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Abstract. Inflammatory genes serve a crucial role in the 
pathogenesis of inflammation‑associated tumors. However, 
as recent studies have mainly focused on the effects of single 
inflammatory genes on colorectal cancer (CRC), but not on 
the global interactions between genes, the underlying mecha-
nisms between inflammatory genes and CRC remain unclear. 
In the current study, two inflammation‑associated networks 
were constructed based on inflammatory genes, differentially 
expressed genes (DEGs) in CRC vs. normal samples, and 
protein‑protein interactions (PPIs). These networks included 
an inflammation‑related neighbor network (IRNN) and 
an inflammation‑related DEG network (IRDN). Notably, 
the results indicated that the inflammatory genes served 
as important CRC‑associated genes in the IRNN. Certain 
inflammatory genes were more likely to be network hubs and 
exhibited higher betweenness centralities, indicating that these 
inflammatory hub genes had central roles in the communica-
tion between genes in the IRNN. By contrast, in the IRDN, 
functional enrichment analysis revealed that genes were 
enriched in numerous cancer‑associated functions and path-
ways. Subsequently, 14 genes in a module were identified in the 
IRDN as the potential biomarkers associated with disease‑free 
survival (DFS) in CRC patients in the GSE24550 dataset, the 
prognosis of which was further validated using three inde-
pendent datasets (GSE24549, GSE34551 and GSE103479). 
All 14 genes (including BCAR1, CRK, FYN, GRB2, LCP2, 
PIK3R1, PLCG1, PTK2, PTPN11, PTPN6, SHC1, SOS1, SRC 
and SYK) in this module were inflammatory genes, empha-
sizing the critical role of inflammation in CRC. In conclusion, 
these findings based on integrated inflammation‑associated 

networks provided a novel insight that may help elucidate the 
inflammation‑mediated mechanisms involved in CRC.

Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer among males and females (1). Surgical resection 
is an effective treatment for early‑stage CRC, while chemo-
therapy is the main treatment for patients with advanced CRC. 
In recent years, effective observation strategies following 
curative treatment for CRC have helped improve the overall 
survival (OS) of patients, and a number of CRC patients are 
eligible for such curative treatment (2‑4). The fecal immu-
nochemical test (FIT), a simple and easy method, has been 
widely used in CRC screening programs (5‑7). However, the 
5‑year survival rate significantly declines when cancer cells 
spread to adjacent organs or lymph nodes (8‑10). Due to the 
genetic heterogeneity of CRC, studying the tumor initiation 
and progression at a molecular level can help to uncover the 
pathogenesis of CRC. During the past decades, researchers 
have identified various important gene biomarkers, including 
tumor oncogenes (such as KRAS, BRAF and PIK3CA) and 
suppressor genes (such as A00PC, TP53 and PTEN). These 
genes are critical for the genesis and development of CRC, 
demonstrating the potential clinical significance for the treat-
ment of CRC (11,12).

As accumulating evidence has suggested inflammation is a 
tumor‑promoting hallmark that contributes to tumor initiation 
and progression (13). CRC has been reported to be associ-
ated with chronic bowel inflammation  (14‑16), indicating 
the crucial roles of inflammatory genes in the tumorigenesis 
and development of CRC. Additionally, a number of studies 
have reported the importance of single inflammatory genes 
in CRC. For instance, Cho et al  (17) revealed that genetic 
variation in PPARGC1A affected the role of diet‑associated 
inflammation in CRC. Furthermore, Li  et  al  (18) identi-
fied that the inflammatory molecule PSGL‑1, involved in 
the nuclear factor‑κB signaling pathway, can promote CRC 
growth by activating macrophages. However, the study of 
inflammatory genes in the context of functional interaction 
networks remains unclear, which drives us to predict novel 
network‑based inflammation‑associated signatures. In addi-
tion, a variety of public gene expression profiling datasets 
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and protein‑protein interactions (PPIs) make it possible to 
study the network of inflammatory genes further in order to 
identify novel biomarkers for CRC. Chuang et al (19) used 
a protein‑network‑based approach to identify biomarkers 
as sub‑networks. Similarly, by developing a network‑based 
method, Li et al (20) identified cancer prognostic biomarkers 
based on microarray and network datasets.

The present study aimed to investigate how inflammatory 
genes functioned in the context of inflammation‑associated 
networks and their prognostic value in CRC, and two inflam-
mation‑associated networks were constructed. Topological 
properties were used to measure the network structure, 
as well as the crucial positions of the inflammatory and 
inflammation‑associated genes in the two networks in CRC. 
Furthermore, a 14‑gene module was identified in the IRDN, 
and notably, all 14 genes in this module were inflammatory 
genes. The prognostic significance of this module comprising 
14 inflammatory genes was validated by three independent 
datasets. The current study findings highlighted the novel role 
of the inflammation‑associated network in CRC, providing an 
insight into the inflammation‑mediated mechanisms involved 
in this disease.

Materials and methods

Data resources. CRC patients with whole‑genome gene 
expression profiles (Affymetrix Human Exon 1.0 ST Array) 
were downloaded from the publicly available Gene Expression 
Omnibus  (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). A total of 90 specimens were included in the study 
of network construction, including 77 tumor and 13 normal 
samples from the study by Sveen et al (21) with the acces-
sion number GSE24550  (Table  I). In addition, another 
three GEO datasets, namely GSE24549, GSE24551 and 
GSE103479 (Table I) (22,23), were downloaded for valida-
tion analyses. The GSE24550 dataset, which is a subset of 
GSE24551, was selected as a training set. Furthermore, CRC 
patients' stage information was obtained for these four datasets 
and other clinical features (age, gender, BRAF/KRAS/P53 
mutations) for the GSE103479 dataset.

Gene Ontology  (GO)  (24) terms associated with the 
inflammatory response were obtained from the study by 
Plaisier et al (25). The genes annotated to these inflamma-
tion‑associated GO terms were obtained from the AmiGO2 
tool (26) of the GO Consortium. Finally, 909 inflammatory 
genes were collected for subsequent analyses.

The protein‑protein interaction (PPI) data were downloaded 
from the Human Protein Reference Database (HPRD) release 9 
(http://www.hprd.org/) (27). It contained >42,000 manually 
curated interactions between 9,826 human genes.

Differentially expressed gene (DEG) analysis. The raw array 
data (.CEL files) of samples in the four GEO datasets were 
uniformly pre‑processed using the Robust Multichip Average 
algorithm for background correction, quantified normalization 
and log2‑transformation (28). To account for the heterogeneity 
of multiple microarray datasets in systematic measurements, 
each dataset was standardized independently by the Z‑score 
transformation to balance the expression intensities of each 
probe (29). DEGs were identified using a two‑tailed t‑test for 

GSE24550. Genes with a false discovery rate (FDR) cutoff 
value of 0.001 following adjustment of the P‑value were 
considered as DEGs. The unsupervised hierarchical clustering 
of CRC samples and DEGs was performed with R software 
(https://www.r‑project.org/) using the Euclidean distance and 
complete linkage method.

Network construction and analysis. Cytoscape version 
3.2.0 (30) was used for the construction of the networks in 
the current study. The first network was established according 
to the following procedure: The human PPI network was 
initially downloaded from the HPRD, all the inflammatory 
gene symbols were acquired from AmiGO2, and all the 
inflammatory genes were mapped to the human PPI network. 
Subsequently, a sub‑network including inflammatory genes 
and their direct interacting genes in the network (referred to 
as inflammatory neighbor genes) was selected. Finally, the 
sub‑network was termed the inflammation‑related neighbor 
network (IRNN). The second sub‑network was constructed 
as follows: DEGs of CRC were mapped to IRNN, and then a 
sub‑network including DEGs and their direct interacting genes 
in the IRNN (referred to as DEG neighbor genes) was selected. 
The second sub‑network was termed the inflammation‑related 
driver network (IRDN) for subsequent analyses.

In order to explore the topological properties of the inflam-
matory genes in the IRNN and IRDN, the following features 
were analyzed: Degree, betweenness centrality (BC) and close-
ness centrality (CC), which were used to decipher the structure 
of the sub‑networks and to identify specific vital molecules. 
Degree was used to determine the number of neighbors for 
each node. BC represented the key role of a node in commu-
nication and information diffusion (31). Node CC measured 
the local cohesiveness, such as how close a node is to other 
nodes. The IRNN and IRDN visualization and topological 
properties were analyzed using Cytoscape version 3.2.0 and 
the R software.

Identifying prognostic modules in IRDN. The cFinder algo-
rithm (32) is a classic method used to identify modules from a 
network, in which the identification and visualization of over-
lapping dense groups of nodes was conducted using the Clique 
Percolation Method (33). Modules were identified through this 
method in the present study by locating the k‑clique perco-
lation clusters of the network. A k‑clique percolation cluster 
includes the following two parts: i)  all nodes that can be 
reached via chains of adjacent k‑cliques from each other; and 
ii) the links in these cliques. Larger values of k correspond to a 
higher stringency during the identification of dense groups and 
provide smaller groups with a higher density of links inside 
them.

Functional enrichment analysis. Genes were functionally 
annotated to identify enriched pathways based on DAVID 
Bioinformatics Resources (version  6.7; http://david.abcc.
ncifcrf.gov/)  (34). The DAVID enrichment analyses were 
limited to Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways and GO‑FAT biological process (BP) terms, with the 
whole human genome as background. Functional categories 
were visualized and clustered using the Enrichment Map 
plugin (35) in Cytoscape version 3.2.0.
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Survival analysis. In order to validate whether the module identi-
fied in the aforementioned step was associated with CRC patient 
survival, the expression of mRNAs in the module was extracted. 
Next, Cox proportional hazard analysis was used to obtain the 
regression coefficient of each gene associated with patient survival. 
The classifier was built as the linear combination of the gene 
expression values of the selected genes using the standardized Cox 
regression coefficient as the weight. A risk score formula for each 
patient was established by including the expression values of each 
selected gene weighted by their estimated regression coefficients 
in the univariate Cox regression analysis. As a result, patients 
were divided into the high‑risk and low‑risk groups (36) using 
the median value of the risk score as the threshold. Kaplan‑Meier 
survival plots and log‑rank tests were used to assess the differences 
in disease‑free survivalb (DFS) duration between the high‑risk 
and low‑risk patients. In addition, the sensitivity and specificity of 
the module for survival prediction was evaluated using receiver 
operating characteristic (ROC) curve analysis, and the area under 
the ROC curve (AUC) was calculated.

Statistical analysis. In the construction of IRNN, two‑tailed 
t‑test and FDR adjustion were used to identify CRC‑related 
DEGs. Furthermore, univariate and multivariate Cox regression 
analyses and log‑rank test were applied in survival analysis.

Results

Inflammatory genes serve a crucial role in CRC. Based on 
the PPI network, an IRNN was constructed, which included 
9,293 interactions of 3,526 nodes (575 inflammatory genes 
and their 2,928 neighbors; Fig. 1A). In the IRNN, there were 

17  inflammatory genes (such as CCL19, CD36, COL1A1, 
CXCL13, ITK and KIT) that were DEGs, as well as 558 inflam-
matory genes (including PRKACA, TRAF2, PIK3R1, SHC1, 
PTPN11, LCK and GRB2) that were associated with the DEGs.

In order to explore the construction and features of the 
IRNN, network topology analysis was performed. As observed, 
the global degree distribution of nodes in the IRNN closely 
followed the power law distribution (Fig. 1B). Furthermore, 
the inflammatory genes, DEGs and other nodes exhibited a 
small‑world network organization (Fig. 1B), which suggested 
that the IRNN constructed was biologically significant.

Inflammatory genes serve critical hub roles by interacting 
with DEGs in CRC. To further explore the role of inflamma-
tory genes in the IRNN, analysis of the topological features, 
including the degree, CCs and BCs, was performed. The 
results demonstrated that inflammatory genes in the IRNN had 
a higher degree, CCs and BCs compared with their neighbors 
that were non‑inflammatory genes in the IRNN (P<2.2x10‑16 
for degree; P=1.15x10‑14 for CC; P<2.2x10‑16 for BC; Wilcoxon 
rank sum test; Fig. 2A‑C, respectively), indicating that inflam-
matory genes were central within the IRNN.

As observed earlier, inflammatory genes tended to be 
located in the hub node positions in the IRNN; therefore, 
the present study further deciphered these inflammatory 
hub genes in detail. Previously, hubs were typically defined 
as the top 10‑20% of nodes in the networks based on their 
degree (37,38). Thus, the top 10% of nodes were selected as 
the hub components based on the highest degrees, identifying 
a total of 347 hub nodes. Furthermore, all the hub nodes were 
found to belong to inflammatory genes with a significantly 

Table I. Clinical features of all CRC patients included in this study.

Characteristic	 GSE24550 (n=77)	 GSE24549 (n=83)	 GSE24551 (n=160)	 GSE102479 (n=155)

Stage, no. (%)
  II	 44 (57.1)	 46 (55.4)	 90 (56.2)	 83 (53.5)
  III	 33 (42.9)	 37 (44.6)	 70 (43.8)	 72 (46.5)
Age, no. (%)
  ≤65	 n/a	 n/a	 n/a	 51 (32.9)
  >65	 n/a	 n/a	 n/a	 102 (56.8)
Gender, no. (%)
  Male	 n/a	 n/a	 n/a	 87 (56.1)
  Female	 n/a	 n/a	 n/a	 68 (43.9)
BRAF mutation
  WT	 n/a	 n/a	 n/a	 122 (78.7)
  MT	 n/a	 n/a	 n/a	 15 (9.7)
KRAS mutation
  WT	 n/a	 n/a	 n/a	 83 (53.5)
  MT	 n/a	 n/a	 n/a	 54 (34.8)
P53 mutation
  WT	 n/a	 n/a	 n/a	 59 (38.1)
  MT	 n/a	 n/a	 n/a	 78 (50.3)

WT, wild type; MT, mutation type; n/a, not available.
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higher BC compared with that of all the inflammatory genes 
in the IRNN (P<2.2x10‑16; Fig. 2D). These findings indicated 
that certain inflammatory genes had critical hub roles in the 
IRNN. However, the BCs of hub genes were higher in compar-
ison with those of DEGs (P<2.2x10‑16; Fig. 2E), indicating that 
these DEGs served critical roles in the communication with 
their neighboring nodes in the IRNN. The KIT gene, a DEG in 
the IRNN sub‑network, encodes c‑kit tyrosine kinase whose 
inhibitor STI571 reportedly exhibits a substantial therapeutic 
activity in patients with CRC (39). KIT, which interacted with 
two hub inflammatory genes (FYN and SRC) in the IRNN, is 
inhibited by dasatinib, which is studied in solid tumors such 
as CRC by combining with capecitabine and oxaliplatin (40). 
These observations demonstrated that hub inflammatory 
gene‑associated DEGs were more likely to be essential for 
CRC development and progression.

The top six inflammatory genes (EP300, SRC, CREBBP, 
GRB2, MAPK1 and FYN) in terms of the node degree had a 
direct connection in the network, indicating that inflammatory 
genes function as hubs in the sub‑networks (Fig. 3).

Inflammatory genes directly interact with CRC‑associated 
DEGs. To further explore the association between inflamma-
tory genes and DEGs, a network termed IRDN was constructed, 
which included DEGs and their neighbors extracted from the 
IRNN (Fig. 4A). The IRDN included 209 genes, of which 
83 were DEGs. In total, 121 of the genes in IRDN were 
inflammatory genes, and 17 of these were also DEGs. Similar 
to the nodes in IRNN, the nodes in the IRDN also exhibited a 
small‑world network organization (Fig. 4B), which suggested 
that the IRDN was also biologically significant. These results 
suggested that the IRDN obtained from IRNN may serve a 
crucial role in the biogenesis of CRC.

A functional enrichment analysis of all genes in IRDN 
was also performed based on GO and KEGG pathway 
analyses. IRDN mRNAs were enriched in 200 GO_BP_FAT 

terms (FDR<0.001) mainly in eight functional clusters, 
including cell adhesion, cell communication, cell activation, 
immune response, cell death and apoptosis, signal transduc-
tion, response to stimulus and phosphorylation (Fig. 5A). In 
addition, 25  KEGG pathways  (FDR<0.01) were involved, 
including cancer, focal adhesion and several signaling path-
ways (Fig. 5B). All enriched signaling pathways, including 
ErbB, Jak‑STAT, MAPK and NOD‑like receptor signaling, are 
known to be contributors to CRC pathogenesis (41‑44).

Identifying inflammatory network‑based biomarkers in CRC. 
Using the cFindeR  software, two inflammation‑associated 
modules in IRDN with k‑clique  ≥5 were identified. Next, 
the study investigated whether these two inflammatory 
gene‑associated modules have a prognostic potential in CRC. 
Using the training dataset GSE24550 (Table II), a risk‑score 
formula was created according to the expression of these two 
module genes to generate DFS prediction. Using the median risk 
score of the training series as the cutoff point, the risk scores 
of the module genes were calculated for each patient and then 
patients were ranked according to their risk score. The patients 
were grouped into the high‑risk or low‑risk categories using the 
median risk score of the training series as the cutoff point. As 
a result, the module comprising 14 inflammatory genes with 
k‑clique=6 (Fig. 6A) was able to divide patients into the high‑ 
and low‑risk groups with a significantly reduced DFS observed 
in the high‑risk group (log‑rank test, P=1.80x10‑4; Fig. 6B). 
Additionally, the distribution of gene risk score and the survival 
status of the training dataset are shown in Fig. 6C. Furthermore, 
a time‑dependent ROC curve analysis was performed to evaluate 
the sensitivity and specificity for module survival prediction. The 
module achieved an AUC value of 0.791 (Fig. 6D), suggesting a 
substantially effective performance.

Validating the prognostic potential of 14‑inflammatory‑gene‑ 
module in independent datasets. To validate the prognostic 

Figure 1. Properties of the IRNN. (A) The global IRNN and (B) the degree distribution of the nodes in the IRNN are shown. IRNN, inflammation‑related 
neighbor network; DEG, differentially expressed gene.
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performance of the 14‑inflammatory‑gene‑module, three 
independent GEO datasets were used in the subsequent anal-
yses (Table II). Using the same risk score formula as earlier, 
patients in each dataset were classified into the high‑risk and 
low‑risk groups using the median score of the training series as 
the cutoff point. Consistent with the previous findings, patients 
in the high‑risk group had significantly shorter median DFS or 
OS when compared with those in the low‑risk group (GSE24549 
patients: Log‑rank test P=1.99x10‑2, Fig. 7A; GSE24551 patients: 

Log‑rank test P=8.27x10‑4, Fig.  7B; GSE103479 patients: 
Log‑rank test P=3.41x10‑2, Fig. 7C). Similarly, the distribution 
of gene risk scores and the survival statuses of the three datasets 
are displayed in Fig. 7D‑F. Patients with high‑risk scores tended 
to present poorer clinical outcomes compared with patients 
with low‑risk scores. The time‑dependent ROC curve analysis 
was performed to evaluate the sensitivity and specificity for 
module survival prediction in these three GEO datasets. The 
module achieved AUC values of 0.634, 0.697 and 0.607 in the 

Figure 2. Comparison analysis of topological properties of inflammatory genes and other mRNAs in the IRNN. Box plot of the (A) degree, (B) BC and (C) CC 
of inflammatory genes and other nodes in the IRNN. (D) Box plot of BC of hub nodes and inflammatory genes in IRNN. (E) Box plot of BC of hub nodes and 
DEGs in IRNN. IRNN, inflammation‑related neighbor network; DEG, differentially expressed gene; BC, betweenness centrality; CC, closeness centrality.
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GSE24549, GSE24551 and GSE103479 datasets, respectively, 
indicating that high prediction performance (Fig. 7G‑I).

Subsequent to further adjusting for other clinical 
markers univariate analysis indicated that the 14‑inflamma-
tory‑gene‑module was significantly associated with the DFS of 
CRC patients from the GSE24549 [hazard ratio (HR)=1.28; 95% 
confidence interval (CI)=0.99‑1.66; P=0.052] and GSE24551 
datasets (HR=1.88; 95% CI=1.42‑2.47; P<0.001), as well as 
the OS of patients from the GSE103479 dataset (HR=2.13; 
95%  CI=1.24‑3.64; P=0.006), as an independent risk 
factor (Table III). Subsequently, when multivariate analysis 
was performed to investigate the independence of the module 
to other clinical factors, the module was not independent of the 
stage in GSE24549 (HR=1.93; 95% CI=1.05‑3.56; P=0.034), 

and GSE103479 (HR=2.37; 95%  CI=1.34‑4.21; P=0.003) 
datasets (Table III). Furthermore, data stratification analysis 
on GSE24549 patients indicated that the module was inde-
pendent of stage (P=1.50x10‑2 for stage II group; P=1.51x10‑2 
for stage III group; Fig. 8A and B), as well as the GSE24551 
patients (P=1.30x10‑2 for stage II group; P=6.97x10‑2 for stage III 
group; Fig. 8C and D) and GSE103479 patients (P=1.76x10‑2 for 
stage II group; P=1.37x10‑2 for stage III group; Fig. 8E and F). 
In addition, in terms of OS survival in GSE103479 patients, the 
module was independent of the patient age and the mutation of 
P53 (P=4.84x10‑2 for patients aged >65 years; P=1.52x10‑2 for 
the P53 mutated group; Fig. 8G and H). Based on these data, it 
is concluded that the 14‑inflammatory‑gene‑module is a strong 
prognostic indicator for CRC.

Figure 3. Top six inflammatory genes ranked in terms of the gene degree, including EP300, SRC, CREBBP, GRB2, MAPK1 and FYN. DEG, differentially 
expressed gene.

Table II. Gene Expression Omnibus microarray datasets used in the present study.

Datasets	 Platform	 Number of patients	 Overall type	 No. of tumor samples	 No. of normal samples

GSE24550	 HuEx‑1_0‑st	   90	 DFS	   77	 13
GSE24549	 HuEx‑1_0‑st	   83	 DFS	   83	   0
GSE24551	 HuEx‑1_0‑st	 173	 DFS	 160	 13
GSE103497	 ADXECv1a520743	 156	 OS	 156	   0

DFS, disease‑free survival; OS, overall survival.
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Figure 4. Properties of the IRDN. (A) The global IRDN is shown, and the size of the sphere represents the degree of the gene. (B) The degree distribution of 
mRNAs in the IRDN. IRDN, inflammation‑related DEG network; DEG, differentially expressed gene.
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Discussion

Inf lammatory genes serve a key role in cell‑cell 

communication, and dysfunctional inflammatory response 
can cause various diseases, including cancer. Thus, 
deciphering the inflammation‑mediated mechanisms in 

Figure 5. (A) Functional enrichment map of GO_BP_FAT terms. Each node represented a GO term, which was grouped and annotated by GO similarity. 
Each edge represented whether there was a shared gene between two GO terms. Node size represented the number of genes in the GO term. (B) Significantly 
enriched KEGG pathways of mRNAs in the IRDN. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; IRDN, inflammation‑related 
DEG network; DEG, differentially expressed gene.
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CRC can provide opportunities for the early detection and 
treatment of CRC. A variety of inflammation‑associated 
genes in CRC have been previously studied. For instance, 
Hickish et al (45) revealed that MABp1 was associated with 
an antitumor activity and relief of debilitating symptoms in 
patients with advanced CRC. Foersch et al (46) reported that 
inhibition of VEGFR2 signaling led to senescence of human 
CRC, which may improve the CRC patient survival in clinical 
practice. Zhu et al (47) also suggested that STING mediated 
protection against colorectal tumorigenesis by participating 
in intestinal inflammation.

In the present study, a systematical analysis on the 
inflammatory genes in CRC was performed, developing an 
integrated network‑based strategy to construct and identify 
the inflammation‑associated networks and modules. The 
current study built two networks, namely IRNN and IRDN, 
with inflammatory genes in the IRNN closely interacting with 
cancer genes, and genes in the IRDN enriched in numerous 
cancer‑associated functions and pathways. These inflammatory 

genes may modulate the communication between cancer and 
normal cells. In addition, the current study highlighted the 
importance of inflammatory genes in the prognosis of CRC 
through the identification of a 14‑inflammatory‑gene‑module, 
which was further validated by three independent datasets, 
providing a novel insight for CRC diagnosis and therapy.

Notably, the top six hub nodes in IRNN were all inflamma-
tory genes, including EP300, which encodes the E1A‑binding 
protein p300 and is important in the processes of cell 
proliferation and differentiation. The frame‑shift mutations 
of EP300 have been reported to contribute to cancer patho-
genesis by deregulating E1A‑binding protein p300‑mediated 
functions  (48). Furthermore, the tyrosine kinases of the 
SRC family participate in oncogenic signaling in advanced 
CRC, which is crucial in the progression of CRC (49). The 
CBP protein (encoded by CREBBP), together with p300, 
may influence colonic cell physiology by affecting Wnt 
signaling, as well as affect colonic tumorigenesis and stem cell 
pluripotency (50). In addition, Ding et al (51) observed that 

Figure 6. Overview of 14‑inflammatory‑gene‑module and its prognostic ability in assessing the clinical outcome of the training set colorectal cancer patients. 
(A) Overview of 14‑inflammatory‑gene‑module, with the size of the sphere depicting the degree of the gene. (B) Kaplan‑Meier survival curves for disease-free 
survival of patients in the training set GSE24550 with high‑ and low‑risk scores. The P‑value was calculated using the log‑rank test. (C) Risk score analysis of 
the module in GSE24550. (D) ROC curve analysis and the AUC indicating the sensitivity and specificity of the module for survival prediction in the GSE24550 
dataset. DFS, disease‑free survival; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Grb2‑associated binder 2 (Gab2) promoted intestinal tumor 
metastasis by inducing epithelial‑to‑mesenchymal transition 
through the MEK/ERK/MMP pathway, which indicated 
that Gab2 may function as a novel prognostic factor for CRC 
patients. Additionally, with the immunohistochemistry study, 
researchers have found that MAPK is highly expressed and 
extremely active in colorectal cells and can be a therapeuti-
cally relevant target in inflammatory bowel disease (52,53).

In conclusion, although the inflammation‑associated genes 
and modules should be confirmed by further experimental valida-
tions, the present study indeed provided a new direction for the 

exploration of the genesis and development of CRC using two 
inflammation‑mediated gene networks. Furthermore, a 14‑inflam-
matory‑gene‑module with prognostic potential was identified.
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Figure 7. Survival curves and risk score analyses of the 14‑inflammatory‑gene‑module in three independent datasets. Kaplan‑Meier survival curves for DFS 
of patients with high‑ and low‑risk scores in the (A) GSE24549, (B) GSE24551 and (C) GSE103497 datasets. Log‑rank test was used to calculate the P-values. 
Risk score analysis of the module in the patients of the (D) GSE24549, (E) GSE24551 and (F) GSE103497 datasets. ROC curve analysis and AUC value indi-
cating the sensitivity and specificity of the module for survival prediction in the (G) GSE24549, (H) GSE24551 and (I) GSE103497 datasets. DFS, disease‑free 
survival; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Table III. Univariate and multivariate Cox regression analysis of the module gene signature and disease-free survival of colorectal 
cancer patients in the training and test Gene Expression Omnibus datasets.

	 Univariate model	 Multivariate model
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR	 95% CI of HR	 P‑value	 HR	 95% CI of HR	 P‑value

GSE24550 (DFS)
  Module risk score	 2.17	 1.42‑3.31	 <0.001	 2.13	 1.36‑3.33	 0.001
  Stage	 1.77	 0.72‑4.35	 0.216	 1.12	 0.43‑2.90	 0.817
GSE24549 (DFS)
  Module risk score	 1.28	 0.99‑1.66	 0.052	 1.24	 0.97‑1.57	 0.080
  Stage	 2.02	 1.11‑3.71	 0.022	 1.93	 1.05‑3.56	 0.034
GSE24551 (DFS)
  Module risk score	 1.88	 1.42‑2.47	 <0.001	 1.76	 1.34‑2.32	 <0.001
  Stage	 1.97	 1.19‑3.25	 0.008	 1.61	 0.96‑2.70	 0.069
GSE103479 (OS)
  Module risk score	 2.13	 1.24‑3.64	 0.006	 1.58	 0.92‑2.70	 0.094
  Stage	 2.18	 1.30‑3.67	 0.003	 2.37	 1.34‑4.21	 0.003
  Age	 1.06	 1.03‑1.09	 <0.001	 1.05	 1.02‑1.09	 0.001
  Gender	 0.97	 0.59‑1.62	 0.919	 1.26	 0.71‑2.26	 0.428
  BRAF mutation	 1.91	 0.90‑4.07	 0.091	 1.17	 0.50‑2.78	 0.714
  KRAS mutation	 0.87	 0.51‑1.51	 0.629	 0.97	 0.53‑1.77	 0.913
  P53 mutation	 0.57	 0.33‑0.98	 0.041	 0.68	 0.39‑1.19	 0.173

HR, hazard ratio; CI, confidence interval; DFS, disease-free survival; OS, overall survival.

Figure 8. Stratification analysis of independent datasets based on the stage. Kaplan‑Meier survival curves of patients stratified by stage based on the 
14‑inflammatory‑gene‑module are shown for patients in the three datasets. (A) Stage II (n=46) and (B) stage III (n=37) CRC patients DFSin GSE24549; 
(C) stage II (n=90) and (D) stage III (n=70) CRC patients DFS in GSE24551; (E) stage II (n=83) and (F) stage III (n=72) CRC patients OS in GSE103479. In 
addition, (G) Kaplan‑Meier OS curves of patients (n=102) in the GSE103479 dataset stratified by age (>65 years) based on the 14‑inflammatory‑gene‑module 
are displayed. (H) Kaplan‑Meier OS curves of patients (n=78) in the GSE103479 dataset stratified by P53 mutation based on the 14‑inflammatory‑gene‑module 
are presented. DFS, disease‑free survival; OS, overall survival.
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