb, and THY1 

pathways (Figures S3C and S4A). Stromal signaling through the PERIOSTIN pathway 

in particular was restricted to the PRN mesenchyme with few interactions involving c0 

and c1 and no significant interactions involving c3 and c4 (Figure S4C). 

We again observed activation of adaptive immune responses, such as C1q type a, b 

and c, in c5-c7 (Figure S5A). Finally, stromal NEPC cells highly expressed components 

of other pathways such as Nrg1, Bmp1, and Tgfβ 1, 2, 3 and Tgfβ-induced Postn. 

Interestingly, high Postn expression in c5-c7 was inversely correlated with Ar 

expression, lowest in the PRN model (Figure 5A). IF analysis confirmed high POSTN 

and low AR staining in the stroma (Figure S6) especially that adjacent to the invasion 

front and neuroendocrine foci, while some AR expression was still present around 

adenocarcinoma foci (Figure 5B and S6). In contrast, the highest expression of Ar and 

of its co-regulators Srebf1, Foxo1, Arid5b, Gata3 and Creb5 was instead found in c3 

and c4, predominantly represented in T-ERG and Hi-MYC models (Figure 5A). 

In order to assess whether Postn-positive stroma facilitates invasion, a characteristic of 

NEPC, a migration assay was utilized. Knockdown of Periostin in fibroblasts induced an 

over 2-fold decrease of mobility in 22rv1 cells overexpressing MYCN with additional 

Rb1 knockdown to mimick the PRN model (Figure 5C). In bulk RNA-seq data from a 

large cohort of well-characterized benign, locally advanced PCa, CRPC, and NEPC 
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samples (https://shinyproxy.eipm-research.org/app/single-gene-expression), POSTN 

expression was significantly increased in a subset of CRPC and most NEPC patients 

compared to PCa and benign samples (Figure 5D). Finally, mIHC in human cases 

showed an increased expression of POSTN in the stroma of CRPC and more 

significantly in NEPC compared to normal prostate stroma (Figure 5E). Several 

regulons driving these clusters involved transcription factors that generally define 

lineage in mesenchymal stem cells including Gata6, Runx125, 26, 27, Gata228, Lhx6, and 

Snai329, 30 (Figures 4A and S2).  

The transcriptional profiles of the PRN-derived clusters are predictive of 

metastatic progression in prostate cancer  

We examined the predictive and prognostic relevance of the PRN-derived clusters (c5-

c7) using gene expression profiles of primary tumor samples from a large cohort of PCa 

patients (n=1239). The expression of the top positive and negative markers of the PRN-

derived clusters were used as a biological constraint to train a rank-based classifier of 

PCa metastasis (see Methods). The resulting PRN gene signature consisted of 13 up- 

and down-regulated gene pairs from the PRN mesenchyme (Table S4). In addition to its 

interpretable decision rules, this signature had a robust and stable performance in both 

the training (930 samples) and testing (309 samples) sets with an Area under the 

Receiver Operating Characteristic Curve (AUC) of 0.69 and 0.70, respectively (Figure 

5F). Finally, we tested the prognostic value of the signature in the TCGA cohort which 

included 439 primary tumor samples from PCa patients31, 32. In this independent cohort, 

the PRN signature was significantly associated with progression-free survival (PFS)31 

using Kaplan-Meier survival analysis (logrank p-value <0.0001), even after adjusting for 
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Gleason grade in a multivariate Cox proportional hazards model (HR=3.6, 95% CI=1.2-

11, p-value=0.022) (Figure 5G). Overall, these results show that this PRN-derived 

mesenchymal cell clusters are associated with invasiveness and metastatic progression 

in PCa patients. 

Human mesenchymal clusters in primary and metastatic tumors 

Projection of the eight mesenchymal clusters to human scRNA-seq data 

Using the mouse scRNA-seq data as reference, we mapped the eight stromal clusters 

to the human scRNA-seq data33. These included six ERG-positive (6,990 mesenchymal 

cells) and three ERG-negative (1,638 mesenchymal cells) patients. c3 was the most 

predominant cluster in the human stromal data (79% of total mesenchymal cells), 

(Figure 6A) a finding attributed to the selection of ERG-positive cases. Notably, both c0 

and c1 had transcriptional profiles similar to their murine counterparts, with c0 

characterized by myofibroblast features (ACTA2, MYL9, MYH11, and TAGLN), while c1 

had a high expression of SFRP1, GPX3, and C3 (Figure 6B). In contrast, the three 

PRN/NEPC-associated clusters (c5-c7) were less abundant in human tumors (13% of 

total mesenchymal cells) compared to mouse specimens (31% of total mesenchymal 

cells), a finding explained by the absence of NEPC cases in the human primary tumor 

cohort. Nonetheless, these PRN/NEPC- associated clusters showed a high expression 

of C1Qs (Figure S5B), suggesting activation of the adaptive immune response. Overall, 

the transcriptional similarities of the mesenchymal clusters between both the mouse and 

human data suggest successful mapping between both datasets despite their biological 

heterogeneity which is still captured by the difference in cell type frequency.  
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Transcriptional similarities between the stroma of primary tumor and that of bone 

metastases 

Analyses using scRNA-seq profiles of human PCa bone metastasis revealed 

transcriptional patterns similar to those present in the mesenchymal clusters from the 

PRN model (c5-c7), comprising more than 60% of bone stromal cells (Figure 6C-D) and 

showed high expression of POSTN and MKI67 (Figure 6D), together with genes active 

in the bone microenvironment, such as BGN (Figure 6C-D). While the NEPC-related 

clusters were the most predominant in the metastatic microenvironment in bone, cells 

from c0 and c1 were also common, representing 9% and 27% of the total cells, 

respectively. Akin to primary cases, c6 and c7 in bone metastases expressed 

components of adaptive immune responses such like C1Q A, B and C (Figure S5C).  

Taken together, these findings show functional and transcriptional similarities between 

the stroma of advanced PCa models and that of the bone microenvironment.  

Discussion 

While different mutations in epithelial tumor cells partially explain the phenotypic 

and clinical heterogeneity of PCa, roughly one fourth of prostate tumors are genomically 

“quiet”32, indicating that additional undiscovered are key determinants of the biological 

behavior of PCa. Mesenchymal cells, which represent the predominant component of 

the microenvironment, have been suggested for decades to play a major role in this 

regard5, 34, 35. Recently, studies by Karthaus et al. and Crowley et al. described a 

detailed cluster analysis of mesenchymal cells in the  mouse prostate by scRNA-seq, 

revealing a level of complexity greater than that suggested previously22, 24. Here, we 

analyzed in detail by scRNA-seq all mesenchymal cells utilizing all prostate lobes in the 
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mouse prostate from several established GEMMs and corresponding WT mice. The 

significant and progressive increase in the mesenchymal cell component in increasingly 

aggressive GEMM models suggests a pivotal role of the stroma in tumor progression. 

We identified eight distinct stromal cell states that were defined by different gene 

expression programs and by underlying regulatory transcription factors. Three clusters 

represent fibroblasts states that are common to all genotypes, and they display 

conserved functional programs across all stages of tumor growth. On the other hand, 

we described five novel stromal cell states that are specifically linked to defined 

epithelial mutations and disease stages, setting the stage for a better understanding of 

mutation-specific epithelial-stromal interactions. 

There is growing evidence that innate immunity and inflammation play a role in 

prostate and other cancers35, 36, 37. While the focus of this study was not on immune 

cells, we found a cluster of mesenchymal cells conserved across all genotypes in 

prostate mesenchyme expressing genes associated with immunoregulatory and 

inflammatory pathways and driven by transcription factors such as Nfkβ. Immune cells 

including tissue-resident macrophages are recruited and subsequently activated to 

modulate prostate tumorigenesis. In addition, stromal cells produce cytokines, 

chemokines and components of complement protein pathways38, 39. The complement 

system is an established component of innate immunity. Components of complement 

activation via the C3 alternative pathway were previously found to be activated by KLK3 

(a.k.a. PSA), with a special affinity for iC3b that in turn stimulates inflammation40. In 

addition, a pronounced expression of Cd55 in common clusters, inhibits complement C3 

lysis41. The role of the complement as mediator of the stromal-immune crosstalk in c1 
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was also confirmed by the ligand-receptor analysis which showed significant 

interactions between C3 and both ITGAM_ITGB2 and ITGAX_ITGB2 receptors in 

dendritic cells. This suggests that the expansion of cells expressing C3 can stimulate 

innate immune response in the TME. Complex and bidirectional interactions between 

stroma and immune cells, mostly involve dendritic cells, monocyte/macrophages, and 

Tregs. Model-specific variations in the composition of the tumor immune 

microenvironment were seen, e.g. a prominent infiltration of monocytes/macrophages in 

the NP models. Further functional analyses of those interactions will reveal how the 

stroma influences the response to immunotherapy in PCa42, 43, 44. 

Roughly half of prostate tumors have ETS translocations with TMPRSS2 as the 

most frequent fusion partner32, one of the earliest alterations in prostatic 

carcinogenesis45, 46, 47. Yet, genetically engineered mouse models driven by the 

TMPRSS2-ERG fusion have little to no phenotype in the epithelium. Here, we found that 

induction of mesenchymal cell expansion is a significant early event in this model. We 

harmonized the eight murine clusters with human PCa cases sequenced using the 

same scRNA-seq approach. Strikingly, the mesenchyme associated with the TMPRSS-

ERG translocation was conserved between mouse and human. Thus, epithelial ERG 

fusion in the mouse triggers early changes in the adjacent stroma, creating a TME that 

supports ERG-positive epithelial cells. Given the conservation of these mesenchymal 

clusters in humans, these findings show the role of this prevalent alteration in the 

pathogenesis of prostate cancer. It will be important to determine the prevalence of 

these stromal cluster associated with TMPRSS-ERG in patients of African descent, 

where the prevalence of this translocation is low48. 
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Stromal populations contribute to the structural and functional TME ecosystem 

through different autocrine and paracrine mechanisms. Among them, the stromal AR 

signaling cascade is known to influence prostate epithelial cells’ behavior at different 

stages of development and carcinogenesis34, 49. Stromal AR signaling may prevent 

invasion by maintaining an non-permissive TME for cell migration50. Indeed, loss of 

stromal AR was associated with upregulation of ECM-remodeling metalloproteinases 

(e.g., MMP1) and of CCL2 and CXCL8 cytokines, factors that promote invasion 50, 51. In 

the transgenic Hi-MYC and the testosterone+estradiol hormonal carcinogenesis models, 

stromal AR deletion, especially in smooth muscle cells favors prostate carcinogenesis 

52. In line with these observations, we show decreased mesenchymal Ar expression in 

the PRN model, which recapitulates late-stage PCa and progression towards 

neuroendocrine differentiation. Stromal AR may play a master role in committing and 

maintaining epithelial prostate cell identity in at least two ways. During development, its 

expression induces epithelial cells to differentiate into prostate cells, and during PCa 

development it prevents progression towards undifferentiated/neuroendocrine status.  

Low expression of Ar in the PRN model was inversely associated with an 

increased expression of periostin (Postn), and in situ analyses confirmed that Postn-

positive cells were enriched in areas of neuroendocrine differentiation. Stromal 

expression of periostin in PCa has been associated with decreased overall survival53 

and higher Gleason score54. We show that stromal cells expressing Postn confer 

invasive ability to poorly differentiated/NE carcinoma. The increased expression of 

Postn and of genes typical for the bone microenvironment (e.g., Bgn) suggest that 

invasive PCa cells and the associated, invasion-primed mesenchyme modify the 
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prostate TME to resemble that of bone, a common site of metastases in this 

malignancy. In this fashion, the primary site TME may pre-condition tumor cells for 

skeletal metastatic seeding. Importantly, we discovered shared characteristics between 

the stroma of the advanced/neuroendocrine GEMM and that of scRNA-seq stromal 

profiles from human bone metastases. Specifically, the bone stroma had a high 

frequency of POSTN+ cells,.  It is yet to be determined whether  these cells were 

inherently present in the bone microenvironment or expanded as a result of the 

metastatic process. These cells were also characterized by the expression of genes 

involved in osteoblast differentiation and proliferation like RUNX2, BMP2, IGF1, and 

IGFBP355 together with Cadherin 11 (CDH11) previously found to induce PCa 

invasiveness and bone metastasis56, 57.  

The role of complement is important not only in both modulating innate immunity 

but also invasion. A pronounced expression of C1QA, B and C was identified especially 

in models of advanced disease.  C1q has been shown to promote trophoblast invasion58 

as well as angiogenesis in wound healing59. This was in line with our previously 

published stromal signature derived from laser capture-microdissected (LCM) 

mesenchyme adjacent to high grade tumors that predicted lethality in an independent 

PCa cohort8. Three of the 24 signature genes were in fact C1Q A, B, and C suggesting 

that complement activation by the stroma plays a role in the invasive potential of 

aggressive prostate tumors (with diverse epithelial genetic alterations). The unexpected 

resemblance between PCa mesenchyme of locally aggressive tumors and that of bone 

metastases suggests that locally advanced PCa tumors prone to metastasize display a 

bone-like microenvironment. Since transcriptional profiles of stromal cells in aggressive 
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models were conserved in the stroma of human localized high-grade tumors8, as well as 

in stroma of bone metastases in patients’ biopsies60, a broad set of cellular and 

molecular changes in the stromal cells may be either permissive or directly affect 

progression and metastatic disease.  

Importantly, while our findings offer novel insights about the role of the stroma in 

mediating PCa progression and invasiveness, they also show a strong translational 

relevance. For instance, we have used the scRNA-seq transcriptional profiles of the 

PRN-derived mesenchymal clusters (c5-c7) to develop a robust and interpretable gene 

signature for predicting PCa metastases in a large cohort of patient samples with bulk 

transcriptomic profiles. This signature was also associated with worse progression-free 

survival in a separate cohort (TCGA) before and after adjusting for Gleason grade.  

In summary, here we provide a molecular compendium of mesenchymal changes 

during PCa progression in genetically engineered mice that generalize to humans. 

Specifically, in the early phases of prostate carcinogenesis, we provide evidence that 

the TMPRSS-ERG translocation reprograms the mesenchyme which in turn may 

sustain progression. Moreover, in advanced PCa models we found transcriptional 

mesenchymal programs linked to metastasis, some of them in common with the bone 

microenvironment to which PCa cells metastasize. The findings from those murine 

models have been validated and confirmed using publicly available and internally 

generated scRNA-seq data from ERG+ human tumors and PCa bone metastases.  

Collectively these data in mice and human provide unambiguous evidence for marked 

shifts in stromal composition accompanying PCa progression and driven in a genotype-
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specific manner, ultimately implicating mesenchymal changes as major contributors of 

both PCa progression and phenotypic diversity to a degree not previously appreciated.  
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Figure titles and legends 

Figure 1. Identification of differentially enriched stromal cell clusters between WT 

and GEMMs.  

(A) 8,574 mesenchymal cells visualized by Uniform manifold approximation and 

projection (UMAP) and colored according to partition assigned by graph-based 

clustering (left panel) and model of origin (mutant vs. wildtype; middle and right panels).  

(B) UMAP visualization of the mesenchymal clusters colored by the number of detected 

genes (left) and Unique Molecular Identifiers (UMIs) (right). 

(C) Heatmap showing the percentage of the different mesenchymal clusters in each 

mouse model. Three clusters (c0-c2) represent fibroblast states common to all 

genotypes, 5 clusters (c3-c7) are specific stromal responses to epithelial mutations. 

Stroma of two additional wildtype strains (B6 and B6.129) varies in the different 

backgrounds.  

(D) Parallel categories plot showing the proportions of mesenchymal clusters (left) 

across the different mouse models (right).   

(E) Signaling networks between the stroma, epithelium, and immune compartments. 

The heatmaps shows the significant outgoing patterns in the mutants (left) and wild 

types (right). The color bar represents the relative strength of a signaling pathway 

across cells. The top-colored bar plot shows the total signaling strength of each 

compartment by summarizing all signaling pathways displayed in the heatmap. The 

right grey bar plot shows the total signaling strength of a signaling pathway by 

summarizing all compartments displayed in the heatmap. The chord diagrams display 

the significant signaling networks between the stroma, epithelium, and immune 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

compartments in mutants (left) and wild types (right). Each sector represents a different 

compartment, and the size of the inner bars represents the signal strength received by 

their targets. The heatmap is based on comparing the communication probabilities 

between mutants and wild types while in the chord diagrams, up- and down-regulated 

signaling ligand-receptor pairs were identified based on differential gene expression 

analysis between mutants and wild types. In all cases, we adjusted for the number of 

cells. 

Figure 2. A common cluster of contractile mesenchymal cells encompasses 

myofibroblasts and pericytes. 

(A) Canonical myogenic and smooth muscle genes characterize c0 as contractile 

mesenchymal cells (left panel), but 2 subpopulations (c0.1 and c0.2) may be further 

subclassified (middle panel). Relative contribution of the different GEMMs and WTs to 

c0 is shown in the right panel. 

(B) UMAP projection of c0 cells showing the expression of different myogenic and 

smooth muscle genes. Acta2, Myl9, Myh11 and Tangl mark myofibroblasts and 

pericytes, while Rgs5, Mef2c and Pdgfrb distinguish pericytes (c0.2). Color scale is 

proportional to the expression levels.  

(C)  Dot plot of the expression of genes distinguishing myofibroblasts (c0.1) and 

pericytes (c0.2).  

(D)  The mean expression of regulons distinguishing myofibroblasts (c0.1) from 

pericytes (c0.2). 

Figure 3. A functional atlas of the mouse prostate cancer mesenchyme.  
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(A) Dot plot showing the mean expression of marker genes for common clusters c0-c2. 

Boxes indicate the clusters marked by each marker gene set. The total number of cells 

in each cluster is indicated by the bar plot on the right. Significantly enriched regulons 

identified by gene regulatory networks are denoted on top of each boxed cluster.  

(B-C) Representative images of C3 and GPX3 overexpression in tumor desmoplastic 

stroma in NP and PRN models (left panels) and matching WTs (right panels).  

Magnification for all images 200x. Scalebar: 300µm. 

(D-E) Chord diagrams of significant signaling pathways from the common clusters c0-c2 

to the epithelium (D) and immune cells (E). Each sector represents a different cell 

population, and the size of the inner bars represents the signal strength received by 

their targets. Communication probsbilities were calculated after adjusting for the number 

of cells in each cluster. 

Figure 4. GEMM-specific mesenchymal clusters define complex signaling 

pathways in the reactive stroma. 

(A) Dot plot showing the mean expression of marker genes for model-specific clusters 

c3-c7. Boxes indicate the clusters marked by each marker gene set. The total number 

of cells in each cluster is indicated by the bar plot on the right. Significantly enriched 

regulons identified by gene regulatory networks are denoted on top of each boxed 

cluster.  

(B-C) Representative images of LGR5 and SFRP2 overexpression in tumor 

desmoplastic stroma in T-ERG and PRN models (left panels) and matching wildtypes 

(right panels). Magnification for all images 200x. Scalebar: 300µm.  
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(D) Bar plots showing the relative frequency of Mki67+ mesenchymal cells across all 

clusters (left), UMAP projections of Mki67+ cells in PRN stroma (middle) and violin plots 

of the expression of Mki67 in PRN stroma (right).  

(E) Chord diagrams showing the significant signaling pathways from c3 and c4 to the 

epithelium and immune cells (upper and lower panels, respectively). 

(F) Chord diagrams showing the significant signaling pathways from the PRN 

associated clusters (c5-c7) to the epithelium and immune cells (upper and lower panels, 

respectively). Communication probsbilities were calculated after adjusting for the 

number of cells in each cluster.  

Figure 5. Mesenchymal Periostin overexpression is associated with aggressive, 

neuroendocrine prostate cancer.  

(A) UMAP projection of PRN clusters c5-c7 (left), Postn (middle) and Ar (right) 

expression in prostate mesenchyme; and dot plots showing the mean expression of 

Postn and Ar in the different mouse models (right). 

(B) Multiplexed staining for a panel of proteins including POSTN, AR, and 

Chromogranin in PRN model showing high POSTN and low AR expression in stroma 

adjacent to neuroendocrine prostate cancer (NEPC) foci (right panel), and weak to 

moderate AR expression around in the stroma surrounding adenocarcinoma foci (left 

panel). Magnification for all images 200x. Scalebar: 300µm. 

(C) Quantification of 22rv1 overexpressing MYCN and with Rb1 knock down migration 

in Boyden chamber transwell assay. (*** p-value<0.001, ****p-value<0.0001, 1-way 

ANOVA). 
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(D) Boxplots of POSTN expression in WCM clinical cohort. PCa: prostate cancer, 

CRPC: castration-resistant prostate cancer, NEPC: neuroendocrine prostate cancer, 

RPKM: reads per kilobase million. 

(E) Multiplexed staining for a panel of proteins including POSTN (yellow), AR (red), and 

Chromogranin (orange) in human samples, showing high POSTN and weak to 

moderate AR expression around the stroma surrounding adenocarcinoma foci (left 

panel), and high POSTN and low AR expression in stroma adjacent to NEPC foci (right 

panel) Magnification for all images 150x, scalebar: 300µm. NEPC: neuroendocrine 

prostate cancer. 

(F) Receiver Operating Characteristics (ROC) curve showing the performance of the 

PRN signature at predicting metastasis in the training (n=930) and testing (n=309) data. 

The signature was trained and tested on bulk expression profiles of primary tumor 

samples derived from prostate cancer patients. AUC: Area Under the ROC Curve.  

(G) Progression-free survival (PFS) in the TCGA prostate adenocarcinoma cohort 

(n=439). On the left, Kaplan-Meier survival plot showing the difference in PFS between 

patients predicted as ‘0’ and ‘1’ using the PRN signature. The x-axis shows the survival 

time in months. P: p-value using the logrank test. On the right, forest plot for multivariate 

Cox proportional hazards model showing the hazard ratio and 95% confidence interval 

for the PRN signature and Gleason grade. (*p-value <0.05). 

Figure 6. Analysis of human scRNA-seq data suggests the relevance of prostate 

mesenchyme in human PCa pathobiology. 

(A) Parallel categories plot showing the relationship between the mesenchymal clusters 

and ERG status (left). UMAP projection of the 8 mesenchymal clusters in the human 
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scRNA-seq data (center) and AR expression in the human mesenchymal clusters 

(right).  

(B) Dot plot showing the mean expression of marker genes for common clusters c0-c2 

in the human scRNA-seq data. 

(C) UMAP of the selected cell types from the bone metastasis scRNA-seq data derived 

from Kfoury et al., 2021 (left) and their associated annotation using the 8-mesenchymal 

cluster definition (middle). The expression of BGN across the 8 mesenchymal clusters is 

shown on the right.  

(D) Violin plots showing the mean expression of POSTN and proliferative marker MKI67 

across the mesenchymal clusters in the Kfoury et al. scRNA-seq cohort. 
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Supplemental tables titles and legends 

Table S1. Genetically engineered mouse models and corresponding wild types 

used in the present study. 

Number of mice sequenced for each model and wildtype used in the present study, 

together with associated numbers of sequenced cells and transcripts. 

Table S2. Canonical gene markers used for cell type identification. 

List of canonical lineage gene markers used for cell type identification.  

Table S3. Differentially expressed genes (DEGs) according to designated 

clusters. 

List of differentially expressed genes for each of the newly identified mesenchymal 

clusters. 

Table S4. The PRN signature for predicting prostate cancer metastasis.  

The signature consists of 13 gene pairs with each including a gene up- and another 

down-regulated in the PRN mesenchyme (c5-c7). Pairs vote for metastasis if the 1st 

gene is overexpressed relative to second. A patient with >=7 votes will be predicted to 

have metastasis. 

Table S5. Human PCa samples. 

List of human PCa samples used in the present study for scRNA-seq. 

Table S6. Multiplex immunohistochemistry antibody panels for cluster validation. 
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Supplemental figures titles and legends 

Figure S1. GEMMs have increased stromal formation compared to their WT 

counterparts.  

(A) Representative images of Masson’s trichrome show the increasing collagen 

deposition in tumor models according to the aggressiveness of the disease (left panel). 

HALO-based digital classifier categorizes tissue into collagen, epithelium, muscle fiber, 

and background components (middle panel). Collagen deposition is significantly 

enriched in NP, Hi-MYC and PRN models compared to their respective WTs (ns = not 

significant; * = p<0.05; ** = p<0.01; 2-tailed unpaired t-test; right panel).  

(B) Representative H&E and IHC images showing stromal reaction in the presence of 

characteristic GEMM proteins.  

Magnification for all images 200x. Scalebar: 300µm.  

Figure S2. Heatmap of the binarized regulon activity in the different stromal 

clusters in the mouse scRNA-seq data. 

The activity of each regulon in each cell was computed using the AUCell algorithm 

within the SCENIC workflow and then binarized using automatic cutoffs into active 

(black) or non-active (white). Shown is  heatmap of the binarized activity of significant 

regulons (right) across all mesenchymal cells grouped by their corresponding cluster 

(top). 

Figure S3. Complex interactions between prostate cancer mesenchyme and 

different Immune cells. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

(A) Stacked bar plots showing the proportion of different immune cell types in the 

different mouse models. 

Chord diagram showing the significant interactions between stromal and immune cells 

mediated by the CCL signaling pathway. Communication probsbilities were calculated 

after adjusting for the number of cells in each cluster. 

(B) Chord diagrams of the significant signaling (ligand-receptor level) received by the 

stroma from Tregs (left) and monocytes/macrophages (right). The size of the inner 

bars represents the signal strength received by the stromal clusters. Communication 

probsbilities were calculated after adjusting for the number of cells in each cluster   

Figure S4.  Signaling networks between the different mesenchymal clusters.  

(A) Significant ligand-receptor interactions across the 8 mesenchymal clusters. 

(B) Significant stromal-stromal interactions mediated by the WNT signaling pathway. 

(C) Significant stromal-stromal interactions mediated by the POSTN signaling pathway.  

The size of the inner bars represents the signal strength received by their targets. 

Figure S5. C1Qs complement proteins activation in mesenchymal cells supports 

growth invasion and metastasis of poorly differentiated tumors in humans and 

PRN model.  

(A) Dot plot (left) and violon plots (right) showing the expression of C1qa, C1qb and 

C1qc across the stroma of mouse models. The highest expression of these complement 

genes is observed in the stroma of PRN (highlighted in the red bracket). Size of the dots 

represents the percentage of cells expressing the gene and color intensity represents 

the average expression level. Violin plots showing expression of C1QA, C1QB and C1C 
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across the stromal clusters in the scRNA-seq data from primary PCa (B) and bone 

metastases data from the Kfoury et al. scRNA-seq cohort (C).  

Figure S6. Multispectral staining of prostate cancer tissue from the PRN mouse 

model showing AR and Periostin expression.  

(A) Expression of Periostin (upper) and AR (lower).  

(B) AR+ and Periostin+ stromal cells (PanCK-) were identified by thresholding the 

intensities of PanCK, AR and Periostin.  

(C) Heatmap of the spatial neighborhoods enrichment scores of AR+ and Periostin+ 

epethlial and stromal cells. Scores are based on proximity on the connectivity graph of 

cell clusters. The number of observed events is compared against 1000 permutations 

followed by z-score transformation.      
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Methods 

Genetically engineered mouse models of prostate cancer 

We focused on three models of prostate cancer that reflect the most common mutations 

in human localized disease, plus a fourth model that recapitulates the transition to 

NEPC. The choice of these models was also taken to reflect different stages of the 

disease.  

Specifically, the TMPRSS2-ERG (T-ERG) fusion model has an N terminus-truncated 

human ERG together with an ires-GFP cassette into exon 2 of the mouse Tmprss2 

locus11, displays a minimal epithelial phenotype in the mouse, and was chosen since it 

represents the most frequent mutation in human prostate cancers32. Pten knock-out 

(NP) mice develop high grade PIN with areas of invasion. To obtain 

Nkx3.1creERT2;Ptenf/f; EYFPf/f (NP12, Nkx3.1creERT2 driver was crossed to the conditional 

allele for Pten (Ptenflox/flox) with loxP61, 62. For induction of Cre activity in NP mice, 

tamoxifen (Sigma Cat #T5648) (or corn oil alone) was delivered by IP injection 

(225mg/kg) for 4 consecutive days, to mice at 2 months of age. Six months later NP 

mice were sacrificed and analyzed. Hi-MYC14 shows both PIN and microinvasion. PRN 

mice carry the MYCN transgene, Pten and Rb1 homozygous floxed63. Additionally, non 

littermate WT mouse strains, FVB/N (Charles River, CRL), C57BL/6 and B6129SF2/J 

Laboratories- JAX) were used.  

All animals used in this study received humane care in compliance with the principles 

stated in the Guide for the Care and Use of Laboratory Animals (National Research 

Council, 2011 edition), and the protocol was approved by the Institutional Animal Care 
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and Use Committee of Weill Cornell Medicine, Dana-Farber Cancer Institute and 

Columbia University Irving Medical Center. 

The number of GEMMs and their WTs and/or littermates are provided in Table S1. 

Description of human prostate cancer specimens 

Human prostate tissue specimens were obtained from patients undergoing radical 

prostatectomy at Weill Cornell Medicine under Institutional Review Board approval 

(WCM IRB #1008011210). These included 9 samples (3 ERG-negative and 6 ERG-

positive cases). The clinical and molecular characteristics of these patients are provided 

in Table S5. Immediately after surgical removal, the prostate was sectioned 

transversely through the apex, mid, and base64. Tissue for scRNA-seq was placed in 

RPMI medium with 5% fetal bovine serum (FBS) on ice, and quickly transported for 

single-cell RNA sequencing. A small portion of the regions of interest, including the 

areas selected for single-cell RNA sequencing, index lesion, and contralateral benign 

peripheral zone, was concomitantly frozen in optimal cutting temperature (OCT) 

compound, cryosectioned, and a rapid review was performed by a board-certified 

surgical pathologist (BR) to provide a preliminary assessment on the presence of tumor, 

normal epithelium, stroma near and away from the tumor. Adjacent tissue was 

processed by formalin fixation and paraffin embedding, followed by sectioning, 

histological review, histochemistry (trichrome stain), and immunostaining65.  

Isolation of single cells for RNA-Seq 

Dissociated murine prostate cells were prepared as described previously66. Briefly, 

mouse prostate tissues were digested in Advanced DMEM/F12/Collagenase II 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

(1.5mg/ml)/Hyaluronidase VIII (1000 u/ml) (Thermo Fisher Scientific) plus 10  μM Y-

27632 (Tocris) for 1 hour at 37°C with 1500 rpm mixing, continuously agitated. 

Subsequently, after centrifuging at 150 g for 5 min at 4°C, digested cells were 

suspended in 1 ml TrypLE with 10 µM Y-27632 and digested for 15 min at 37°C and 

neutralized in aDMEM/F12/FBS (0.05%). Dissociated cells were subsequently passed 

through 70 μm and 40 μm cell strainers (BD Biosciences, San Jose, CA) to obtain a 

single cells suspension. Samples were resuspended in 1x PBS and sorted by Flow 

Cytometry (Becton-Dickinson Aria II and/or Becton-Dickinson Influx) for 4′,6-diamidino-

2-phenylindole (DAPI) to enrich for living cells.  

Similarly, human prostate tissues were first digested in aDMEM/F12/Collagenase II 

(1.5mg/ml)/Hyaluronidase VIII (1000 u/ml; Thermo Fisher Scientific) plus 10  μM Y-

27632 (Tocris) for 1 hour at 37°C with 1500 rpm mixing, continuously agitated. 

Subsequently, after centrifuging at 150 g for 5 min at 4°C, digested cells were 

suspended in 1 ml TrypLE with 10 µM Y-27632 and digested for 15 min at 37°C and 

neutralized in aDMEM/F12/FBS (0.05%). Dissociated cells were subsequently passed 

through 70 μm and 40 μm cell strainers (BD Biosciences, San Jose, CA) to get single 

cells. Samples were resuspended in 1x PBS and sorted for DAPI to enrich living cells.  

Barcoded cDNA libraries were created from single-cell suspensions using the 

Chromium Single Cell 3’ Library and Gel Bead Kit, and Chip Kit from 10x Genomics67, 

according to manufacturer recommendations. Briefly, depending on the GEMMs and 

human samples used in this study, 8,000-16,000 cells were targeted for 3’ RNA library 

preparation, multiplexed in an Illumina NovaSeq 6000, and sequenced at an average 

depth of 25,000 reads per cell.  
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Quantification and preprocessing of single-cell RNA sequencing data  

Expression matrices were generated from raw Illumina sequencing output using 

CellRanger. Bcl files were demultiplexed by bcl2fastq, then reads were aligned using 

STAR68. All data collected from mouse models were aligned to GRCm38 reference 

transcriptome. To identify cells with trans-gene expression, we indexed and aligned to 

human ERG and GFP from the T-ERG model, human MYC from the Hi-MYC model, 

and human MYCN from the PRN model. Human data were aligned to GRCh38. 

Alignment quality control was performed using the default CellRanger settings. 

Expression matrices from the different mouse models were converted to AnnData 

objects and concatenated into a single count matrix using the Scanpy library (version 

1.5) in Python (version 3.8)33. Similarly, the expression matrices from the nine human 

samples were concatenated into a single count matrix. The raw mouse and human 

scRNA-seq count matrices were preprocessed as follows: cells with low UMIs (unique 

molecular identifiers) count (<400) and low number of expressed genes (<300) were 

removed. Subsequently, genes that were expressed in three or fewer cells and cells 

containing more than 20% mitochondrial transcripts were removed after visualizing the 

distribution of fraction of counts from mitochondrial genes per barcode69. Contributions 

from total count, mitochondrial count, and cell cycle were corrected by linear regression. 

The resulting matrix was then log1p transformed69. Finally, the top 4,000 genes were 

selected by coefficient of variation according to the method described in67, and genes 

were scaled to mean zero and unit variance69. 

Embedding of scRNA-seq expression matrix by deep generative modeling  
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We computed batch-corrected embeddings as follows. We fit our data using a 

conditional variational autoencoder70. Specifically, we used the negative binomial counts 

model included in the single-cell variational inference (scVI) Python package71. We 

model (a) a nuisance variable that represents differences in capture efficiency and 

sequencing depth and serves as a cell-specific scaling factor, and (b) an intermediate 

value that provides batch-corrected normalized estimates of the percentage of 

transcripts in each cell that originate from each gene. Our model is implemented in 

Python using the PyTorch library (v1.7.0)72 and was run on a NVIDIA RTX A4000 GPU.  

Clustering and data visualization  

A nearest neighbor graph was constructed with Euclidean metric from the batch-

corrected scVI embeddings, then cells were partitioned by the Leiden clustering 

algorithm73, 74. Partition-Based Graph Abstraction (PAGA) was computed from the 

Leiden partition75 and was used to initialize the Uniform Manifold Approximation and 

Projection (UMAP) algorithm which projected the data into 2D space76. 

Identification of stromal cells  

For both the mouse (101,853 cells) and human (83,080 cells) scRNA-seq datasets, we 

excluded cells of lymphoid, endothelial, and neural origin based on Leiden clustering at 

resolution 1.0 and the expression of associated lineage markers (Table S2). 

Subsequently, we identified stromal cells as cells expressing either of two canonical 

mesenchymal marker gene sets: ‘mesenchymal 1’ or ‘mesenchymal 2’, respectively 

(Table S2)22, 24, 77, 78, 79. The resulting mesenchymal datasets for the mouse and human 

scRNA-seq data included 8,574 and 8,628 cells, respectively. These mesenchymal cells 
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were then clustered using the Leiden algorithm to identify different mesenchymal 

subclusters. Specifically, at resolution 0.05, the Leiden clustering reflected the 

separation of Mesenchymal and Smooth Muscle Cells/Myofibroblasts subtypes. We 

increased resolution in increments of 0.05, inspecting the biological plausibility of new 

clusters until resolution 0.6 (Table S3), after which higher resolution produced new 

clusters with differences dominated by noise73. 

Identification and annotation of immune cell types 

In the mouse scRNA-seq data, cells from the immune compartment (42,431 cells) were 

also clustered using the Leiden algorithm. The resulting clusters were then annotated to 

different immune cell types based on the expression of known markers genes. These 

included B cells (expressing Cd79a, Cd79b, Cd74, Cd19, and Cd22), CD4+ T 

lymphocytes (expressing Cd4, Cd2, Cd28, and Trac), NK or cytotoxic T cells 

(expressing Xcl1, Nkg7, Gzmb, Klrc1, and Klrc2), Tregs (expressing Foxp3, Ctla4, 

Tnfrsf4, and Tnfrsf18), dendritic cells (expressing Ccl17, Ccr7, Xcr1, and Cd207), and 

monocytes or macrophages (expressing Cd68, Cd74, Cxcl2, and Lgals3). 

Differential expression testing 

For differential expression (DE) testing, we used a two-part generalized linear model 

(hurdle model), MAST, that parameterizes stochastic dropout and the characteristic 

bimodal distribution of single cell transcriptomic data20. DE was performed by comparing 

cells from each cluster to pooled cells from all other clusters (Table S3).  

Gene regulatory network inference (GRN)  
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Gene regulatory network activity was inferred from the raw counts matrix by pySCENIC 

(v0.10.3) 19. Specifically, coexpression modules between transcription factors (TFs) and 

their candidate targets (regulons) were inferred using the Arboreto package 

(GRNBoost2) and pruned for motif enrichment to separate indirect from direct targets19, 

80. The activity of each regulon in each cell was then scored using the Area Under the 

ROC curve (AUC) calculated by the AUCell module from pySCENIC package19, 80. 

Cluster-specific regulons were identified as those with AUCell Z-score >1 for each 

mesenchymal cluster.   

Ligand-receptor analysis  

We performed ligand-receptor (LR) interaction analysis using CellChatDB and CellChat 

R tool (version 1.1.3) to predict cell-cell interactions within the tumor 

microenvironment81. Cell communication networks were inferred by first identifying 

differentially expressed ligands and receptors between the different mesenchymal 

clusters, immune cell types, and the epithelium. The probabilities of these interactions 

on the ligand-receptor level were computed using the default ‘trimean’ method setting 

the average expression of a signaling gene to zero if it is expressed in less than 25% of 

the cells in one group. Notably, we corrected for the effect of cluster size (number of 

cells) when calculating the interaction probabilities. Additionally, we summarized the 

ligand-receptor interaction probabilities within each signaling pathway to compute 

pathway-level communication probabilities. Cell-cell communication networks were then 

aggregated by summing the number of interactions or by averaging the previously 

calculated communication probabilities. To compare the signaling patterns between 

mutants and wild types (Figure 1E), we first performed differential expression analysis 
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between all the mutants versus wild types in each of the three compartments (stroma, 

epithelium, and immune). Upregulated LR pairs were identified if each had a log fold 

change (logFC) above 0.1 in the senders and receivers, respectively. Finally, we 

extracted the mutant-specific LR pairs as those with up-regulated ligands and receptors 

in the mutants compared to wild types and vice versa. In this analysis, we used a p-

value threshold of 0.01 to determine significant interactions.    

Label transfer from mouse to human scRNA-seq data 

To transfer the stromal cluster labels from the mouse to human data, human gene 

symbols were first converted to their mouse counterparts then both datasets were 

restricted to overlapping genes. Label transfer was performed using ‘ingest’33 which 

maps the labels and embeddings fitted on an annotated reference dataset to the target 

one. Specifically, we used the scRNA-seq data from the mouse T-ERG model as 

reference for the human ERG-positive cases and those from the remaining mouse 

models as reference for the human ERG-negative cases. Finally, we computed the 

ranking of differentially expressed genes in each cluster versus the remaining ones 

using t-test. 

Processing of human bone metastases scRNA-seq data 

The raw count matrix of the scRNA-seq dataset previously reported by Kfoury et al.60 

was retrieved from the Gene Expression Omnibus (GEO). This dataset included 25 

bone metastasis samples derived from PCa patients, of which 9 samples were derived 

from solid metastasis tissue. Further analysis was limited to these 9 samples (16,993 

cells). The data was preprocessed by keeping cells with at least 200 expressed genes 
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and less than 15% mitochondrial transcripts (16,536 cells). Subsequently, cells were 

normalized by the total counts over all genes followed by log scaling and regressing 

over the total counts per cell and percentage of mitochondrial genes to reduce 

unwanted variation. The top 4000 highly variable genes were selected and the resulting 

matrix was then scaled to unit variance and zero mean. Since this particular analysis 

was intended to explore the transcriptional and functional similarities between the 

primary tumor stroma and the stroma of bone metastasis, we further limited the analysis 

to the cells previously annotated by the authors as osteoblasts, osteoclasts, endothelial 

cells, and pericytes (1,872 total cells). Finally, the embeddings and stromal cluster 

labels were projected onto this dataset using the mouse stroma scRNA-seq dataset as 

reference and following the same steps mentioned above.   

Development of the PRN signature to predict metastasis in prostate cancer 

patients 

We collected and curate gene expression profiles from different datasets comprising 

1239 primary tumor samples from PCa patients with information about metastastatic 

events. These datasets included six publicly available datasets (GSE116918, 

GSE55935, GSE51066, GSE46691, GSE41408, and GSE70769, together with a 

seventh dataset available from Johns Hopkins University, referred to as the natural 

history cohort82. The expression profiles from each dataset were normalized, log2-

scaled, then z-score transformed (by gene) separetly. Subsequently, we mapped probe 

IDs to theircorresponding gene symbols and kept only the genes in common between 

all datasets (12761 genes).  
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The 1239 samples were joined together then splitted into 75% training (n=930) and 25% 

testing (n=309) using a stratified sampling approach to ensure an equal representation 

of important variables including the original datasets, Gleason grade, age, tumor stage, 

and prostate-specific antigen (PSA) levels. Quantile normalization was applied to both 

the training and testing sets separately. The training set was used for training a 

classifier that can predict metastasis using the k-top scoring pairs (k-TSPs) algorithm, 

which is a rank-based method whose predictions depend entirely on the ranking of gene 

pairs in each sample83, 84. Based on the average log fold change (logFC), we divided the 

markers of the PRN clusters into positive (average logFC > 0) and negative (average 

logFC <0) markers. We then paired the top positive and negative markers (100 genes 

each) together to build a biological mechanism representing the PRN mesenchyme 

(30000 pairs). Each pair consists of two genes, one is up- and another is down-

regulated in the PRN mesenchyme. This mechanism was then used as a priori 

biological constraint during the training of the k-TSPs algorithm85, and the resulting 

signature was evaluated on the indepedent testing set.   

Additionally, we evaluated the prognostic relevance of this signature in the TCGA cohort 

which included 493 primary PCa samples. First, we built a logistic regression model 

using the 26 genes comprising the PRN signature and used this model to generate a 

probability score for progression-free survival (PFS) in each patient. We then binarized 

these probabilities into predicted classes and compared their PFS probability using 

Kaplan-Meier survival analysis86. Finally, we calculated the hazard ratio of the signature 

prediction probability scores after adjusting for Gleason grade using a multivariate Cox 

proportional hazards model87.  
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Histopathology studies 

Following radical prostatectomy, human prostates were submitted for gross pathological 

assessment and sectioning, with ischemic time less than 1 hour. The prostate specimen 

was serially sectioned from apex to base into 3-5 mm slices.  In prostates with grossly 

identifiable tumor, a 5 mm biopsy punch was taken from the area of tumor, an area 

adjacent to the tumor, and an area distant (>2 slices away) from the tumor. In 

prostatectomy specimens where tumor was not definitively grossly visible, these areas 

were approximated by anatomic correlation of the MRI findings and targeted biopsies 

with the highest tumor grade (as described in 64).  

The prostate slices were fixed in 10% buffered formalin, embedded in paraffin blocks, 

and hematoxylin & eosin (H&E)-stained slides were created, per routine clinical 

pathologic assessment.51,52. Upon evaluation of the H&E slides, a urologic pathologist 

(BDR) confirmed that the punched area of tumor, area adjacent to tumor, and area 

distant to tumor were accurately represented based on the histology of the areas 

surrounding the punched area. Prostate from WT and GEMM mice were dissected. One 

half of the prostate from GEMMs was utilized for scRNA-seq (see above). The 

contralateral half was fixed in 10% buffered formalin and embedded in paraffin blocks, 

sections were cut, and hematoxylin & eosin (H&E)-stained slides88, 89. Collagen 

deposition in the different GEMMs was assessed by Masson’s trichome staining90, 91, 

followed by collagen deposition quantification digitally performed using HALO (Indica 

Labs, v3.3.2541, Albuquerque, US). A HALO-based digital classifier was developed to 

identify collagen, epithelium, muscle fiber, and background regions on the digital 

images. Percentages of collagen deposition were then quantified and compared using 
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unpaired t-test. Immunohistochemical stainings were used to confirm the expression of 

the GEMMs proteins.  

Immunohistochemistry to interrogate for panel markers (Table S6) was performed on 5-

μm-thick formalin-fixed paraffin-embedded tissue (FFPE) of (i) human PCa and (ii) 

GEMMs sections using previously-established protocols88, 92, 93. 

Multiplexed immunohistochemistry (mIHC) was performed by staining 5-μm-thick FFPE 

core biopsy sections in a BondRX automated stainer, using published protocols94, 95, 96. 

One panel of primary antibody/fluorophore pairs was applied to all cases along with 

Antibody/Akoya Opal Polaris 7-Color Automated IHC Detection Kit (NEL871001KT), 

and Opal Polymer Anti-Rabbit HRP kit for secondary antibody (ARR1001KT) fluor 

combinations were utilized as follows (Table S6). The order of processing slides was as 

follow: primary antibody incubated for 30 minutes; Blocking for 5 minutes with Akoya 

Blocking/Ab Diluent; Opal Polymer Anti-Rabbit HRP incubated for 30 minutes; Opal 

480-690 incubated for 10 minutes; Leica Bond ER1 solution incubated for 20 minutes. 

All slides were also stained with DAPI for nuclear identification.  

Acquisition and Computational Analysis of Multiplexed Immunofluorescence 

Images 

Whole slide images of hematoxylin and eosin, trichrome and mIHC sections were 

acquired using the Vectra Polaris Automated Quantitative Pathology Imaging System 

(Akoya Biosciences, Hopkinton, MA)97. Images were processed by linear spectral 

unmixing and deconvolved98. Cells were segmented and a human-in-the-loop HALO 

random forest classifier was trained with labels from a pathologist to select stromal 
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cells. Subsequently, these stromal regions of the entire prostate surrounding glands in 

WT and GEMMs mice were preprocessed and analyzed using PathML 

(https://github.com/Dana-Farber-AIOS/pathml)99 to generate a single cell counts matrix 

containing statistics summarizing the expression of each protein in each cell together 

with the cell size, coordinates, and eccentricity. To address technical artifacts in the 

segmentation results, DAPI-negative cells were filtered out. A nearest-neighbor graph 

was constructed from the counts matrix using Euclidean metric as implemented in the 

Scanpy package33. This graph was clustered using the Leiden algorithm73 to identify 

subpopulations of cells and low-quality cells. Cells were projected to two dimensions 

and visualized using the UMAP algorithm76. A binary label indicating the 

presence/absence of each protein was created by thresholding markers for positive or 

negative signal with pathologist assistance. 

RNA Extraction and bulk RNA-seq analysis of murine PRN tumors 

Fresh-frozen prostate tumors from PRN mice were cryopreserved in OCT. Histological 

evaluations and quantifications (including H&E staining and IHC staining) were 

performed by a board-certified, genitourinary pathologist (BDR) who was blinded to 

animal genotypes and followed criteria that have previously been described100. Regions 

of the OCT block identified by a blinded pathologist as NEPC or adenocarcinoma were 

cored using a biopsy punch. RNA extraction was performed on the frozen cores using 

the Maxwell 16 LEV simplyRNA Tissue Kit (Promega, AS1280). Specimens were 

prepared for RNA-seq as described above and RNA quality was verified using Agilent 

Bioanalyzer 2100 (Agilent Technologies). Paired-end, 50�×�2 cycles sequencing was 

performed on the HiSeq 4000 instrument. Quality control of raw sequencing reads was 
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performed using FastQC (Babraham Bioinformatics). Low-quality reads were removed 

using Trimmomatic101 with a sliding window size of 4�bp and a quality threshold of 20. 

The resulting reads were aligned to mm10 using STAR68. Reads were sorted and 

indexed using SAMtools102. Transcript abundance was calculated using HTSeq103. 

Differential gene expression was assessed using DESeq2104. 

Generation of murine Normal Associated Fibroblasts (NAFs).  

Prostate tissues derived from 3-month-old C57/BL6 male mice were minced in apron 1 

mm pieces and placed in p100 using 

DMEN+5%FBS+5%NuSerum+1%Gln+1%P/S+10nMDHT. The fibroblasts were 

attached to the plate within 48-96 hours and the chunks were removed. Then the 

immortalization was performed using Retrovirus with zeocin resistance and expression 

of SV40 T antigen (pBabe-Zeo-LT-ST). NAFs were cultured in normal 

DMEM+10%FBS+1%Gln+1%P/S. 

RNA knockdown 

For lentiviral shRNA transduction, mouse NAFs were transduced using lentiviruses 

containing shRNA constructs against Postn with 10 mg/ml polybrene (Sigma, TR-1003-

G). shPostn1 (F primer: 

CACCGGGCCATTCACATATTCCGAGAACTCGAGTTCTCGGAATATGTGAATGGCTT

TTTG; R primer: 

GATCCAAAAAGCCATTCACATATTCCGAGAACTCGAGTTCTCGGAATATGTGAATG

GCCC) 
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shPostn2 (F primer: 

CACCGGCCACATGGTTAATAAGAGAATCTCGAGATTCTCTTATTAACCATGTGGTTT

TTG; R primer: 

GATCCAAAAACCACATGGTTAATAAGAGAATCTCGAGATTCTCTTATTAACCATGTG

GCC). 

Migration (invasion) assay 

For Boyden chamber assays, 100,000 NAFs infected with control of Periostin-directed 

shRNAs (shCtrl, shPostn1 or shPostn2) were seeded into a 24-well plate in culture 

media for 24 hours. Cells were washed twice for 15 minutes in minimal media (DMEM 

(Thermo Fisher, 31053036) with 1× penicillin/streptomycin (Gibco, 15140-122), 1× 

GlutaMAX (Gibco, 35050-061) and 10�mM HEPES (Gibco, 15630-130). Cell culture 

inserts (Millipore, #MCEP24H48) were coated with Matrigel (Corning, 354230) diluted 

1:10 in PBS, and incubated for 2 hours +37°C. 22rv1 shRb1 NMYC cells were 

harvested, washed twice for 3 minutes in minimal media, and seeded in triplicate at a 

density of 75,000 cells/insert in 200ul. Inserts were placed into empty 24-well plates and 

incubated for 15 min at +37°C and 5% CO2 before transferring into the test conditions, 

minimal media was used as a negative control and minimal media supplemented with 

10% charcoal-stripped serum (Gibco, A33821-01) was used as a positive control. Cells 

were then allowed to migrate at +37°C for 6 hours. Filters were fixed using 4% 

PFA/PBS, washed with PBS, and stained using Hoechst before washing, cleaning and 

mounting using Fluoromount-G (SouthernBiotech, 0100-01). Cells that had migrated 

through the filter were quantified (5 fields of view per filter) and normalized to the 

negative control. 
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Data and code availability 

Single-cell RNA-seq data have been deposited at Zenodo for the purpose of peer 

review. Data will be deposited at GEO and made publicly available as of the date of 

publication. Microscopy data reported in this paper will be shared by the lead contact 

upon request. All original code has been deposited at GitHub and is publicly available 

using this link: https://github.com/MohamedOmar2020/pca_TME. Any additional 

information required to reanalyze the data reported in this paper is available from the 

lead contact upon request. 
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